Lower Bounds on distributions

Last time: sketch of lower bound for uniformity testing

Homework: One way of making it formal (not optimal in all parameters)

Today: Another methodology of showing lower bounds

Definition: Uniformity tester

given samples from \(p \) on \([n]\), \(\epsilon \)

- if \(p = \mathcal{U}_n \) output PASS with prob \(\geq \frac{3}{4} \)
- if \(\|p - \mathcal{U}_n\|_1 \geq \epsilon \) output FAIL with prob \(\geq \frac{3}{4} \)

This uniformity tester needs \(\Omega(n^{3/2}) \) samples

Proof: soon; 1st some observations + basics:

Observation: randomness doesn't help testing algorithms

Proof: h.w.

Information Theory Basics:

Entropy
\[H(x) = -\sum_{x \in \text{domain}} p(x) \log p(x) \]

Conditional Entropy
\[H(Y|X) = \mathbb{E}_x \left[\sum_{y \text{ s.t. } p(y|\neg x) = 0} p(y|x) \log \frac{1}{p(y|x)} \right] \]
\[= \sum_x p(x) \sum_{y \text{ s.t. } p(y|\neg x) = 0} p(y|x) \log \frac{1}{p(y|x)} \]

Note:

- \(H(Y|X) = 0 \) iff \(Y \) determined by \(X \)
- \(H(Y|X) = H(Y) \) iff \(Y \) independent of \(X \)
Basic facts:

- $H(x) = 0$
- $H(Y|X) \leq H(Y)$
- Chain rule: $H(X,Y) = H(X) + H(Y|X)$

Mutual information:

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

$$= H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

Chain rule:

$$I(X;(Y,Z)) = I(X;Z) + I(X;Y|Z)$$

Main idea:

define random var X as fair coin flip

X decides whether pick K samples from uniform on $[n]$

\uparrow

all K

from same distribution

Will show, if K small, $I(X;\text{samples}) = o(1)$

So what?

Lemma: if for any func (algorithm) s.t. $Pr[f(\text{samples})=x] \geq 51\%$

then $I(X;A) = 2 \cdot 10^{-4}$

So if $I(X;\text{samples}) = o(1)$ \Rightarrow no algorithm can solve the testing problem
Let's assume \(a_i \)'s are independent (they are not if \(K \) is fixed, but if \(K \) chosen as Poisson dist with mean \(K_0 \), they are independent).

\[
I(x, \{a_i \}_{i=1}^n) \leq \sum_{i=1}^n I(x, a_i) \quad \text{by chain rule}
\]

\[
eq n \cdot I(x, a_1) = O\left(\frac{K^2 \varepsilon^4}{n^2} \right)
\]

Lemma

\[
I(x, a_1) = O\left(\frac{K^2 \varepsilon^4}{n^2} \right)
\]

Proof: Calculations

\[
\text{if } K = O\left(\frac{\sqrt{n}}{\varepsilon^2} \right)
\]

This is \(O(1) \)
Poissonization

An important way to get rid of dependencies.

Why:
if take fixed K # of samples

\[\text{Pr[see elt } j \text{]} \text{ not independent of Pr[see elt } j \text{]}. \]

why? if you see elt \(j \), you know \(j \) samples
is not \(j \), so less likely you will see elt \(j \) in all \(K \)
samples (you now only have \(k-1 \) samples left to "play with").

Poissonization trick:
pick \(K \) distributed as Poisson with parameter \(\lambda \).

def Poisson dist with parameter \(\lambda \) \((\Psi(\lambda)) \):

\[\text{K occurs with prob } \frac{\lambda^k e^{-\lambda}}{k!} \]

\[\sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} = 1 \]

\[E[X] = \lambda \quad \text{for } X \sim \Psi(\lambda) \]

\[\text{Var}[X] = \lambda \]

Poisson sampling:
pick \(K \sim \Psi(\lambda) \)
take \(K \) samples of distribution

\[\Psi(0) = 0 \]

\[0! = 1 \]
Important property of Poisson Sampling:

- \# of occurrences of elt i is independent of \# of occurrences of elt j (for i \neq j)

- \# of occurrences of elt i \sim \Psi(K \cdot p_i)

\[\mathbb{E}[\Psi(K \cdot p_i)] = K \cdot p_i \]

\[\text{Var}[\Psi(K \cdot p_i)] = K \cdot p_i \]

Why does this give us a lower bound?

Suppose you want to show \(\geq s_0 \) samples are required for a testing problem.

i.e. If A taking \(s_0 \) samples, A correct with probability \(\geq 2/3 \).

\[\forall A' \text{ taking } \Psi(c \cdot s_0) \text{ samples, } A' \text{ correct with prob } \geq 2/3 - \text{"tiny"} \]

Contrapositive: if A' needs \(\geq \Psi(c \cdot s_0) \) samples

Then A needs \(\geq s_0 \) samples
Sketch of I.b. for p, q given by samples "closeness testing"

Thin closeness testing requires $\Omega(n^{2/3})$ samples

Proof idea:

$P_0 = \frac{n^{2/3}}{\frac{2}{n}}$ heavy elements

$\frac{n}{n}$ light elements

$Q_0 = \frac{n^{2/3}}{\frac{2}{n}}$ heavy elements

$\frac{n}{n}$ light elements

Positive pairs $\delta, dist = 0 \Rightarrow (\Pi(p_0), \Pi(q_0)) \forall \Pi$ $\Rightarrow (\Pi(p_0), \Pi(q_0)) \forall \Pi \leq \delta, dist = 1$

Negative pairs

where $\Pi(p)$ relabels domain elts randomly

$\Pi(p_0), \Pi(p)$ applies same relabeling to both

Main idea: Only Collision Statistics matter!

for positive pairs have collisions in both heavy + light elts

for negative pairs have collisions only in heavy elts

when see a collision, usually can't tell if it was a heavy or light element!
After $o(n^{2/3})$ samples:

- Probability see any small element twice really small
- Probability see any heavy element $3X$ is small happens, but not too often
- Probability see any small elt $3X$ is tiny, $4X$ is tiny unlikely to happen

So, what collision statistics could we have?

How many elts in domain appear p_i times, q_i times in $p_i q_i$?

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

#domain elts

- Will happen less in pos pairs
- Will happen more in pos pairs than in neg pairs
- Unlikely - can ignore

When you see collision, you don't know if it came from heavy or light element

$m = \# \text{ samples}$

$H = \# \text{ heavy collisions}$

$L = \# \text{ light collisions (1 from each dist)}$

\[
E[\# \text{ collisions in pos pair}] = E[H] + E[L] = \frac{m^2}{2n^{2/3}} + \frac{m^2}{n} \approx \frac{m^2}{2n^{2/3}}
\]

\[
E[\# \text{ collisions in neg pair}] = E[H] = \frac{m^2}{2n^{2/3}}
\]
Need to show something a bit stronger - can't distinguish the random variables!

\[E[H] = \frac{m^2}{n^{2/3}} \]

\[\text{Var}[H] \approx \frac{m^2}{n^{2/3}} \]

\[E[L], \text{Var}[L] \approx \frac{m^2}{n} \]

\((m^2) \) pairs, each collides with prob \(\frac{1}{2n^{2/3}} \)

\((m^2) \) pairs, each collides with prob \(\frac{1}{n} \)

\[L_1 \text{ distance small} \]

\[\text{almost same distribution} \]

\[\text{hard to distinguish!} \]

how do we show \(L_1 \) dist is small?

if they were Gaussian,

could show that \(\sqrt{\text{Var}(H)} \leq E[L] \)

\[\Leftrightarrow \frac{m}{n^{1/3}} \leq \frac{m^2}{n} \]

\[\Leftrightarrow \ m \leq n^{2/3} \]