Lower Bounds for property testing algorithms

I. Deterministic lower bounds \(\Rightarrow \) probabilistic lower bounds

a difficulty:

prop testing algs are randomized!
difficult to argue about their behavior

useful lower bound tool:

Yao's principle:

If there is a probability distribution \(D \) on union of "positive" and "negative" elements of domain, such that any deterministic algorithm of query complexity \(t \) is incorrect with prob \(\geq \frac{1}{3} \) for inputs chosen according to \(D \), then it is a lower bound on randomized query complexity.

So, average case deterministic lower bound \(\Rightarrow \) randomized worst-case lower bound (principle works for all types of randomized algorithms)
Why?

proof omitted

game theoretic view:

Alice selects deterministic alg \(A \)

Bob selects input \(x \)

\(\text{Von Neumann's minimax } \Rightarrow \text{Bob has randomized strategy} \)

do, as well when \(A \) randomized

An example:

\[\mathcal{L}_n = \{ w | w \text{ is } n \text{-bit string} \} \]

\[w = v v^R \cup w^R \]

concatenations of palindromes

Thm need \(\Omega(\sqrt{n}) \) queries to properly test \(\mathcal{L}_n \)

i.e., if \(A \) satisfies

\[\forall x \in \mathcal{P}, \Pr[A(x) = \text{PASS}] \geq \frac{2}{3} \]

\[\forall x \text{ \& far from } \mathcal{P}, \Pr[A(x) = \text{PASS}] \leq \frac{2}{3} \]

then \(A \) makes \(\Omega(\sqrt{n}) \) queries

Pf.

Plan: give distribution on inputs that is hard for all algorithms with \(O(\sqrt{n}) \) queries

- Wlog assume \(6/n \)
- distribution on negative inputs:

\[N = \text{random string of distance } \geq n \text{ from } \mathcal{L}_n \]

\(\text{Yao } \Rightarrow \text{randomized ub. of } \Omega(\sqrt{n}) \)

\(\text{should output } \text{FAIL} \)
Pf of claim 2 (idea)

To show: for every fixed set of $o(\sqrt{n})$ queries, lots of strings in L_n follow that path.

Count # strings that agree with t queries in leaf?

$= 2^{n-t}$

Count # strings in L_n that agree with t queries to?

$= (2^{n-t}) - ?$

Main Difficulty:

so maybe no string infinitely follows the path?

no! k could be $\frac{n}{6}$... $\frac{n}{3}$

so for each set of queries, some k's (but not all) are bad
distribution on positive inputs:

\[P = \begin{cases}
1. \text{ pick } k \in \left[\frac{n}{6}, \frac{n}{3} \right] \\
2. \text{ pick random } V, u \text{ st. } |v| = k \\
3. \text{ output } V^*uu^*
\end{cases} \]

an issue:
some strings can be generated via \(\geq 1 \) \(k \)

\[\text{distribution } D = \begin{cases}
\text{flip coin} \\
\text{if } H \text{ output according to } N \\
\text{else} \quad \quad \quad \quad \quad \quad \quad \text{P}
\end{cases} \]

Assume deterministic algorithm \(A \) has
behavior above + uses \(t = o(\sqrt{n}) \) queries

\[\text{depth } t, \leq 2^t \text{ root-leaf paths} \]

\[\text{wlog all leaves have depth } t \]

leaves labelled with \(A \)'s answer following that path + seeing those bits

Note: we can calculate probability of reaching a leaf since we know input distribution.

if a input reaches here, hopefully it is a "false" input?
For each leaf \(\ell \):
\[
E^-(\ell) = \sum w \in \{0,1\}^n \quad \text{dist}(w, \ell) = \varepsilon n, \quad w \text{ reaches leaf } \ell.
\]

\(w \text{ should fail} \)

\[
E^+(\ell) = \sum w \in \{0,1\}^n \setminus L, \quad w \text{ reaches leaf } \ell.
\]

\(w \text{ should Pass} \)

each leaf \(\ell \) is either passing or failing, not both

Total error of \(A \) on \(D \)
\[
= \sum_{\ell \text{ passing}} \Pr_D \left[w \in E^-(\ell) \right] + \sum_{\ell \text{ failing}} \Pr_D \left[w \in E^+(\ell) \right]
\]

Claim 1: if \(t = o(n) \), \(\forall \ell \) at depth \(t \)
\[
\Pr_D \left[w \in E^-(\ell) \right] \geq \left(\frac{1}{2} - o(1) \right) 2^{-t}
\]

(so negative inputs show up at all leaves \(t \) should be failed)

Claim 2: if \(t = o(n) \), \(\forall \ell \) at depth \(t \)
\[
\Pr_D \left[w \in E^+(\ell) \right] \geq \left(\frac{1}{2} - o(1) \right) 2^{-t}
\]

(so positive inputs show up at all leaves \(t \) should be passed)

but each leaf only has one label!
Putting them together to prove full theorem

error of \(A \) on \(D \)

\[
\begin{align*}
\mathbb{E} &= \sum_{l \text{ passing}} \Pr_{w \in D} [w \in E(l)] + \sum_{l \text{ failing}} \Pr_{w \in D} [w \in E^+(l)] \\
&\geq 2^{\left(\frac{1}{2} - o(1)\right)} 2^{-t} + \left(\frac{1}{2} - o(1)\right) 2^{-t} \\
&= \frac{1}{2} - o(1) \quad \leftarrow \text{since all leaves pass or fail}
\end{align*}
\]

Pf of Claim 1:

Idea

\(N \) is close to \(U \)

\(U \) ends up uniformly distributed at each leaf \(\Rightarrow \) \(\Pr_{w \in U} [w \in E(l)] = 2^{-n} \)

How much does the distribution change by using \(N \) instead of \(U \)?

\[|L_n| = 2^n, \frac{n}{2} \]

choice of \(U \)

choice of \(N \)

\# words at distance \(\leq \varepsilon \):

\[2^n \cdot \frac{n}{2} \cdot \sum_{i=0}^{\varepsilon n} \binom{n}{i} \leq 2^{n/2 + 2\varepsilon \log(2)n} = (1 - o(1)) 2^n \]

so \(E^-(l) \geq 2^{-n} - 2^{n/2 + 2\varepsilon \log(2)n} = (1 - o(1)) 2^{-n} \)

\# words at dist \(\leq \varepsilon \)

\# words at dist \(\varepsilon \)

\# strings that follow path to leaf

assume \(\varepsilon \ll \frac{1}{n} \)

\(\varepsilon \) is \(o(1) \)

So 1st term swamps 2nd term

so \(\Pr_{D} [w \in E^{-}(l)] = \frac{1}{2} \Pr_{N} [w \in E^{-}(l)] \)

\[\geq \frac{1}{2} \frac{|E^{-}(l)|}{2^n} \geq \left(\frac{1}{2} - o(1)\right) 2^{-t} \]
Given list k, let Q_k indices queried along the way. For each of $\binom{\frac{n}{2}}{2}$ pairs of queries $q_1, q_2 \in Q_k$ at most 2 choices of k for which q_1, q_2 symmetric to k or $\frac{n}{2} + k$.

In this case, only one choice.

$\Rightarrow \# \text{ choices of } k \text{ s.t. }$
no pair in Q_k symmetric around k or $\frac{n}{2} + k$

is $\geq \frac{n}{6} - 2\left(\frac{d}{2}\right) = (1 - o(1))(n/6)$

For these k, $\# \text{ strings that follow path } = 2^{\frac{n}{2} - 1} q_{x1}$

So $Pr_d[w \in E^+(q)] = \sum \sum_{u \in \mathbb{R}} \sum_{k \in \mathbb{R}} \sum_{\frac{m_{u,k}}{2}} \frac{1}{\sum_{\frac{m_{u,k}}{2}} \frac{b}{n}}$

$= \frac{1}{n \cdot 2^{n/2}} \left[(-6(1)) \frac{n}{b} \right] \left[2^{\frac{n}{2} - |q_{x1}|} \right] = (1 - o(1)) 2^{-t}$

$\Rightarrow Pr_d[w \in E^{*}(q)] = (\frac{1}{2} - o(1)) 2^{-t}$

\therefore