
6.842 Randomness and Computation April 25, 2012

Lecture 20
Lecturer: Ronitt Rubinfeld Scribe: Jon Schneider

1 Introduction

In this lecture, we will demonstrate a procedure to convert any weak learning algorithm to a strong
learning algorithm. This procedure is known as the Boosting Algorithm.

Before we state the Boosting Algorithm, let us recall the definitions of weak and strong learning
algorithms.

Definition 1 The algorithm AW is a weak PAC learning algorithm for the concept class C if for
every concept f ∈ C and distribution D over the domain of f , there exists some γ > 0 for every δ > 0,
such that the algorithm with access to examples (x, f(x)) with x drawn from D, returns (with probability
at least 1− δ) a concept c such that

PrD[f(x) 6= c(x)] ≤ 1
2
− γ

2

Definition 2 The algorithm AS is a strong PAC learning algorithm for the concept class C if for
every concept f ∈ C, input distribution D and δ, ε > 0, the algorithm with access to examples (x, f(x))
drawn from D, returns (with probability at least 1− δ) a concept c such that

PrD[f(x) 6= c(x)] ≤ ε

Our main theorem is the following.

Theorem 3 If a concept class C is weakly learnable, then it is strongly learnable.

2 Boosting Algorithm

To prove Theorem 3, we will demonstrate a procedure (called the Boosting Algorithm) that transforms a
weak learning algorithm into a strong learning algorithm. Below, we will let f be our unknown concept,
D our initial distribution (which we assume to be uniform)1 , and WL be our weak learning algorithm.

The algorithm runs in various stages, which we describe below.

• Initial Stage: Set D0 = D and use our weak learning algorithm WL to generate a concept c0
such that PrD0 [f(x) = c1(x)] ≥ 1

2 + γ
2 .

• Stage i: Given concepts c1, c2, . . . , ci from the previous i stages, we construct the distribution
Di via our filtering procedure. We then run WL on Di to output a concept ci+1 such that
PrDi

[f(x) = ci+1(x)] ≥ 1
2 + γ

2 .

• Final Stage: After T = O(1/γ2ε2) stages, or whenever maj(c1, c2, . . . , ci) is correct on a fraction
of at least (1− ε) of the inputs, output the concept c = maj(c1, c2, . . . , ci).

We used a filtering procedure to construct the distribution Di. We now describe the algorithm for
the following filtering procedure, which we repeat until we have the desired number of samples.

• Draw an example (x, f(x)) from the uniform distribution D.
1It turns out that all of our results also hold for the general case where the input distribution is arbitrary (as opposed

to uniform). For sake of convenience, however, in this lecture we will assume the input distribution is uniform over the
domain of f .

1

• If maj(c1, c2, . . . , ci) disagree with f(x), keep this sample.

• Let nr equal the number of j such that cj(x) = f(x), and let nw equal the number of j such that
cj(x) 6= f(x) (so nr + nw = i). If nr − nw ≥ 1

γε , then toss the sample.

• Otherwise, if nr − nw = α
γε for some 0 ≤ α < 1, toss the sample with probability α (and keep it

otherwise).

If we look at this filtering procedure in terms of the number nw of incorrect concepts, then we can
see that the probability p of keeping a sample from D depends piecewise-linearly on the value of nw;
specifically, between 0 and i

2 −
1

2γε this function equals 0, from i
2 −

1
2γε to i

2 it increases with slope 2γε
from 0 up to 1, and from i

2 to i it stays at 1.
The main claim we will want to show is that if we need at least 1

ε samples of D to output a sample
of Di, then Maj(c1, c2, . . . , ci) is (1− ε)-close to f . We will do this in the following two sections.

3 Notation

In the following section, we will establish (most of) a proof of correctness for the Boosting Algorithm.
First, however, we will introduce some terminology that will be useful in our following proof.

Definition 4 For a concept c and an input x,

Rc(x) =

{
1, if f(x) = c(x)
−1, if f(x) 6= c(x)

Definition 5 If ci is the concept introduced at stage i of the Boosting Algorithm, we define

Ni(x) =
∑

1≤j≤i

Rci(x)

Note that Ni(x) is equal to the value nr − nw we saw earlier in the filtering algorithm.

Definition 6 We define

Mi(x) =


1, if Ni(x) ≤ 0
0, if Ni(x) ≥ 1

εγ

1− εγNi(x), otherwise

Similarly, note that Mi(x) is nothing more than the probability of the filtering procedure at stage i
keeping x.

Definition 7 Define

|Mi(x)| =
∑
x

Mi(x)

Definition 8 Define

DMi(x) =
Mi(x)
|Mi|

The definition for DMi
(x) captures the actual probability of x in the distribution Di returned by this

filtering procedure. We can think of |Mi| as the total “mass” of all of the Mi(x) probabilities.

2

Definition 9 We define the advantage of a concept c over one of the distributions Mj as

Advc(Mi) =
∑
x

Rc(x)Mj(x)

Note that we can construct a large two-dimensional 2n by i matrix, where the rows are indexed
by possible inputs x, where the columns are indexed by the number j of the current stage, and where
element (x, j) is given by Rcj+1(x)Mj(x). If this is the case, note that Advcj+1(Mi) is just the sum of
the jth column of this matrix. It is also interesting to consider the row sums of this matrix.

Definition 10 Let

Ai(x) =
∑

0≤j≤i−1

Rcj+1(x)Mj(x)

These Ai(x) are the row sums of the xth row of the above matrix.

We will also need a simple fact about the advantage.

Theorem 11 If Prx∈Di [c(x) = f(x)] ≥ 1
2 + γ

2 , then Advc(Mi) ≥ γ|M |.

Proof Note that Advc(Mi) = |Mi|(Pr[ci is right] − Pr[ci is wrong]) = |Mi|(2Pr[ci is right] − 1) ≥
γ|Mi|.

Corollary 12 If Prx∈Di [c(x) = f(x)] ≥ 1
2 + γ

2 and |M | ≥ ε2n, then Advc(Mi) ≥ γε2n.

4 Correctness of the Boosting Algorithm

In this section, we will provide most of a proof of correctness for the Boosting Algorithm. Our proof
will rely on the following theorem, which we will prove next lecture.

Theorem 13 For all x we have that

Ai(x) ≤ 1
εγ

+
ε

γ
2i

Proof [Proof of Theorem 3]
Assume our algorithm has not terminated after i steps. If this is true, then |Mi| ≥ ε2i, or otherwise

the majority of the ci would agree with f at least (1 − ε) of the time and our algorithm would have
already terminated.

Now, by Theorem 11, we have that

∑
x

Ai+1(x) =
∑
x

∑
0≤j≤i

Rcj+1(x)Mj(x)

=
∑

0≤j≤i

Advcj+1(Mj)

≥ (i+ 1)εγ2n

On the other hand, by our unproven Theorem 13 above, we have that∑
x

Ai+1(x) ≤ 2n
(

1
εγ

+
εγ

2
(i+ 1)

)

3

Combining these two bounds, we get that

(i+ 1)εγ2n ≤ 2n
(

1
εγ

+
εγ

2
(i+ 1)

)
Simplifying and solving for i, we find that

i ≤ 2
ε2γ2

− 1 = O

(
1

ε2γ2

)
This shows that after 2

ε2γ2 stages, our algorithm should terminate.

5 Next Lecture

Next lecture, we will prove Theorem 13 above. The main idea behind the proof will be “Elevator
Lemma”, which says that if you take an elevator ride, the number of times you go up from the ith floor
to the i + 1th floor and the number of times you go down from the i + 1th floor to the ith floor differ
by at most 1. We will use an analogous cancellation involving the Ni functions to establish the lower
bound in Theorem 13.

We will also discuss the connection between the Boosting Algorithm, strong and weak PAC learning,
and Yao’s lemma for hardcore predicates.

4

