Property Testers For Monotonicity:

Given list \(y_1, \ldots, y_n \)

Output sorted?

i.e. if \(y_1 \leq y_2 \leq \cdots \leq y_n \) output PASS (with prob \(\geq \frac{3}{4} \))

if \(y_1, \ldots, y_n \) E-far from sorted (need to delete \(n \)?)

Output FAIL (with prob \(\geq \frac{3}{4} \))

e.g.

Sorted: 1 2 4 5 7 11 14 19 20 21 23

close: 1 4 2 5 7 11 14 19 20 39 23

gar: 45 39 23 38 45 21 20 19 2

An easy case: \(y_i = 0, 1, 3 \) \(\forall i \)

Can do it in \(\text{poly}(1/\epsilon) \) time.
A first attempt:

Proposed algorithm: "neighbor test"

Pick random \(i \), test \(y_i < y_{in} \)

Bad input:

\[1, 2, 3, 4, 5, \ldots, n/4, 1, 2, 3, 4, \ldots, n/4, 1, 2, 3, 4, \ldots, n/4 \]

- \(\frac{3}{4} n \) are far from monotone
- only 3 choices of \(i \) fail

A second attempt:

Proposed algorithm: "random pair test"

Pick random \(i < j \), test \(y_i < y_j \)

Bad input: \(n/4 \) groups of 4 decreasing elements

\[9, 3, 2, 1, 7, 6, 5, 12, 11, 10, 9, 16, 15, 14, 13, \ldots \]

- largest monotone sequence size \(n/4 \)
- must pick \(i, j \) in same group to fail, prob \(\leq \frac{1}{n} \)
 - if see \(o(n^2) \) samples, prob \(o(1) \)
A minor simplification:

Let's assume list is distinct.

Claim: This is wlog

why? (old trick used in parallel computation)

\[X_1 \ldots X_n \rightarrow (X_1, 1), (X_2, 2), \ldots, (X_n, n) \]

"virtually" (at runtime)
append \(i \) to each \(X_i \)

breaks ties w/o changing order

i.e. if \(X_i \leq X_{i+1} \) then \((X_i, i) \leq (X_{i+1}, i+1) \)

A test: Given \(X_1 \ldots X_n \)

Repeat \(O(\varepsilon) \) times:

Pick \(i \in \mathbb{R} [n] \)

\(Z \leftarrow X_i \)

do binary search on \(X_1 \ldots X_n \) for \(Z \)

if see any inconsistency, \textbf{FAIL} + halt

i.e. left is bigger, right is smaller

if end up at locn \(j \neq i \), \textbf{FAIL} + halt

Pass
- If $X_1 < X_2 < \ldots < X_n$ then always passes

- To show: if need to change $z \in \mathbb{N}$ such test fails why equivalently: if test likely to pass, X_i's ϵ-close to monotonically
defn. i "good" if bin search for $z \leq X_i$ successful

Restatement of test:
- Pick $O(\frac{1}{\epsilon})$ i's randomly + pass if all are good
- If test likely to pass, $\geq 1 - \epsilon$ fraction of i's are good
- (otherwise, in $O(\frac{1}{\epsilon})$ samples, likely to hit a bad i)

Main observation:
- "good" elements form increasing subsequence

Proof: if $i < j$ both good, let K be least common ancestor in bin search tree.
- When hit X_K, search for X_i
- if went left + search for X_j
- went right.

so $X_i < X_K < X_j$
Monotonicity over Posets:

\[
def\ f\text{ is monotone over poset } P \text{ if } \forall x \leq y \text{ then } f(x) \leq f(y)\]

Examples: Can represent via dags

- Bipartite posets

- Hypercube

\[
\begin{align*}
(11111) & \quad \text{(all 1's)} \\
(01111) & \quad \text{(level 2: five 1's)} \\
(00111) & \quad \text{(level 3: six 1's)} \\
(00011) & \quad \text{(top level)} \\
(00001) & \quad \text{(level 5: six 1's)} \\
(00000) & \quad \text{bottom level: all 0's)}
\end{align*}
\]

In h.w.: Show testing monotonicity of arbitrary poset can be transformed into "equivalent" monotonicity testing problem on bipartite poset.
If a test for monotonicity can also test:

1) Given 2CNF φ along with assignment $A = \{a_1, \ldots, a_n\}$ $a_i \in \{T,F\}$
 - Pass if $\varphi(A) = T$
 - Fail if $\forall A' s.t. A \varepsilon$-close to A' $\varphi(A') = F$

2) Given G with $U \subseteq V$
 - Pass if U is VC
 - Fail if $\forall u \in U'$ s.t. u ε-close to U', U' not VC

3) Given G with $U \subseteq V$
 - Pass if U is clique
 - Fail if $\forall u' \in U'$ s.t. u' ε-close to U, U' not clique

Theorem

For bipartite graphs (n nodes on each side) ε-mon test can be done in $O(\sqrt{n/e})$ queries.

Hw.

Theorem

ε-mon test requires $n^{o(1)}$ queries if nonadaptive \exists open problem: Can we improve this to $O(\sqrt{n})$? for adaptive queries?

$\Rightarrow \Omega(\log n)$ queries adaptive
What about grids?

\[f: [n] \times [n] \rightarrow [m] \]

Can test monotonicity in \(O(\log^2 n) \) time. \(\text{\textcolor{red}{\text{\it actually}}\ O(\frac{1}{\varepsilon} \log n \log m)} \)

\[f: [n]^d \rightarrow [m] \]

Can test monotonicity in \(O(\frac{d}{\varepsilon} \log n \log m) \)

\[f: 2^d \rightarrow \mathbb{R}^+ \]

Can test monotonicity in \(O(\frac{d^{\frac{1}{2}}}{\text{poly}(\varepsilon)} \text{ poly}(\log d)) \)

Need \(\mathcal{O}(d^{\frac{1}{4}}) \) queries (even for adaptive algorithms!)