Poisson's Binomial Distribution (PBD)

\[\text{PBD} \left(p_1, \ldots, p_n \right) \overset{d}{=} X = \sum_{i=1}^{n} X_i \quad \text{where} \quad X_i \text{ independent, } \mathbb{E}(X_i) = p_i, \text{ not necessarily identically distributed} \]

Examples

1) all \(p_i = \frac{1}{2} \) \(\implies X \sim \text{Binomial distribution} \)

2) \(p_1 = \frac{1}{2}, \quad p_2 = 1 \) \(\implies P_3 = P_4 = \ldots = p_n = 0 \)

\[
\begin{align*}
\Pr[\sum X = 0] &= 0 \\
\Pr[X = 1] &= \frac{1}{2} \\
\Pr[\sum X = 2] &= \frac{1}{2} \\
\Pr[X = 3, 4, \ldots, n] &= 0
\end{align*}
\]

PBD vs Poisson

\[
\text{PBD vs Poisson} \left(\sum_{i=1}^{n} p_i \right) \leq 2 \sum_{i=1}^{n} p_i^2 \tag{1}
\]

\[
\leq 2 \sum_{i=1}^{n} \frac{p_i^2}{p_i} \tag{2}
\]

Translated Poisson Distribution:

\[TP \left(\mu, \sigma^2 \right) : \quad Y = \left(\mu - \sigma^2 \right) + Z \]

\[\sim \text{Poisson} \left(\mu^2 + \frac{\left(\mu - \sigma^2 \right)^2}{2} \right) \]

PBD vs TPD:

\[\text{Thm} \quad d_{TV} \left(\text{PBD} \left(p_1, \ldots, p_n \right), TP \left(\mu, \sigma^2 \right) \right) \leq \frac{\sum p_i^3 (1-p_i) + 2}{\sum p_i (1-p_i)} \]

\[\text{still not there} \]
Structure Thm:

Thm: PBD "looks like" (to within ε L, error) either:

(i) \((\frac{1}{\varepsilon}\)-sparse) support of PBD is almost all (as \(\varepsilon \)

on interval of length \(O(\frac{1}{\varepsilon^3}) \)

i.e. all but \(O(\varepsilon^3) \) variables have \(p_i \) close to 0 or 1

it can be viewed as "fixed"

so we have PBD on \(O(\frac{1}{\varepsilon^3}) \) variables that

can "move"

\(\Rightarrow \) tiny effective support size,

so can learn each probability of

elements in support.

(ii) \((\frac{1}{\varepsilon}\)-heavy Binomial) PBD looks like a binomial

on large number of iid vars.

\(\Rightarrow \) \(poly(\frac{1}{\varepsilon}) \)

Use of structure Thm:

learning: Thm \(\Rightarrow \) small cover

testing: Thm \(\Rightarrow \) effective support of distribution is \(O(n^{\varepsilon/4}) \)

\(\Rightarrow \) \(O(n^{\varepsilon/4}) \) samples needed

maximized in case 2.

But Binomial puts almost all

of its weight on \(\frac{n}{2} \) places in the middle.
More detailed structure: for $X = \sum_{X}^{h}$, let $k = O(1/k)$

Thm. \exists \ Y_{1}, ..., Y_{n} \ st.

1. $\|X - \sum_{Y}^{h}\|_{1} = O(1/k)$

2. One of following holds:

 (i) (k-sparse) \exists \ l \in \mathbb{K}^{3} \ st. \ \forall \ i \leq l

 \[
 E[Y_{i}] \in \{ \frac{1}{K^2}, \frac{2}{K^2}, ..., \frac{K^2-1}{K^2} \}
 \]

 + \ \forall \ i > l \ E[Y_{i}] \in [0, 1]

 \[
 0 \leq \sum_{Y}^{h} \leq K^{3}
 \]

 or

 (ii) ((n, k)-Bernoulli form) \exists \ l \in [n] \ \forall \ q \in \left[\frac{1}{K^2}, \frac{2}{K^2}, ..., \frac{K^2-1}{K^2} \right]

 s.t. \ \forall \ i \leq l \ E[Y_{i}] = q

 + \ \forall \ i > l \ E[Y_{i}] = 0

 also \ \forall \ g \geq k^{2} + \ln(1-q) \geq K^{2} - k - 1

 \[
 E[Y_{i}]
 \]

 (Cover = union of (1) + (2) covers)

Coversize:

\[
\binom{K^{3}+1}{K}
\]

\[
\binom{K^{3}+1}{K} \cdot \binom{n+1}{K}
\]

\[
\binom{K^{3}+1}{K} \cdot \binom{n+1}{K}
\]

Choice of Y_{i} for $i \leq l$

Choice of Y_{i} for $i > l$

Choice of q

\[
\sum_{Y}^{h} = 0
\]

Cover size

For this part $\leq n^{2}$

\[
\text{Cover = union of (1) + (2) covers}
\]

\[
\text{Cover = union of (1) + (2) covers}
\]

\[
\text{Cover = union of (1) + (2) covers}
\]
Proof Outline \[\text{let } k = 0 \left(\frac{1}{k} \right) \]

Step 1: eliminate rare with expectation in \((0, \frac{1}{k})\) or \((\frac{k-1}{k}, 1)\) w/o much change

for all \(i \) st. \[p_i \leq 0, \frac{1}{k} \]

take the sum to figure out how many \((p_i)\)'s with prob \(\frac{1}{k} \) would have similar sum

ie. \[\sum \frac{1}{k} \approx \sum p_i \]

set 1st \(r \) such \(i \) to \(\frac{1}{k} \) rest to 0

use \[d_{TV} \left(\sum_{i \leq \lambda_1} \chi_i, \text{Poiss} \left(\sum_{i \leq \lambda_1} p_i \right) \right) \leq \frac{1}{k} \sum_{i \leq \lambda_1} p_i \leq \frac{1}{k} \sum_{i \leq \lambda_1} p_i = \frac{1}{k} \]

\[d_{TV} \left(\text{Poiss} \left(\sum_{i \leq \lambda_1} p_i \right), \text{Poiss} \left(\sum_{i \leq \lambda_1} \chi_i \right) \right) \leq \frac{1}{2} \left(e^{\lambda_1 - \lambda_2} - e^{-\lambda_1 - \lambda_2} \right) \]

\[\chi_1 \]

\[\chi_2 = \frac{1}{2} \left(e^{\frac{1}{k}} - e^{-\frac{1}{k}} \right) \]

\[d_{TV} \left(\text{Poiss} \left(\sum_{i \leq \lambda_1} p_i \right), \sum_{i \leq \lambda_1} \chi_i \right) \leq \frac{1}{k} \leq \frac{1.5}{k} \]

\[\Delta \Rightarrow \text{dist} \leq \frac{3.5}{k} \]

get total \(\frac{7}{k} \) dist when do heavy els.
Step 2:

k-sparse case:

- weaker proof:

 \[\text{Use } d_{TV}(\mathcal{E}X, \mathcal{E}Y) \leq \mathbb{E}_x d_{TV}(X, Y) \text{ when } X, Y \text{ indep} \]

 if round each \(p_i \) to nearest multiple of \(\frac{1}{K^4} \)

 \[\text{get } d_{TV}(\mathcal{E}X, \mathcal{E}X') \leq K^3 \cdot \frac{1}{K^4} = \frac{1}{K} \]

 they do something smarter!

 idea: something like step 4 (+ relate to Binomial)

 use a different bound on similarity to Binomial

 use different grouping - K groups

 each contributes \(O(\frac{1}{K^2}) \) error

 total \(O(\frac{1}{K}) \) error

if not k-sparse:

approx by Binomial distribution

\[B(m', q) \quad \text{versus fixed to 1} \]

\[m' = \frac{(\mathbb{E}p_i + t)^2}{(\mathbb{E}p_i^2 + t)} \quad q = \frac{p}{n} \]

Can show via bound on similarity to translated Poisson dist.

that approx is good.

\[\square \]

Further improvements:

Can weed more out of cover by using Roos's Thm:

\[\text{if } \sum p_i^t = \sum q_i^t \quad \forall \quad t = 1, 2 \ldots (\log n) \]

\[\Rightarrow \| p - q \|_1 \leq \varepsilon \]

\[\varepsilon \text{ not quite as stated here unless all } p_{ij} \leq \frac{1}{2} \]

(Otherwise need to separate 2 st. \(p_{ij} > \frac{1}{2} \)

from \(n \) st. \(p_{ij} > \frac{1}{2} \))