6.842 Randomness and Computation March 19, 2012

Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: Cheung Wang Chi

Today, we are going to discuss the following:

Models for learning
e Brute force algorithm

e Learning conjunction functions

Start on Learning theory and Fourier Transform

1 Models for Learning

In the model, the learner aims to learn an unknown function f : D — R, where |D| is finite, but R is a
general set, e.g. the set of real numbers. She has access to the example oracle Ex(f), which outputs an
example (z, f(z)), where z €y D. Upon obtaining a certain number of random examples, she will call
an learning algorithm A that inputs the observed examples and outputs the hypothesis h : D — R.

In general, one cannot hope to learn a random function. Indeed, when there is no restriction on f, it is
too hard to learn f exactly, i.e. to obtain h = f, or even to obtain h that is e-close to f. Therefore, we
will restrict f to be in a certain class C of functions, which is also known as the concept class. Moreover,
the learning algorithm A is usually specific to the concept class C, as we will see in the case of learning
conjunction functions.

Definition 1 Given a hypothesis h for f, the “error of h with respect to f7 is err(h) = Prye,p[f(x) #

h(z)]
Equivalently, err(h) is the smallest € > 0 such that & is e-close to f.

Definition 2 A uniform distribution learning algorithm for the concept class C is an algorithm A such
that

1. Given €,§ > 0, A accesses Ex(f) to obtain random samples (z1, f(21)), -, (Tm, f(zm))-

2. A outputs hypothesis h such that Prlerr(h) < €] > 1— 6, where err(h) is the error of h with respect
to f defined earlier.

Here are the parameters of interest:
e The description of h:

— Does h have to be in C? We will not require h € C in the future, but under the model for
proper learning we restrict h € C.

— We require that h is at least relatively compact, i.e. size(h) = O(log(|C|)), and h can be
efficiently evaluated.

The accuracy parameter e.

The confidence parameter §.

The runtime of A.

The sample complexity m of A, which is the number of samples used by A.

It is desirable to have the runtime and the sample complexity bounded by poly(log |D|, %, %) In fact,
we can replace % with log‘% by repeating A and picking the best concept learnt.

Comment: Our uniform distribution learning model generalizes naturally to the PAC model. By replac-
ing the assumption of “uniform distribution over D” by “general distribution D over D”, it is the PAC
model. To be more precise, in the PAC model, a learner has access to example oracle Exp(f), which
generates (x, f(x)) with z €p D. D is unknown to the learner. The learner aims to output hypothesis
h such that Prp[h is e-close to f] > 1 — 4.

2 Brute Force Algorithm for Learning

With reasonable sample complexity but no bound on runtime, for all C and ¢,d > 0 there is a brute
force algorithm for learning f € C that achieves the accuracy parameter € and the confidence parameter 9:

Brute Force Algorithm:

1. Draw M = 1 (log|C| +1log }) random examples from Ex(f).

2. Search over all h € C until we find one that is consistent with all labelled examples. Choose an
arbitrary one if there are > 1 such h.

Behaviour:

e f is always a candidate for h, since f will always be consistent. Thus, the algorithm will definite
output a hypothesis.

e We would like to show that for a consistent h, Prlerr(h) < ¢] <1 -9, i.e. his not too far from f.
Now, say h is bad if err(h) > €, and we see that

Pr[bad h is consistent the M examples] < (1 — €)™

By union bound, we have

Pr[Any bad h consistent with the M examples]

< oo

log |C|+log %
< e(a—gue
< 0.

Therefore, it is unlikely to have any bad h, and the algorithm has the required property. l

Remarks:
e Since h € C, this algorithm applies for the proper learning model.
e We did not use the fact that x €y D, so the brute force algorithm also applies for the PAC model.
e Once we have a good h, we can

1. predict values of f on new random inputs (with same distribution as in the example oracle).

2. compress the description of samples. Given samples (z1, f(21)), ..., (Tm, f(zm)), We can
rewrite them as (1, ..., &,) U{Description of h}. Since the description of h requires O(log |C|)
bits, it is a genuine compression if m > log|C|.

3 Learning Conjunction Functions

Let C be the family of conjunctions f over {0,1}", for example f(x) = x;z;25. We cannot hope to learn
[€ C with zero error. For example, to distinguish fi(z) = [[;-, ; from fa(x) = 0, we need to sample
almost all points in general, since f1, fo coincide for all points but = = (1, ...,1).

If we learn by the brute force algorithm, the sample complexity is % (1og(2”) + log (%)) =2+ % log (%)
But the runtime is an issue. Here is a polynomial time algorithm:

1. Draw poly(%) examples to estimate Pr[f(z) = 1] to the additive error +%.

. If the estimate is < §, output h = 0.

2
3. Otherwise, draw enough examples such that there are k = log(n/d) positive examples.
4. Let V = {i : z; is set in the same way in each positive example}.

5

. Output h(z) = A,cy ¥i, where y; = x; if x; = 1 in the positive examples, y; = Z; if z; = 0 in the
positive examples.

In step (1), it can be shown by the Hoeffding inequality that the estimate has the required additive error
bound with high probability.

In step (3), we have Pr[f(z) = 1] > {, since the estimate > § and the additive error is bounded by .
Therefore, in every O(1) examples, in expectation we will see a new positive example, i.e. (z, f(z)) such
that f(x) = 1. By sampling O(k/¢) times, we will have k positive examples in expectation, and in fact

with high probability, for example by Chernoff inequality.

Behaviour: For ¢ in the conjunction f, i.e. x; or T; appears in f, then it must be set in the same way in
each positive example. Therefore, i € V. For i not in the conjunction f, we know that

li € V]
x; is set in the same way in each of the K examples]

1
k—1"

Pr
Pr

[\)

This implies that
n

—1 <6?

Pr[Any i not in f survives] <

2k
since k = log(n/d). Now, the sample complexity is O (Llog (%)), which is better than the brute force
algorithm’s. By working backwards, we see that this order bound is tight. B

4 Learning and Fourier Representation

For approximating the Fourier coefficient of an unknown Boolean function, we have the following lemma.

Lemma 1 For f:{0,1}" — {0,1}, we can approzimate any Fourier coefficient f(S) to within additive
error v (i.e. |Output — f(S)| <) with probability > 1 — & with 0(712 log 3) samples.

Sketch of Proof Use Hoeffding inequality and the fact that f(S) =1 —2Pr[f = xs] ®

It is thought to be unlikely in this model that one can efficiently find the “heavy” Fourier coeflicients
with non-trivial values. Exhaustive search is intractable, and no other method is immediately clear. If
we are dealing with a function class where most of the weight is in the coefficients with small S, we can
exhaustively check these values. We will see this approach in work in the next lecture.

