Distributed Algorithms vs. Sublinear Time Algorithms on Sparse Graphs

Max degree \(d \)

Again, Sparse graphs: max degree \(d \), adjacency list representation

A problem to solve:

Vertex Cover

\(V' \subseteq V \) is "Vertex Cover" (VC) if \(\forall (u,v) \in E \)

either \(u \notin V' \) or \(v \in V' \)

VC Question: What is min size of VC?

Note: in degree \(d \) graph, \(|VC| \geq \frac{m}{d} \) since each node can cover \(d \) edges

VC is NP-complete, but there is a polytime 2-multiplicative approximation

Can you approximate VC in sublinear time?

- Multiplication graph with \(m \) edges \(|VC| = 0 \) \(\Rightarrow \) Can't distinguish these cases in sublinear time
- Multiplication graph with 1 edge \(|VC| = 1 \)

Additive: hard. Need some multiplicative approximation

- Computationally hard to approximate better than 1.36 factor (maybe even 2)

Combination?
\[y \text{ is } (a, \varepsilon) \text{-estimate of soln value } y \text{ for minimization problem if } \]
\[y \leq \hat{y} \leq ay + \varepsilon \]
\[\text{(allows mult + additive error)} \]

(analogous defn for maximization problems)

Some Background on Distributed Algorithms

- **Network**
 - processors \(\leq \) max degree \(d \) known to all
 - links

- **Communication round**
 - nodes send messages to neighbors

Def. Vertex Cover problem for distributed networks:

- Network graph = Input graph (i.e., network computes on itself)
- At end, each node knows if in or out of VC (doesn't know about others necessarily)

Main insight on why fast distributed \(\iff \) sublinear time:

in k-round algorithm, output of node \(v \) only depends on nodes at distance at most \(k \) from \(v \). At most \(d^k \) of these!
Can simulate \(V \)'s view of distributed computation in \(\leq d^k \) time

+ figure out if \(v \) is in or out of \(VC \)

Comment: if algorithm is randomized, \(v \) needs to know random bits (or be able to construct) of all \(d^k \) nbdrs. \(k \) must be consistent

"fast distributed alg \(\Rightarrow \) "oracle" which tells you if \(v \) is in \(VC \)

But are there fast VC distributed algorithms?

YES, will see some soon

"local distributed algorithms"

How do you use this to approximate VC in sublinear time?

Parnas- Ron Framework:

- Sample nodes of graph \(V_1 ... V_r \)
- For each \(V_i \), run simulated distributed algorithm to see if \(V_i \in VC \)

Output \(\# V_i \)'s in \(VC \)

Runtime \(O(r \cdot d^k) \approx O(\varepsilon^2 \cdot d^k) \)

Proof of correctness: Chernoff/holding bounds
fast distributed algorithm for VC:

\[i = 1 \]

While edges remain:
- remove vertices of degree \(\geq \frac{d}{2^i} \) and adjacent edges
- update degrees of remaining nodes
- increment \(i \)

Output all removed nodes as VC

rounds: \(\log d \)

Example:

Is it a VC?
- no edges remain at end
- all removed along with some adjacent vertices
Is it a good approximation?

Then let \(VC(G) = \text{size of min VC of } G \)

Then, \(VC(G) \leq \text{output} \leq (2 \log d + 1) VC(G) \)

since output is \(VC \)

to prove

Proof.

Claim: in each iteration, add \(\leq 2 \cdot VC(G) \) new vertices

why: all nodes removed have deg bet \(\frac{d}{2^i} + \frac{d}{2^i} \)

\(\Theta \subseteq \text{any min VC (so any edge has to have z|vertex in } \Theta) \)

\(\frac{d}{2^i} \leq \text{degree} \leq \frac{d}{2^{i-1}} \)

\(\Theta \text{remained removed but not in } \Theta \)

not removed yet

all \(X \) edges have to go \(\Theta \)

since \(\Theta \) is a VC

so \(|x| \cdot \frac{d}{2^i} \leq |\Theta| \cdot \frac{d}{2^{i-1}} \)

so \(|x| \leq 2|\Theta| \)