
6.842 Randomness and Computation April 2, 2012

Lecture 14
Lecturer: Ronitt Rubinfeld Scribe: Aaron Sidford

1 Review

In the last class we saw an algorithm to learn a function where very little of the Fourier coeffecient “mass”

is on large sets. Formally, we defined a quantity called Fourier Concentration and gave an O
(
nd

ε log nd

ε

)
sample uniform learning distribution algorithm to learn a function with Fourier concentration d. We
called this algorithm the low degree algorithm as it learns a function by generating a low Fourier degree
to approximation to that function.

Definition 1 (Fourier Concentration) f : {±1}n → R has α(ε, n)-fourier concentration if∑
S⊆[n] s.t. |S|≥α(ε,n)

f̂(S)2 ≤ ε

Remark [Boolean Fourier Concentration] By boolean Parseval’s theorem we know that a boolean

function f : {±1}n → {±1} has Fourier coeffecients satisfying
∑
S⊆[n] f̂

2(S) = 1. Therefore, we have

that if f has α(ε, n)-fourier concentration then∑
S⊆[n] s.t. |S|<α(ε,n)

f̂(S)2 =
∑
S⊆[n]

f̂2(S)−
∑

S⊆[n] s.t. |S|≥α(ε,n)

f̂(S)2 ≥ 1− ε

Theorem 2 (Low Degree Algorithm) If function family C has Fourier concentration d then there

is an O
(
nd

ε log nd

ε

)
sample uniform distribution learning algorithm for C.

2 Today

Today we will discuss two more applications of the low degree algorithm.
First we will look at constant depth circuits. We will cite a theorem regarding the Fourier concen-

tration of functions computable by constant depth circuits and we will use this theorem as well as the
low degree algorithm to show how we can learn constant depth circuits.

Second we will begin to develop the theory need to learn functions of halfspaces. To do this we will
explore the notion of noise sensitivity which will ultimately allow us to bound the Fourier concentration
of these types of functions and learn them through the low degree algorithm.

3 Learning Constant Depth Circuits

3.1 Basic Definitions

Informally, a circuit is a set of boolean input variables and boolean constants (i.e. T (“true”) and F
(“false”)) connected to ∧ (“and”), ∨ (“or”), and ¬ (“not”) operators or “gates.” Each gate receives as
input one or more input variables, constants, or operators and sends its output to one or more other
operators. One of these entities is designated to be the circuit output. Given circuit input (i.e. settings
of the variables) the circuit output is determined by each gate computing it’s output once it’s input has
been determined until the circuit output is determined. For this process to be well defined, we restrict
the graph where the nodes are variables, constants, and gates and the edges demarcate which entity
sends its output to which gate to be a directed acyclic graph (DAG).

1

Definition 3 (Boolean Circuit) A boolean circuit C is a directed acyclic graph (DAG) where the
nodes are each one of ∧, ∨, ¬, T , F , and variable.

We will be primarily interested in the functions computable by circuits satisfying certain parameters.
In particular we will be interested in constraining the size, depth, and fan-in of circuits. The size refers
to the number of gates in the circuit, the depth refers to the longest chain of gate dependencies in the
circuit, and the fan-in refers to how many inputs a single gate can have.

Definition 4 (Circuit Size) The size of a circuit C is the number of nodes in the DAG for that circuit.

Definition 5 (Circuit Depth) For a circuit C its depth is the length of the longest path in the DAG.

Definition 6 (Fan In) The fan in of a gate is simply the number of input that that gate has and the
fan in of a circuit or family of circuits is the maximum number of inputs that any gate can have.

3.2 Circuit Complexity

Today we will study two general family of functions computable by certain types of circuts:

• AC0, AC1, . . . , ACk

• NC0, NC1, . . . , NCk

Each family consists of functions computable by circuits of polynomial size and bounded depth.
However, the families differ in the allowed fan-in of these circuits. In particular we define ACi and NCi
as follows.

Definition 7 (ACi) For all non-negative integers i, the circuit family ACi is the set of functions of n
input variables computable by circuits of depth O(logi(n)), size O(poly(n)), and unbounded fan-in.

Definition 8 (NCi) For all non-negative integers i, the circuit family NCi is the set of functions of n
input variables computable by circuits of depth O(logi(n)), size O(poly(n)), and constant bounded fan-in.

Remark The limitation that ACi and NCi be of polynomial size is essential for the depth restriction
to be meaningful. Without the polynomial size bound every function would be in AC0 since we could
simply write out the DNF formula for the function (i.e. the “or” of the “and” of each precise input
setting that makes the function true).

Remark AC0 and NC0 are circuits of constant depth. However, in NC0 the function’s output cannot
even be dependent on all the input since the fan in restriction means that it takes logarithmic levels for
the output to be dependent on all the input.

3.3 Complexity Hierarchy

There is a natural hierarchy within the circuit families.

Theorem 9
NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ . . .

Proof First, since the definition of NCi is strictly more restrictive the the definition of ACi we have

∀i : NCi ⊆ ACi

Furthermore, note that an “and” or “or” gate with d inputs is equivalent to a balanced tree of depth
O(log d) of “and” or “or” gates on the same input. Therefore, given a circuit in ACi on n inputs we

2

can simply replace every “and” and “or” gate with such a balanced binary tree of “and” or “or” gates
multiplying the depth by O(log n). Therefore we have just shown that

∀i : ACi ⊆ NC(i+ 1)

Combining these two equations yields the result.

3.4 Switching Lemma

There is a strong separation result within the complexity hierarchy. The parity function is in NC1
however the parity function is in not in AC0. Therefore AC0 ⊆ NC1 but NC1 * AC0 so the inclusion
AC0 ⊂ NC1 is proper.

To see that the parity function is in NC1 we first note that we can compute the xor of two input’s
using a constant number of circuits (i.e. a⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b)). Therefore, since parity is the xor
of all the input and since xor is a symmetric and associative operation we can implement parity of n
inputs in NC1 by making a balanced binary tree of xors on n inputs obtaining a NC1 circuit of size
O(n), depth O(log(n)), and fan in of 2.

However, the proof that parity is not in AC0 is much more complicated. In fact, whether or not
parity was in AC0 was an open question for a while until Furst, Saxe, and Sipser first proved that parity
is in fact not in AC0. Over time this result was improved in order to derive better bounds on the size
and depth of a circuit needed to compute certain functions. Ultimately, the findings were distilled into
Hastad’s switching lemma, which was used by Linial, Mansour and Nisan to give the characterization
below

Theorem 10 (Hastad, Linial, Mansour, Nisan) For any function f computable a circuit C of size
≤ s and depth ≤ d we have ∑

S⊆[n] s.t. |S|>t

f̂2(S) ≤ ε

for t = O
(
log s

ε

)d−1
Thus, this theorem says that functions computable by circuits of bounded size and depth have

bounded Fourier concentration. We will not give a proof of this theorem, however we will show how it
proves that parity is not in AC0 and we will use it to show how functions in AC0 can be learned by the
low degree algorithm.

3.4.1 Parity /∈ AC0

Let f be the parity function on n. We know that f = χ[n] and therefore f̂([n]) = 1 and f̂(S) = 0 for
S 6= [n]. Therefore, ∑

S⊆[n] s.t. |S|>n−1

f̂2(S) = f̂2([n]) = 1

However, if a circuit C of unbounded fan in and size s = poly(n) and depth d we know that by the

switching lemma for ε = 1
2 and t = O

(
log s

ε

)d−1
= O(log(n))d−1 we have∑

S⊆[n] s.t. |S|>t

f̂2(S) ≤ 1

2

Therefore, if C computes the parity function, combining these results implies O(log(n))d−1 = t > n− 1.

Consequently d = Ω
(

logn
log logn

)
so C does not have constant depth. Therefore, parity /∈ AC0 as desired.

3

3.4.2 Learning Constant Depth Circuits

If a function f on n inputs is in AC0 then we know that it is computable by a circuit C of size s = poly(n)
and constant depth d. Therefore, by the switching lemma we have that for t = O(log s

e)d−1 = O(log n
ε)d−1

and it is the case that ∑
S⊆[n] s.t. |S|>t

f̂2(S) ≤ ε

Therefore, by this Fourier concentration bound we can apply the low degree algorithm to learn f from

the uniform distribution with Õ
(
nlog

d−1 n
ε

)
samples.

It is interesting to note how quickly these techniques can be used to get a bound on learning. The
bound isn’t polynomial but it is meaningful. Also, it is important to note that this bound can be
improved to something that looks like nO(log logn) for functions using techniques of Jackson.

4 Noise Sensitivity of a Function

Now, we will switch topics slightly and discuss another general property of a function related to its
learnability. We will discuss the noise sensitivity of a function. Informally, we will consider the process
of switching bits of input with probability ε and we will measure how likely this modification to the
input is to change the functions output. Intuitively, we will think of voting as a very noise insensitive
function whereas parity is a very noise sensitive function.

4.1 Motivation

The killer application of noise sensitivity that we will consider is learning halfspaces also known as linear
threshold functions (LTF). These are an important class of functions that receive a lot of attention in
the theory community.

Definition 11 (Halfspace or Linear Threshold Function(LTF)) A halfspace is boolean function
h : {±1}n → {±1} given by

h(x) = sign(w · x− θ)
Where w ∈ Rn, θ ∈ R and

sign(x) =

{
+1 x ≥ 0

−1 x < 0

We can think of a halfspace as a majority vote weighted by w on whether or not the input exceeds θ.
In this lecture and in the following lecture we will study the noise sensitivity of halfspaces and we will

make connection between the noise sensitivity of a function and its fourier concentration. Ultimately, we
will derive a bound on the Fourier concentration of a halfspace and then use the low-degree algorithm
to learn it. In summary, we will use the machinery we develop today to later prove the theorem and
corollary given below.

Theorem 12 If h is halfspace over {±1}n then h has Fourier concentration α(ε) = O
(

1
ε2

)
i.e.∑

|S|≥ c
ε2

f̂2(S) ≤ ε

Corollary 13 The low degree algorithm learns halfspaces under uniform distribution with Õ
(
nO(1/ε2)

)
samples.

Remark There is O
(
n1/5

)
sample learning algorithm but we will not go over the technique.

4

4.2 Defining Noise Sensitivity

Here we formally define the noise sensitivity of a function. First we define a noise operator to formalize
the notion of adding noise to the input and then we use this to define the noise sensitivity of a function.

Definition 14 (Noise Operator) For 0 < ε < 1
2 the Noise Operator, Nε(x), is the operation of

randomly flipping each bit of x independently with probability ε.

Definition 15 (Noise Sensitivity) For 0 < ε < 1
2 the noise sensitivity, nsε(f) is defined as follows

nsε(f) = Pr
x∈{±1}n,Nε(x)

[f(x) 6= f(Nε(x))]

Therefore, the noise sensitivity of a function is simply the probability that the noise operator changes
the output of f on a random input.

4.3 Examples

Here we compute the noise sensitivity of a variety of functions

4.3.1 Example 1: f(x) = x1

Since f only depends on the first bit and since NSε(x) changes x with probability ε we have that the
probability the noise operator changes f ’s output on any input is ε and therefore

nsε(f) = ε

4.3.2 Example 2: f is the “and” function of k inputs

For boolean f : {±1}n → {±1} that is the function of k input we first break Prx∈{±1}n,Nε(x)[f(x) 6=
f(Nε(x))] into the two cases that can cause f(x) 6= f(Nε(x)) and we have

nsε(f) = Pr [f(x) = F ∧ f(Nε(x)) = T] + Pr [f(x) = T ∧ f(Nε(x)) = F]

However, since x is uniformly distributed we have that Nε(x) is uniformly distributed and therefore the
two cases are identical. Applying this fact and some more math we get the following

nsε(f) = 2 · Pr[f(x) = T ∧ f(Nε(x)) = F] (Earlier reasoning)

= 2 · Pr [f(x) = T] · Pr [f(Nε(x)) = F | f(x) = T] (Conditional probability)

=
2

2k
Pr [f(Nε(x)) = F |f(x) = T] (Pr[f(x) = T] = Pr[all k input are true])

=
2

2k
(1− Pr [f(Nε(x)) = T |f(x) = T])

=
2

2k
(
1− (1− ε)k

)
Where the last step comes from the fact that for Pr[f(Nε(x)) = T |f(x) = T] is the probability that the
noise operator does not switch any of the k “and” input values.

Note how (1 − ε)k is either very small or close to 1 − ε depending on k. This make sense since for
k = 1 this is precisely example 1 and we get nsε(f) = ε and for large k the function is almost always 0.

5

4.3.3 Example 3: f(x) = Maj(x1, . . . , xn)

Claim 16
nsε(f) = O

(√
ε
)

We won’t actually prove this in full detail but we will give a proof sketch that should provide intuition
for why this is true.

There are multiple ways to view the majority function. One way, is to view the majority function as
simply computing the sum of the input and that outputting +1 or −1 depending on whether or not the
sum is positive or negative.

However, when the input to the majority function is uniform on {±1}n we can also view the majority
function as a random walk on the line. Think of the majority function as starting at point 0 and then
processing the input x1, . . . , xn in order. If xi = 1 the random walk moves to the right one unit and
if xi = −1 the random walk moves to the left one unit. If the random walk terminates at a positive
coordinate the majority function outputs 1 and if the random walk terminates at a negative coordinate
then the majority function outputs -1.

One of the benefits of viewing the majority function as a random walk like this is that we know that
its expected distance from start is

√
n and we know that the random walk is very likely to be near this√

n distance from 0.
Now, we can view the majority function of the noise operator as taking the above random walk and

then continuing the random walk on an expected nε bits where each move takes 2 steps rather than 1
(Since the noise operator switches an expected εn input bits and each switch changes the majority sum
by 2).

By the same arguments we see that the noise operator is expected to displace the majority random
walk by O (

√
nε). However, if the majority random walk ends up at distance

√
n from 0 then as long as

the noise operator does not displace the majority random walk by more than
√
n then we have that the

functions value does not change. Therefore, if we could loosely apply Markov’s inequality we could say

nsε = Pr[Nε changes output] ≤ Pr
[
Nε displacement >

√
n
]
≤ 2
√
nε√
n

= O(
√
ε)

and the argument would be complete. However, this argument is cheating all over the place. The
majority random walk doesn’t always end at distance

√
n and there is a range of probabilities for

different distance the walk can terminate at. Also, the noise operator doesn’t always modify exactly εn
bits and which direction the noise operator walk goes may be a function of how far the original walk
goes. However, with much more careful analysis it is possible to obtain the desired result.

4.3.4 Example 4: Any LTF

Here we just cite the following the theorem of Peres.

Theorem 17 (Peres)
nsε(LTF) < 8.8

√
ε

Remark This result is the asymptotically best possible result, i.e we can show that nsε(LTF) = θ(
√
ε)

or that there is a family of LTF’s, f , where nsε(f) = Ω(
√
ε). However, we will not prove this result here.

Remark Note that Examples 1, 2, and 3 were all LTFs. To see this, look at the definition of a LTF.
For each example there is a choice of w and θ that makes the halfspace equal the function.

• Example 1: Set w1 = 1, wj = 0 for j 6= 1, and θ = 0.

• Example 2: Set wi = 1 if i is one of the k input variables, wi = 0 otherwise, and θ = k.

• Example 3: Set w to be the all ones vector and θ = 0.

6

4.3.5 Example 5: Parity Functions

Consider f = χS(x) for |s| = k. (Note that for k = 1 we have that f is a LTF.) By definition of noise
sensitivity we have that

nsε(f) = Pr[odd # bits in S flipped] =

(
k

1

)
(1− ε)k−1ε+

(
k

3

)
(1− ε)k−3ε3 + . . .

Now using that

1k = ((1− ε) + ε)k = (1− ε)k +

(
k

1

)
(1− ε)k−1ε+

(
k

2

)
(1− ε)k−2ε2 + . . .

subtracting

(1− 2ε)k = ((1− ε)− ε)k = (1− ε)k −
(
k

1

)
(1− ε)k−1ε+

(
k

2

)
(1− ε)k−2ε2 + . . .

and dividing by 2 we get
1− (1− 2ε)k

2
= nsε(f)

5 Next Lecture

Next lecture we will show a relationship between noise sensitivity of a function and Fourier concentration
of a function. This will give us a very powerful tool and a learning algorithm for halfspaces and arbitrary
functions of k halfspaces.

7

