
6.895 Randomness and Computation February 6, 2008

Lecture 1

Lecturer: Ronitt Rubinfeld Scribe: Shubhangi Saraf

1 Introduction

Today we’ll discuss a classical example of how randomness helps in algorithms. We’ll present a random-
ized algorithm for the problems of Polynomial Zero Testing and Polynomial Identity Testing and then
give two very nice applications of these results.

2 The problems

The problem of Polynomial Identity Testing (PIT) is the following. Given two polynomials p and q in n
variables, we want to determine if they are the same, i.e. is p(x1, x2, . . . , xn) = q(x1, x2, . . . , xn) for all
x1 . . . xn. For example, consider

(x1+x2)(x3+x4)
40(x2

5+x6)
?

≡(x1−x2)(x3−x4)
40(x2

5+x6)+(x1+2x2)(x3−x4)
40(x2

5+x6)+x1x3x
2

5+x2x6x
40

3 .

We would like to figure out if the polynomial on the left is identically equal to the polynomial on
the right. The problem with opening up the brackets and expanding is that we could possibly get an
exponential (in the degree of the polynomial) number of terms. For instance, if there are n variables
and the degree of d, there could be more that

(

n

d

)

terms!
Consider the following related problem of Polynomial Zero Testing. Given a polynomial p(x1, . . . , xn),

we want to determine if it’s identically 0, i.e. is p(x1, x2, . . . , xn) = 0 for all x1 . . . xn.
Observe that both the above problems are equivalent. Clearly Polynomial Zero Testing is a special

case of Polynomial Identity Testing when q is the zero polynomial. In the other direction, to determine if
p(x1, x2, . . . , xn) = q(x1, x2, . . . , xn), instead consider p′(x1, x2, . . . , xn)

.
= (p − q)(x1, x2, . . . , xn). Then

p′ ≡ 0 iff p ≡ q, and hence we can instead test if p′ is identically 0.
Before we discuss the above problems, let us clarify some notions. Assume that the domain is a field

such as R or Zp. For example, if the field is Z7, then

(x + 3)2 ≡ x2 + 6x + 9 ≡ x2 + 6x + 2 (mod 7).

The degree of a univariate polynomial is the highest exponent of a term in the polynomial. For
instance, the degree of x10 + x3 + 1 is 10. The total degree of a multivariate polynomial is the max over
all terms of the sum of degrees in the term. This is the notion we’ll tend to use most of the time unless
specified otherwise. The maximum degree of a multivariate polynomial is the maximum over all terms
of the degree of the maximum degree variable in that term. For example, if the polynomial is xy2 + x2,
then the total degree is 3, and the maximum degree is 2.

3 Algorithm for Polynomial Zero Testing

Assume a polynomial p in n variables and of degree d is given as a black-box oracle. The oracle takes
as input x̄ = (x1, . . . , xn) and outputs p(x̄).

Deterministic Algorithm for the Case when p is Univariate. Plug in any d + 1 distinct values
to the black-box. If all are 0, then output “≡0”. Else, output “ 6≡0”.

The above algorithm makes O(d) evaluations. It works since a non-zero polynomial of degree at most
d can have at most d roots.

1

Randomized Algorithm for the Univariate Case. The above observation also implies that if the
domain field size is greater than 2d, then at most d/|F | ≤ 1/2 of the fraction of all field elements are
zeroes of the polynomial. This suggests the following randomized algorithm. Pick an element uniformly
at random from a field of large enough size and plug it in. If it outputs 0, then output “≡0”. Else,
output “ 6≡0”. The algorithm works in O(1) evaluations. The behavior of the algorithm is as follows.
If p ≡ 0, the algorithm outputs ‘ ≡ 0′. If p 6≡ 0, Pr[algorithm outputs “ 6≡0”] ≥ 1/2. This same idea is
generalized to give an algorithm that works in the multivariate case.

Randomized Algorithm for the Multivariate Case. Observe that a multivariate polynomial can
have infinitely many roots - for example: p(x, y) = x · y over a field of infinite size has infinitely many
roots. However, the same kind of test that works in the univariate case works in this case too as long as
the field is of large enough size, and a random value is picked for each xi.

Let us first set up some notation that we’ll use for the rest for the course.

• x ∈R S denotes “Pick x uniformly from S”.

• x ∈U S denotes “Pick x uniformly from S”.

• x ∈ D denotes “Pick x according to distribution D”.

• x ∈D S denotes “Pick x according to distribution D on set S”.

The following is the algorithm that works in the multivariate case (needs |F | ≥ 2d):

1. Pick S ⊆ F arbitrarily such that |S| ≥ 2d.

2. Pick x1, x2, . . . , xn ∈R S.

3. If p(x1, . . . , xn) = 0, output “≡0”; else output “ 6≡0”.

Again, the algorithm needs just O(1) evaluations of p on numbers of size O(log d).This is shown be the
below claim, which can be proved by induction on n, with the univariate case as the base case.

Claim 1 If the polynomial p 6≡ 0, then Pr[p(x1, . . . , xn) = 0] ≤ d
|S| .

The behavior of the algorithm is as follows. If p ≡ 0, the algorithm outputs “≡0”. If p 6≡ 0,
Pr[algorithm outputs “ 6≡0”] ≥ 1/2. This probability can be improved by either repeating the algorithm
multiple times, or picking a bigger field size.

4 Can we derandomize PIT?

Assume that the polynomial is given as an arithmetic circuit. Kabanets and Impagliazzo proved that if
we can derandomize polynomial identity testing, then one of the two statements given below must be
true:

1. NEXP is not contained in P/poly.

2. Permanant is not computable by polynomial-size arithmetic circuits.

Hence derandomizing PIT would be a very powerful result.

2

5 Applications of PIT

5.1 The man on the moon problem

Assume Alice on the earth has a string ā = a1a2 . . . an and Bob on the moon has a string b̄ = b1b2 . . . bn.
They want to decide if ā = b̄.

One way of doing this would be for Alice to transmit ā all the way to the moon. This would take n
bits of transmission.

Alternatively, Alice could view ā as the coefficients of a degree n univariate polynomial p =
∑

aix
i

over a field of size at least 2n. Then, pick arbitrarily S ⊆ F such that |S| ≥ 2n, pick x ∈R S, and send
x and ā(x) to Bob (the man on the moon). He checks if ā(x) = b̄(x). If yes, they conclude that ā = b̄.
Else they’re different.

By our previous analysis, the above algorithm indeed works. If ā = b̄ then they will always conclude
that they are equal, and if ā 6= b̄, then with probability at least a half, they would find that out. In the
above randomized algorithm, only O(log n) bits are needed to be transmitted.

5.2 Bipartite Matching

We’ll first introduce some preliminaries. A bipartite graph G = (V, E) is one in which the set of vertices
V can be partitioned into two sets S and T such that all the edges in G go between S and T , and there
are no edges with both endpoints lying in the same set. A matching M is a subset of the set of edges
E such that no two edges in M share a vertex. A perfect matching is one that has an edge adjacent to
each vertex.

A natural question that arises in graph theory is that given a graph, decide if it has a perfect matching.
The problem of actually finding a perfect matching in a graph that has one, can be solved using network
flows. The result we’ll show here is not as strong, but is a first step in the direction of getting the best
algorithm for finding a bipartite matching. We’ll show how to use Polynomial Zero Testing to give a
randomized algorithm for determining if a given graph has a perfect matching.

Given a graph G = (V, E), the Frobenius matrix AG = [aij] of the graph is a matrix whose entries
are variables or zeroes. In particular, aij = xij if (i, j) ∈ E, and aij = 0 otherwise.

Claim 2 A graph G has a perfect matching iff det(AG) 6= 0.

Proof

det(AG) =
∑

σ∈Sn

sgn(σ)

n
∏

i=1

aiσi

Here Sn denotes the set of all permutations of 1 through n. Observe that every permutation represents
a possible matching between the two vertex sets. Also,

∏n

i=1
aiσi

6≡ 0 if and only if all the edges
corresponding the the perfect matching represented by the permutation σ are present in G. Since every
other term has a different combination of variables, the non-zero terms don’t get canceled out. This
completes the proof of the above claim.

Since the determinant of AG is a multivariable polynomial of degree n, it can be tested by the
Polynomial Zero Testing algorithm to see if it’s identically zero or not, and hence to determine if the
graph G contains a perfect matching.

The above idea was used by Lovász to determine if a perfect matching exists in a graph. Since then, it
has been shown that similar approaches can be extended to the non-bipartite case as well. For instance,
Mucha and Sankowski (FOCS 2004) showed that one can find a maximum matching in general graphs
in time O(nω), which is the time required for matrix multiplication. Nick Harvey at MIT (FOCS 2006)
showed a simpler algorithm with the same running time.

3

