Lecture 15

Learning parity fits

Without "noise": given samples of \(x \in \mathbb{F}_2^n \), equation solving.
With "noise": find closest parity fit \(\Rightarrow \) find largest Fourier coeff.

NP-hard - find all close parity fits \(\Rightarrow \) find all large enough Fourier coeffs (not necessarily low degree).

(worst case) maximum likelihood decoding of linear codes

i.e., given I/O examples of fit, find largest Fourier coeff.

Thought to be hard

Uniform dist.

Hardness of parity with noise

i.e., given \(x_1, \ldots, x_k \), \(b \) \(\sim \) \(x_i \)'s uniform

\(x_1, \ldots, x_k, b_k \)

find largest Fourier coeff.

Hardness of decoding linear codes

Find large Fourier coeff.

Easter model?

Assume noise is \(\text{random} \)

i.e., flip \(n \) biased coin

+ flip output if coin = \(\text{?} \)

Hardness of decoding random linear codes

Noisy parity problem

Used as assumption in cryptography

Note: A. Blum, Kalai, Wasserman:

Slightly subexponential algorithm exists (for random noise) \(\Rightarrow \) used to determine shortest nonzero vector \(\bullet \) length.
Learning Parities with Queries

Given f, θ

1) Output all coeffs S s.t. $|\hat{f}(s)| \geq \theta$ (get all "close" coeffs)

2) Only output coeffs S s.t. $|\hat{f}(s)| = \frac{\theta}{2}$ (no real junk)

Using Boolean Parseval: $E[\hat{f}^2] = 1$

only $O(1/\theta^2)$ such coeffs

recall

$$Pr_x[f(x) = X_b(x)] = \frac{1}{2} + \frac{\hat{f}(s)}{2}$$

so case 1 \implies $Pr_x[f(x) = X_b(x)] = \frac{1}{2} + \frac{\theta}{2}$

2 \implies

$$\leq \frac{1}{2} + \frac{\theta}{4}$$

Warmup #0:

poly queries \exists find all f that agree enough

unbounded time

Warmup #1: (from now on, poly queries, poly time)

Suppose f agrees with X_s everywhere for some s

(i.e., 0-error case)

only one s s.t. $X_s \to 0$

Algorithm 1: equation solving for coeffs

Algorithm 2: $i \in [n]$

put i in S if $f(\mathbf{1}i) \neq f(\mathbf{1}i \mathbf{0}e)$

Output S
Warmup #3

(\exists s \text{ s.t. } \chi_s \approx 1 + \text{ all other } \chi_s \text{ is } \leq \frac{1}{20})

Suppose \(f \) agrees with \(\chi_s \) "almost" everywhere

for some \(s \)

Note: cant use previous algorithm since error might be on \(\{1111\ldots\} \)

Algorithm:
choose \(r \in \mathbb{Z}_{2^n}^n \)

\[\forall i \in [n] \]

put \(i \) in \(S \) if \(f(r) \neq f(r \cdot \chi_s) \)

Output \(S \)

Why? (sketch)

\(f(r), f(r \cdot \chi_s) \) agree with \(\chi_s(r), \chi_s(r \cdot \chi_s) \) for

almost all \(r \)

so \(\Pr [S \text{ not correct}] \leq 2n \cdot \text{negligible} \)

union bound

Warmup #4

Suppose \(f \) agrees with \(\chi_s \) on \(\frac{3}{4} + \epsilon \) for some \(s \)

Algorithm:
choose \(r \in \mathbb{Z}_{2^n}^n \)

\[\forall i \in [n] \]

put \(i \) in \(S \) if \(\text{majority of } f(r) \neq f(r \cdot \chi_s) \)

Output \(S \)

(here get better result than Boolean

PSPACE \(\leq \text{BPP} \))
(warmup \# cont)

why?

\[\Pr \left[\text{"wrong" answer for } r_i \text{ on } i \right] \]
\[= \Pr \left[f(r_i) \neq f(r_i \cdot g) \cdot (-1)^{\text{t-ies} + 1} \right] \]
\[\uparrow \]
\[\text{"right" should be different if t-ies same } \]
\[\leq \Pr \left[f(r_i) \neq X_s(r_i) \right] + \Pr \left[f(r_i \cdot g) \neq X_s(r_i \cdot g) \right] \]
\[\leq \left(\frac{1}{t} - \varepsilon \right) + \left(\frac{1}{t} - \varepsilon \right) = \frac{1}{2} - 2\varepsilon \]
\[\text{uniformly distributed} \]

Chernoff:

get correct answer with prob \(\geq \frac{1}{2} \) /n

\[\text{picking } t = \Theta \left(\frac{\log n}{\varepsilon^2} \right) \]

\[\text{for all } i, \text{ most } r_i \text{ are right with prob } \geq 1 - 8 \]

Warmup 4

output all \(S \) st. \(f \) agrees with \(X_s \) on \(\geq \frac{1}{2} + \varepsilon \) fraction of inputs

\[\uparrow \]

constant

idea: guess answers to \(f(r_i)'s \)

Since only \(O(\log n) \), can run over all possible guesses
Algorithm

* Choose $r_1, r_k \in \mathbb{Z}_2^{n}$, $t = O(\log n)$

* For all possible settings of b_1, b_k

 3 guesses to values of $X_S(r_i)$'s

* $A \in [n]$ put i in S_{b_1, b_k} if

 by testing if $A(r_j) \neq f(r_j \oplus e_i) \rightarrow$ majority of $b_j \neq f(r_j \oplus e_i)$

 (over $j \in S$)

 Sample to see if $X_{S_{b_1, b_k}}$ agrees

 with f on $2 \frac{1}{2} + \frac{3}{8} \theta$ inputs

 if yes, output $X_{S_{b_1, b_k}}$

 test candidate + weed out junk

Note: many settings of b_1, b_k could give good answer since could have lots of linear fits agreeing with f on enough inputs

Why?

for each S that should be output

consider b_1, b_k st. $b_i = X_S(r_i)$

For this setting

(see next page)
For this setting:

\[P_{\text{wrong answer for } r_j \text{ on } i} \]

\[= P_{\text{wrong answer on } i} \cdot f(r_j, Oe_i) \cdot (H_{i=0}^{i=1} = -1) \]

assumption \(\Rightarrow \)

\[x_s(r_j) \cdot x_s(r_j, Oe_i) \cdot (H_{i=0}^{i=1} = -1) \]

\[\leq P_r[f(r_j, Oe_i) \neq x_s(r_j, Oe_i)] \]

\[\leq \frac{1}{2} - \epsilon \]

Chernoff bounds + \(O(\log n) \) 's \(r_j \) 's \(\Rightarrow \) \(P_{\text{wrong answer on } i} \leq \frac{1}{2} \n \)

+ union bound \(\Rightarrow \) \(P_{\text{wrong answer on any } i} \leq \frac{1}{2} \)

\(\therefore S \) is output with prob \(\geq \frac{1}{2} \)

for each \(S \) that should not be output:

\[P_{\text{output } S} \leq P_{\text{S passed testing phase}} \]
Learning Parity Functions

General Case

Output all S at f agrees with X_5 on

$\geq \frac{1}{2} + \varepsilon$ fraction of inputs

c can be $\frac{1}{\text{poly}(n)}$

Show that not too many such S

Idea

In earlier warmup, if ε small (\(2^{\frac{1}{\text{poly}(n)}}\))

Need more samples for Chernoff to kick in -- i.e., if need $\text{poly}(n)$ samples

Then need $2^{\text{poly}(n)}$ guesses!

Fix

Choose many more r_1, \ldots, r_k but not independently

i.e., choose them pairwise independently

That is -- find sample space of poly size (i.e., $2^{\mathcal{O}(\log n)}$)

Which behaves in the same way as iid vars.

Thus do exhaustive search on sample space!

String generated by small sample space but still: 1 is good!
Algorithm

- choose \(s_1, \ldots, s_k \in \{ \pm 1 \}^n \)
 \(k = \log(t+1) \) \# guesses

- \(t = \Theta(n/\epsilon^2) \) \# r's generated

- \[a = \frac{2n}{\epsilon^2} \]

- For all possible settings of
 \(b_1, \ldots, b_k \in \{ \pm 1 \}^k \)
 \(z \) all "guesses" for values of
 \[X_s(s_i) s_j \] \(\text{generate a lot } (2^k = n/\epsilon^2) \text{ of labelled samples} \)

- For every \(w \subseteq \{1, \ldots, K\} \quad W \neq \emptyset \)
 set \(r_w = \bigoplus_{j \in w} s_j \) \quad \(\leftarrow \) pairwise random bits

 \[p_w = \bigoplus_{j \in w} b_j \quad \text{if } \text{"correct" guess of } \text{"}\]

 \[\text{initial guess of } s_i \text{" according to } X_s \]

- \(\forall i \in [n] \) put \(i \) in \(S_{b_1, \ldots, b_k} \) if
 \(\text{majority of } p_w + f(r_w \Theta s_i) \)

- Test \(S_{b_1, \ldots, b_k} \) to see if agrees enough with \(f \)

 \(\text{if yes, output } \) \[\frac{1}{2} + \frac{3}{4} \epsilon \] for }
Behavior

For \(S \) s.t. \(f \) agrees with \(\chi_S \) on \(\frac{1}{2} + \varepsilon \) of inputs:

1) if setting of \(\delta_i \)'s agrees with \(\chi_S \)
 i.e. \(\forall i \quad \delta_i : \chi_S (s_i) \)
 then \(\forall w \quad p_w = \prod_j \chi_S (s_j) \) def of \(p_w \)
 \[= \chi_S (\Theta_{j \in w} s_j) \]
 \[= \chi_S (r_w) \] def of \(r_w \)

From now on, assume this setting of \(\delta_i \)'s...

2) \(r_w \)'s are pairwise independent \([in fact, generated via a known construction] \)
 i.e. \(\Pr [r_w = b_1 \land r_w = b_2] = \Pr [r_w = b_1]. \Pr [r_w = b_2] \)
 also \(r_w \circ e_i \)'s are p.i.

3) \(\Pr [\text{Algorithm generates } S \text{ when considering } S_{b_1, \ldots, b_k}] : \)
 \[\Pr [\text{it gets } S \text{ right on index } i] \]
 \[= \Pr [p_w \cdot f (r_w \circ e_i) \cdot (-1)^{\sum_{j \neq i} e_j} = 1] \]
 indicator \(\chi_w = 1 \) if holds

Note: if \(f (r_w \circ e_i) = \chi_S (r_w \circ e_i) \) \(\leq \ldots \)

then \(\chi_w = 1 \)
\[E[X_w] = \frac{1}{a} + \varepsilon \]

since \(r \) is \(\text{uniform dist} \)

\[\text{Variance } \sigma_w^2 = E[E[X_w]] - E[X_w]^2 \]
\[\geq \frac{1}{2} + \varepsilon - \left(\frac{1}{a} + \varepsilon \right)^2 = \frac{1}{a} - \varepsilon^2 \]

\[E\left[\sum_{w \in [k]} X_w \right] \geq t \left(\frac{1}{a} + \varepsilon \right) \]

\[\Pr \left[\sum_{w} X_w < \frac{t}{2} \right] \leq \frac{\left(\frac{1}{a} - \varepsilon^2 \right)}{t \varepsilon^2} \leq \frac{1}{t \varepsilon^2} \leq \frac{1}{2n} \]

union bound \(\Pr [\text{not output}] \leq \frac{1}{2} \)

Also shows:

\[\text{parity test agrees with } \frac{1}{a} + \varepsilon \text{ is } O \left(\frac{1}{\varepsilon^2} \right) \]