• Closeness Testing \((p, q \text{ unknown})\)

• Learning & Testing monotone distributions
Some other extensions:

What if p, q both unknown? "Closeness testing"

L_2 distance is similar, but what does it say?

L_2 distance:

$$\|p - q\|_2^2 = \sum_x (p_x - q_x)^2$$

$$= p_x^2 - 2p_x q_x + q_x^2$$

Cross-collision probability

Self-collision probability of p

Self-collision probability of q

Can bound variance of $\|p\|_2^2$, $\|q\|_2^2$, and $\|p - q\|_2^2$ if $\max_p \Pr \text{ element is bounded by } b$

What about other case?

Use naive method on elements whose $\Pr \geq \frac{1}{b}$ of these

One way: Filtering algorithm:

Learn B = domain elements with $\Pr \geq b \leq O\left(\frac{1}{b}\right)$

Filter rest of samples

$$B \leftarrow N \setminus B$$

Naive method

Collisions $O\left(\frac{1}{b} \cdot n^2\right)$ samples

Note: Strange dependence on $n^{2/3}$ is tight. Turns out $O\left(\frac{1}{\varepsilon^4} n^{2/3}\right)$ samples suffice on ε. Recent improvements known.
Sketch of lb. for \(p,q \) given by samples \(\leq \) "closeness testing"

Thin closeness testing requires \(\Omega(n^{3/8}) \) samples

Proof idea:

\[
\begin{align*}
p_0 & = \\
n^{3/8} \text{ heavy elements} & \quad \frac{n}{n} \text{ light elements} \\
\text{weight} \frac{1}{2n^{1/3}} & \quad \text{weight} \frac{2}{n} \\

q_0 & = \\
n^{3/8} \text{ heavy elements} & \quad \frac{n}{n} \text{ light elements}
\end{align*}
\]

Positive pairs \(\iff \) \((\Pi(p_0), \Pi(q_0)) \neq \Pi \)

Negative pairs \(\iff \) \((\Pi(p_0), \Pi(q_0)) \neq \Pi \)

\(\iff \dist = 1 \)

where \(\Pi(p) \) relabels domain els. randomly

\(\Pi(p_0), \Pi(p) \) applies same relabeling to both

Main idea: for positive pairs have collisions in both heavy + light els

for negative pairs have collisions only in heavy els

when see a collision, usually can't tell if it was a heavy or light element!
After $o(n^{2/3})$ samples:

- probably see any small element twice really small
- probability see any heavy element $3X$ is small happens, but not too often
- probability see any small elt $3X$ is tiny heavy $4X$ is tiny unlikely to happen

So, what collision statistics could we have?

How many els in domain appear p times, q times in p,q?

\[
\begin{array}{cccccccccccc}
\text{#domain} & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 2 & 1 & 1 & 3 & 0 & 1 & 2 & 1 & 4 & 0 & 3 & 1 & 3 & 2
\end{array}
\]

When you see collision, you don't know if it came from heavy or light element.

\[
m = \# \text{ samples}
\]
\[
H = \# \text{ heavy collisions}
\]
\[
L = \# \text{ light collisions (1 from each dist)}
\]

\[
E[\# \text{ collisions in pos pair}] = E[H] + E[L] = \frac{m^2}{2n^{2/3}} + \frac{m^2}{n} \sim \frac{m^2}{2n^{2/3}}
\]

\[
E[\# \text{ collisions in neg pair}] = E[H] = \frac{m^2}{2n^{2/3}}
\]
Need to show something a bit stronger - can’t distinguish the random variables!

\[E[H] = \frac{m^2}{4n^{3/4}} \]

\(\text{Var}[H] \propto \frac{m^2}{n^{3/4}} \)

\[E[L], \text{Var}[L] \sim \frac{m^2}{n} \]

\(\binom{m}{2} \text{ pairs, each collides with prob } \frac{1}{2n^{3/4}} \)

\(\binom{m}{3} \text{ pairs, each collides with prob } \frac{1}{n} \)

\(L_1 \) distance small

almost same distribution

hard to distinguish!

how do we show \(L_1 \) dist is small?

if they were Gaussian, could show that \(\sqrt{\text{Var}(H)} \leq E[L] \)

\[\iff \frac{m}{n^{3/4}} \leq \frac{m^2}{n} \]

\[\iff m \geq n^{3/4} \]

\(\iff \) they aren’t quite, so it’s more difficult.
Testing & Learning Monotone Distributions (over totally ordered domain)

Def: \(p \) over \([n]\) is "monotone decreasing" if \(\forall i \in [n-1] \), \(p(i) \geq p(i+1) \).

Monotonicity Tester:
- if \(p \) monotone increasing, Pass with prob \(\geq \frac{3}{4} \).
- if \(p \) ϵ-far in \(L_1 \) dist from non-increasing, Fail with prob \(\geq \frac{3}{4} \).

Useful tool: "Birge Decomposition"

(note: this is a different decomposition than in homework.

In particular, it is oblivious!)

Decompose domain \([1..n]\) into \(I = \Theta \left(\frac{\log n}{\epsilon} \right) \times \Theta \left(\frac{\log n}{\epsilon} \right) \) intervals

\[
I_1^\epsilon, I_2^\epsilon, \ldots, I_k^\epsilon \quad \text{s.t.} \quad |I_k^\epsilon| = \Gamma \left(\left(1 + \frac{\epsilon}{2} \right)^{-1} \right) \cdot |I_k^\epsilon| \]

So \(|I_1^\epsilon| = 1 \) but then at some point the size grow exponentially.

\(|I_2^\epsilon| = 2 \)

\(|I_3^\epsilon| = 3 \)
Define "flattened distribution"

\[q_e(i) = \frac{q(I_j)}{|I_j|} \]

Note: \(q(I_j) = \hat{q}_e(I_j) \)

If \(q \) monotonically decreasing then \(\|q_e - q\|_1 \leq \varepsilon \)

Corollary: If \(q \) \(\varepsilon \)-close to \(q \) monotonically decreasing then \(\|q_e - q\|_1 \leq O(\varepsilon) \)

Testing Algorithm:

Take samples of \(q \)
do uniformity test for each partition (using samples that fell in it)
(if not enough samples then pass)

\(w \) are samples that fell in partition \(j \)
use LP to verify \(w \) close to monotone

\(\text{Note: This is LP on} \ O(\log n) \text{ vars} \)

How many samples?

For each partition with enough weight, say \(\frac{\varepsilon}{\log n} \), need \(\frac{\sqrt{n}}{\varepsilon^2} \) samples

\(\approx O(\sqrt{n} \cdot \text{polylog } n \cdot \text{poly } \frac{1}{\varepsilon}) \)

(Note: This can be improved!!)
Last step:

difficulty

purple is not monotone, but is close

good thing: only \(\frac{\log n}{\varepsilon} \) variables!

Can be solved via brute force

LP (actually quite efficient)

Slightly changing perspective...

What if we know dist \(q \) is monotone, can we learn it?

Yes! use sampling to estimate \(\hat{q}_x(I_j) \)'s

Birge's Thm: Can learn monotone distributions to within \(\varepsilon \) error in \(\Theta(\frac{1}{\varepsilon^3 \log n}) \) samples.