Lecture 5

- Random bits for Interactive Proofs
- IP public vs. private coins
- IP protocol for lower bounding a set size
- Derandomizing via method of conditional expectations
Arthur–Merlin Games

V's random tape is public!

⇒ this protocol breaks

Can Graph have IPs with only public coins?

YES! [Goldwasser Sipser]

(important for complexity, crypto, interesting tool for checking delegated computations...)

How do they show this?

First, a notation:

\[[A] \equiv \text{graphs } \equiv \text{to } A \]

+ an assumption:

Assume \(A, B \) graphs with no "nontrivial automorphisms"

\[\uparrow \equiv \text{not } \equiv \text{to self under relabeling} \]

then \(|[A]| = |[B]| = |V|! \)

Why useful? let \(U \leftarrow [A] \cup [B] \)

A \(\equiv B \) \hspace{1cm} A \neq B

All \(M \)-node graphs \hspace{1cm} A \neq B

\[|[A]| = |[B]| \quad |U| = |V|! \]

"small" \hspace{1cm} "big"

Goal: IP for proving a set is large
First idea: Random Sampling?

Repeat \(\tilde{O}(d) \) times:

1. \(V \to P \): random \(1/\tilde{O}(d) \)-node graph \(g \)
2. \(P \to V \): if \(g \in U \), a proof that it is a "success"
 - i.e., show \(l \) to \(A \) or \(B \)

Finally, \(V \) outputs \(\frac{\# \text{successes}}{\text{total \# loops}} \)

How many loops needed? \(\Omega \left(\frac{|U|}{|1/\tilde{O}(d)\text{-node graphs}|} \right) \) just to hit one success

Problem: \(|U| \) is very small compared to \(|1/\tilde{O}(d)\text{-node graphs}| \)

\(\Rightarrow \) need many loops

Fix: Universal Hashing

- \(m \) bits used to describe graph \(m \approx O(d^n) \)
- \(m \approx O(1/\tilde{O}(d)) \)
- Sample randomly here and estimate \(\frac{|h(u)|}{2^d} \)

need:

1. \(|h(u)| \approx |u| \)
2. \(|h(u)| \) is big if \(|u| \) big
3. \(|h(u)| \approx \frac{1}{\text{poly}(m)} \) (in our case, constant)
4. \(h \) computable in poly time
Protocol:

Given H, collection of pi. Pems mapping $\mathbb{S}_0 \mathbb{S}_1^m \rightarrow \mathbb{S}_0 \mathbb{S}_1^l$

1. V picks $h \in_k H$
2. $V \rightarrow P: h$
3. $P \rightarrow V: x \in U \text{ st. } h(x) \in 0^l$

with proof that $x \in U$

Idea

u big (i.e., $2^{lu!}$!): $h(u)$ usually hits 0^m so P can usually do it

u small (i.e., $lu!$!): $h(u)$ usually doesn't hit 0^m so P usually can't do it

How?

map u to range of size $\approx 2^l$!

if u big, it "fills" the range

\Rightarrow probably hits $"0"$

if u small, it only hits part of the range

\Rightarrow less chance of hitting $"0"$

Recall H is pi., if $\forall x, y \in \mathbb{S}_0 \mathbb{S}_1^m$ and $a, b \in \mathbb{S}_0 \mathbb{S}_1^l$

$$\Pr_h [h(x) = a \land h(y) = b] = 2^{-2l}$$

Lemma

H pi., $u \in \mathbb{S}_0 \mathbb{S}_1^m$, $a = \frac{lu}{2}$

Then $a - \frac{a^2}{2} \leq \Pr_h [0^l \in h(u)] \leq a$
Pf.

\[\text{RHS: } \forall x \Pr_h[0^l = h(x)] = 2^{-l} \quad (\text{since } h \text{ is p.a.}) \]

\[\text{so } \Pr_h[0^l \in h(w)] \leq \sum_{x \in U} \Pr[0^l = h(x)] = \frac{|U|}{2^l} = a \]

\[\uparrow \text{ union bd} \]

\[\text{LHS: use inclusion-exclusion bd: } \]

\[\Pr[I \cup A_i] = \sum \Pr[A_i] - \sum \Pr[A_i \cap A_j] \]

\[\Pr_h[0^l \in h(w)] \geq \sum_{x \in U} \Pr[0^l = h(x)] - \sum_{x \neq y} \Pr[0^l = h(x) = h(y)] \]

\[= \frac{|U|}{2^l} - \left(\frac{1}{2} \right) \frac{1}{2^l} \geq \frac{|U|}{2^l} - \frac{|U|^2}{2^l} \cdot \frac{1}{2} \geq a - \frac{a^2}{2} \]

\[\text{Finishing up?} \]

pick \(l \) s.t. \(2^{l-1} \leq 2|V|! \leq 2^l \)

\(l \Rightarrow |U| = 2|V|! \)

\[\frac{1}{2} \leq a \leq 1 \]

so \(\Pr[V \text{ accepts}] \geq a - \frac{a^2}{2} \geq \frac{3}{8} = \alpha \)

\(\Downarrow \Rightarrow |U| = |V|! \)

\[\frac{1}{4} \leq a \leq \frac{1}{2} \]

so \(\Pr[V \text{ accepts}] \leq \frac{1}{2} = \beta \)

\text{Whoops! need } \alpha > \beta \]

\text{solution: fix }
Idea for general Thm:

\[1^P_{\text{private coins}} = 1^P_{\text{public coins}} \]

argue that i.e. protocol can be used to show that size of accepting region probability mass is large.

(need that am verify a conversation/ random coin to be in accept region)
More derandomization: The method of conditional expectations

Idea: view coin tosses of algorithm as path down a tree of depth $m \Rightarrow$ m coin tosses

$\delta = H$
$1 = T$

$\text{good} = \text{correct/randomized/Pass...}$

good bad bad bad

good good

good randomized algorithm \iff most leaves are good

Idea find a good path to leaf "bit-by-bit"

more formally:

Fix randomized algorithm A
input x
m = # random bits used by A on x

for $1 \leq i \leq m$ + $r_1 \ldots r_i \in \{0,1\}$, let $p(r_1 \ldots r_i) = \text{fraction of continuations that end in "good" leaf}$

$$p(r_1 \ldots r_i) = \frac{1}{2} \cdot p(r_1 \ldots r_i, 0) + \frac{1}{2} \cdot p(r_1 \ldots r_i, 1)$$

by averaging, δ setting of r_i to 0 or 1

$s.t. \ p(r_1 \ldots r_i) \approx p(r_1 \ldots r_i) \:\:\:\\ \text{can we figure this out?}$
if \(p(r_1 \ldots r_n) \geq p(r_{i} \ldots r) \) \(\forall i \)

then \(p(r_1 \ldots r_n) \geq p(r_{i} \ldots r_{m-1}) \geq \ldots \geq p(r_i) = p(\Lambda) \geq 2/3 \)

\[\uparrow \]

this is a leaf
so value is 1 or 0;
but if \(\geq 2/3 \)
must be 1

\[\uparrow \]

fraction
of good
paths

main issue: how do we figure out the best setting of \(r_{\text{ah}} \) at
each step?

An example: Max Cut (another way to derandomize)

recall algorithm:
flip \(n \) coins \(r_1 \ldots r_n \)
put node \(i \) in \(S \) if \(r_i = 0 \) + \(T \) if \(r_i = 1 \)
output \(S, T \)

derandomization:
\[
e(r_1 \ldots r_n) = E_{R_{\text{ah}} \ldots R_N} \left[1 \text{ cut}(S,T) \right] \text{ given } r_1 \ldots r_n \text{ choices made}
\]
\[
e(\Lambda) = \frac{|E|}{2} \quad \text{(from previous lecture)}
\]

how do we calculate \(e(r_1 \ldots r_n) \)?
Let
\[S_{i+1} = \{ j \mid j \leq i+1 \} \quad r_j = 0 \beta \]
\[T_{i+1} = \{ j \mid j \leq i+1 \} \quad r_j = 13 \]
\[V_{i+1} = \{ j \mid j \geq i+2 \} \quad \beta \]

so
\[e(r_1 \ldots r_{i+1}) = \left(\# \text{ edges between } S_{i+1} \cup T_{i+1} \right) + \frac{1}{2} \left(\# \text{ edges touching } V_{i+1} \right) \]

Note: don't need to calculate \(e(r_1 \ldots r_{i+1}) \)
just need to compare \(e(r_1 \ldots r_{i+2}) \) vs. \(e(r_1 \ldots r_{i+1}) \) - is it \(e_{i+2} = 53 \)

Note:
- \(V_{i+1} \) term is same for both
- first term differs only on edges adjacent to node \(i+1 \)

- to maximize this, place node \(i+1 \)
to maximize cut size

i.e. \(\# \text{ edges between node } i+1 \cup S_i \)

vs. \(\# \text{ " " " " " } + T_i \)
Corresponds to:

Greedy Algorithm:

1) $S \leftarrow \emptyset, T \leftarrow \emptyset$

2) For $i = 0 \ldots N-1$

 place node i in S if $\# \text{edges between } i + T \geq \# \text{edges} \quad i + S$

 else place in T