Testing "Triangle Freeness" for Dense Graphs

def. \(G \) is \(\Delta \)-free if \(\# \{ x, y, z \mid A(x, y) = A(y, z) = A(x, z) = 1 \} \)

Claim (will prove in homework)
If there is a properly testing algorithm for \(\Delta \)-free-ness, then there is an algorithm that works as follows:
- pick random \(x, y, z \)
- test if \(A(x, y) = A(y, z) = A(x, z) = 1 \)

But the question remains... how many times do you need to repeat the test?

Let's take a detour:
- How many triangles in a random tripartite graph?

\[\forall u \in A, v \in B, w \in C: \]
\[P_r [u \sim v \sim w] = \eta^3 \]
\[E [6_{v, v, w}] = \eta^3 \]
\[E [\# \text{triangles}] = E \sum_{u \in A, v \in B, w \in C} 6_{u, v, w} = \eta^3 \cdot |A| |B| |C| \]
One possibility:

Density & Regularity of set pairs:

def. for $A, B \subseteq V$ s.t.

1. $A \cap B = \emptyset$
2. $|A|, |B| > 1$

Let $e(A, B) = \#$ edges between $A \cup B$

+ density $d(A, B) = \frac{e(A, B)}{|A| |B|}$

Say A, B is γ-regular if $\forall A', B' \subseteq B$

st. $|A'| \geq \gamma |A|$

$|B'| \geq \gamma |B|$

$|d(A', B') - d(A, B)| \leq \delta$

Lemma [Komlos Simonovits]

For $\gamma > 0$ there exists δ (regularity parameter, depends only on γ) = $\frac{1}{2} \gamma \approx \delta^2(\gamma)$

δ (no triangles, depends only on γ) = $(1 - \gamma) \frac{\gamma^3}{8} \leq \frac{\gamma^3}{16} = \delta^3(\gamma)$

st. if A, B, C disjoint subsets of V, each pair

is γ-regular with density $\geq \gamma$

then G contains $\geq \delta |A| |B| |C|$ distinct $A's$ with vertex

from each of A, B, C
\textbf{Proof} (simplification of \cite{Alon Fischer Krivelevich Szegedy})

\[A^* \leftarrow \text{nodes in } A \text{ with } \geq (\eta - \gamma) |B| \text{ nbrs in } B \]
\[\eta \geq (\eta - \gamma) |C| \text{ nbrs in } C \]

Claim \[|A^*| \geq (1 - 2\gamma)|A| \]

Proof of Claim

\[A' \leftarrow \text{"bad" nodes of } A \text{ w.r.t. } B \text{ (i.e., } \leq (\eta - \gamma) |B| \text{ nbrs in } B) \]
\[A'' \leftarrow \text{"..." nbrs of } C \text{ ("..." nbrs in } C) \]

Then \[|A'| \leq \gamma |A| \]
\[\eta |A''| \leq \gamma |A| \]

Why? otherwise consider pair \(A', B \)

\[d(A', B) \leq \frac{|A'| (\eta - \gamma) |B|}{\eta |A'| |B|} = \eta - \gamma \]

by assumption for contradiction

\[\text{size } \geq \gamma |A| \]

\[\text{size } \geq \gamma |A| \]

\[\text{trivially } \geq \gamma |B| \text{ since } \gamma < 1 \]

\[d(A', B) \geq \eta \]

So \[|d(A', B) - d(A, B)| > \gamma \]

Contradicts \(\gamma \)-regularity !

But \[A^* = A \setminus (A' \cup A'') \]

So \[|A^*| \geq |A| - |A'| - |A''| \]
\[\geq |A| - 2\gamma |A| \]
\[= (1 - 2\gamma)|A| \] \(\square \) \(\text{End of proof of claim} \)
Finishing proof of lemma:

For each \(u \in A^* \):

\[
\begin{align*}
\text{def. } \quad B_u &= \text{nbrs of } u \text{ in } B \\
C_u &= \quad \text{in } C
\end{align*}
\]

\(|B_u| \leq (\eta - \gamma) |B| \leq \gamma |B| \)

\(|C_u| \leq (\eta - \gamma) |B| \leq \gamma |B| \)

Since \(\gamma \) chosen s.t. \(\gamma < \frac{\eta}{2} \), \(\eta - \gamma > \gamma \)

Note: \# edges between \(B_u + C_u \Rightarrow \) lower bound on \# distinct triangles with \(u \) as a vertex

\[
\begin{align*}
d(B, C) &= \eta \\
\Rightarrow d(B_u, C_u) &\geq \eta - \gamma \quad (\text{since } |B_u|, |C_u| \text{ big enough } + B, C \text{ \(\gamma \)-regular}) \\
\Rightarrow e(B_u, C_u) &\geq (\eta - \gamma) |B_u| |C_u| \\
&\geq (\eta - \gamma)^3 |B| |C| \quad \text{gives lb on \# triangles with } u
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \text{total } \pm A's &\geq (1 - 2\gamma) |A|, (\eta - \gamma)^3 |B| |C| \\
&\geq (1 - \eta) (\eta / 2)^3 |A| |B| |C| = (1 - \eta) \frac{\eta^3}{8} |A| |B| |C| \\
\text{choosing } \gamma = \frac{\eta}{2}
\end{align*}
\]
Do any interesting graphs have regularity properties? In some sense, all graphs do! I.e. every graph (in some sense) can be approximated by random graphs.

Szemerédi's Regularity Lemma

Would like it to say:

"One can equipartition the nodes V into V₁...Vₖ (for some constant K) s.t. all pairs (Vᵢ,Vⱼ) are ε-regular".

More useful version:

Lemma

∀ m, ε > 0. ∃ T = T(m, ε) St.

given G = (V,E) St. |V| > T

there is an equipartition of V into sets

then exist equipartition B into k sets which

refine A + s.t. m ∈ k ≤ T

ε = ε(1/k) set pairs not ε-regular.
"Picture":

Why is this good?

- partition big graph into "constant" # partitions
- st. each pair behaves like random bipartite graph
- random bipartite graphs have nice properties

Why was SRL first studied?

to prove conjecture of Erdős & Turán:
sequences of integers must always contain long arithmetic progressions
An application of the SRL:

Property testing 1

Given \(G \), adjacency matrix format

Desired Behavior

- if \(G \) is \(\Delta \)-free, output PASS
- if \(G \) is \(\varepsilon \)-far from \(\Delta \)-free, \(\Pr[\text{output PASS}] \geq \frac{3}{4} \)
 - most deletion \(\leq \varepsilon n^2 \) edges
 - to make it \(\Delta \)-free

How much time does this require?

trivial \(O(n^3) \), \(O(n^2) \), \(\ldots \), \(O(1) \)?

Algorithm

\[
\text{do } O(\varepsilon^{-1}) \text{ times}
\]

- Pick \(V_1, V_2, V_3 \)
- if \(\Delta \) reject and halt

Accept
Thm $A \in E(s)$ st. $A \in st. |V|=n$
+ st. G is ε-far from A-free
then G has $\geq \delta(n^3)$ distinct A's

Corollary. Algorithm has desired behavior

ie. if A-free, accepts with prob 1

if ε-Far, $\geq \delta(n^3)$ A's

$Pr \left[\text{don't find } A \text{ in } \frac{\varepsilon}{8} \text{ loops} \right] \leq (1-\delta)^{\frac{\varepsilon}{8}}$

$\leq \varepsilon^{-C} < \frac{\delta}{4}$

for big enough C

Proof of Thm

Use regularity to get equipartition $\xi \{ V_1 \ldots V_{k-3} \}$

st. $\frac{5}{2} \leq k \leq \Upsilon \left(5\varepsilon^{-1}, \varepsilon^1 \right)$

equivalently: $\frac{\varepsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{\Upsilon(5\varepsilon^{-1}, \varepsilon^1)}$

$\# \text{nodes per partition}$

(do this by starting with arbitrary equipartition into $\frac{5}{2}$ sets as A)

for $\varepsilon^1 = \min \left\{ \frac{\varepsilon}{5}, \Upsilon \left(\frac{3}{5} \right) \right\}$

st. $\leq \varepsilon^1(\frac{k}{2})$ pairs not ε^1-regular
Need: # of partitions fairly large st. # edges inside a partition not too big

\[G' \equiv \text{take } G \text{ and } \]

1) delete edges of \(G \) internal to any \(V_i \)

\[\text{how many? } \leq \frac{n}{k} \cdot n \leq \frac{\varepsilon n^2}{5} \]

\[\text{deg w/in } V_i \text{ sum over all n nodes} \]

\[\text{since } |V_i| \leq \frac{n}{k} \]

2) delete edges between \(\varepsilon' \)-non-regular pairs

\[\text{how many? } \leq \varepsilon'(\frac{k}{5}) \left(\frac{n}{k} \right)^2 \leq \frac{\varepsilon}{5} \cdot \frac{k^2}{2} \cdot \frac{n^2}{k^2} \leq \frac{\varepsilon}{10} n^2 \]

\[\text{max # edges per pair max non-regular pairs here we use equipartition } \Rightarrow |V_i| = \frac{n}{k} \]

3) delete edges between low density pairs

\[\text{how many? } \leq \frac{\varepsilon}{5} \left(\frac{n}{k} \right)^2 \leq \frac{\varepsilon n^2}{10} \]

\[\text{note } \varepsilon(\frac{n}{k})^2 \leq \binom{n}{2} \]

So total deleted edges from \(G \) \(\leq \varepsilon n^2 \)

\[\Rightarrow \text{so cheater is not so bad} \]
But, G was ε-far from Δ-free, so G' must still have a Δ!!!

Furthermore, by the way we constructed G', we knew a lot about the Δ: $\forall \Delta' \exists a,b \in V_i, V_j, V_k$

1) it must be that i,j,k distinct since removed all edges within partitions

2) $(i,j), (j,k), (j,k)$ are regular pairs since removed non-regular pairs

3) $(i,j), (j,k), (j,k)$ are high density pairs since removed low density pairs

\therefore $\exists i,j,k$ distinct st. $a \in V_i, b \in V_j, c \in V_k$

V_i, V_j, V_k all $\geq \frac{\varepsilon^2}{5}$ - density pairs

$+ \ U^{\Delta} \left(\frac{\varepsilon}{5} \right) - regular$

$\Rightarrow \frac{\eta}{2} \geq \frac{\varepsilon}{10}$

Δ-counting Lemma \Rightarrow

$\geq \delta^a \left(\frac{\varepsilon^3}{5} \right)!_V \Delta^s$ triangles in G'

$\geq \delta^a \left(\frac{\varepsilon^3}{5} \right) \frac{\eta^3}{3} \left(\frac{T(\frac{5}{8}, \varepsilon')}{3} \right)^3 \Delta^s$

$\geq \frac{1}{2} \frac{\varepsilon^3}{8000} = \frac{\varepsilon^3}{16000}$

$\geq \delta'(\frac{\eta}{2}) \Delta^s$ in G' thus in G

for $\delta' = 6 \delta^a \left(\frac{\varepsilon^3}{5} \right) \left(\frac{T(\frac{5}{8}, \varepsilon')}{3} \right)^3$
Extensions

- Komlos-Simonovits holds for all const sized subgraphs

- Almost "as is" can use method to test all 1st order graph properties

\[\forall u_1, u_2, u_3 \ldots u_k \quad \forall v_1, v_2 \quad R(u_1, u_k, v_1, v_2) \]

defined by \(v, k, l \) neighbors

\[\forall u_1, u_2, u_3 \quad R(u_1, u_2, u_3) \]

encodes

\[\forall (u_1 \sim u_2, u_2 \sim u_3, u_1 \sim u_3) \]

H-freeness for const size H

Induced \(\square \) vs. \(\Box \) forbidden

not induced

* 1-sided const time \(\propto \) hereditary graph props [Alan Shapira]

closed under vertex removal (not necessarily edges)

includes monotone graph props

Chordal

perfect interval graph

difficulty: infinite set of forbidden subgraphs also forbidden as induced

* 2-sided const time \(\propto \) regular partition is hardest testing problem

properly testable iff can reduce to testing [Alan Fisher Neiman

properly testable iff satisfies one of finitely many Szemeredi partitions.

see also work by [Borgs Chayes Lovasz Sos Szegedy Vesztergombi]