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1 Poisson Binomial Distribution

A Poisson binomial distribution is constructed as a generalization of the bino-
mial distribution. Consider n independent Bernoulli random variables {X1, X1, · · · , Xn}.
Each of these has a different bias, i.e. E[Xi] = pi. The PBD distribution is de-
fined as the sum of all these variables.

PBD(p1, p1, · · · , pn) =

n∑
i=1

Xi

1.1 Poisson Approximation

We can crudely approximate the PBD distribution by a Poisson distribution

with λ =
∑
pi [1]. Formally, for X =

n∑
i=1

Xi, where E[Xi] = pi, we have

∥∥∥∥∥X − Poi
(

n∑
i=1

pi

)∥∥∥∥∥
1

≤ 4

n∑
i=1

p2i

Note that this distance is only small when the probabilities are small. In the
worst case, if some pi = Θ(1), then this bound will also be Θ(1). However, let’s
say that there are k elements, each with probability ε. Then, the L1 distance
gets bounded by k · ε2 = ε.

1.1.1 Translated Poisson Distribution

We can obtain a better approximation to the PBD distribution by using a trans-
lated Poisson distribution. A random variable Y is distributed as the translated
Poisson distribution TP (µ, σ2) iff. we can write it as Y = bµ − σ2c + Z. Here
Z is distributed as Poisson(σ2 + {µ− σ2}), where {x} ≡ x− bxc.
This gives us the following theorem from [2].
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Theorem 1. Given a PBD X =
n∑
i=1

Xi with E[Xi] = pi, define µ =
∑
pi and

σ2 =
∑
pi(1− pi). Then

∥∥∥∥∥
n∑
i=1

Xi − TP (µ, σ2)

∥∥∥∥∥
1

≤ 2 ·

√
n∑
i=1

p3i (1− pi) + 2

n∑
i=1

p
(
i1− pi)

2 Structure Theorem

The main theorem here concerns the structure of PBDs. Specifically, we will
construct Sε, an ε cover for the set Sn of all PBDs with support size n. This
theorem tells us that every PBD is either close to a PBD whose support is sparse
(O(1/ε3)), or is close to a translated ”heavy” Binomial distribution.

Note that we can effectively ignore the contribution of variables that have pi = 0.
The translation is caused by variables that have bias that is exactly 1. If there
are k such variables, we can ignore all of them and simply subtract k from our
random variable.

Theorem 2 (Structure Theorem). We construct a cover Sε for the set of PBDs
Sn. Let’s define k = O(1/ε). The theorem states that for every {Xi} ∈ Sn, there
exists {Yi}, such that

1.

∥∥∥∥∑Xi −
∑
Yi

∥∥∥∥
1

≤ ε

2. One of the following holds

• (k-Sparse) – ∃l ≤ k3 such that ∀i ≤ l, E[Yi] ∈
{

1
k2 ,

2
k2 , · · · ,

k2−1
k2

}
and ∀i > l, E[Yi] ∈ {0, 1}.

• (Heavy Binomial) – There exists some l ∈ [n], and some q ∈ { 1n ,
2
n , · · · ,

n
n},

such that ∀i ≤ l, E[Yi] = q and ∀i > l, E[Yi] = 0. Additionally, we
have lq ≥ k2 and lq(1− q) ≥ k2 − k − 1.

2.1 Learning

We will now use the Structure Theorem and the Cover theorem for testing hy-
potheses to make an algorithm that can learn PBDs. Essentially, our algorithm
will output one member of the cover set Sε. So, this distribution will be close
to our PBD and we can find it using |Sε| samples.

All we need is to estimate the size of the cover.
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• For the sparse case, there are k3 possible values of l and each of the
l important random variables can take k2possible vales. This gives us
k3 · (k2)k

3

possibilities. Additionally, every other variable can be either 0
or 1. This leads to at most n+ 1 more possibilities (denoting the number
of variables that have bias zero). So, the total possible number of possible

distributions is O((n+ 1) · k3 · (k2)k
3

).

• For the heavy case, there are n possible values for q and at most n possible
values for l. This gives us a total of O(n2) distributions.

The size of the cover is simply the sum of these two numbers. So, we find that
log |Sε| = O(log n · k3 · log k). This means that the number of samples required
to learn the distribution is just O(log n · poly(1/ε)).

2.2 Testing

Testing is also easy to do, given the structure theorem. First, we consider
the sparse case. Here, the effective support size is tiny i.e. there are only l
possible values. For the heavy Binomial case, we have a binomial distribution
on l ≤ n elements. Now, we know that almost the entire probability mass of this
Binomial is concentrated on the middle O(

√
n) elements. So, testing against

this distribution will only require O(n1/4) samples.

3 Proving the Structure Theorem

We will sketch an outline of the proof of the Structure Theorem. First let us
define a trivial bias as any bias that is either zero or one i.e. non-trivial biases
actually have some randomness. This will proceed in two steps.

• Step 1 – Eliminate all the non-trivial variables that have expectation in
(0, 1/k) or (1 − 1/k, 1) without changing the L1 distance too much. For-
mally, we will construct {Zi} such that ‖

∑
Xi −

∑
Zi‖1 ≤ O(k), and for

all non-trivial i, 1/k < E[Zi] < 1− 1/k.

• Step 2 – Construct the final variables {Yi} which satisfy the second prop-
erty in the structure theorem, such that ‖

∑
Yi −

∑
Zi‖1 ≤ O(k).

3.1 Eliminating Outliers

In Step 1, we will define a new set of variables {Zi} where E[Zi] = p′i and
for each non-trivial bias, 1/k < p′i < 1 − 1/k. For all the biases where pi ∈
(0, 1/k) ∪ (1− 1/k, 1), we simply set p′i = pi.

Now consider the set L of biases where 0 < pi < 1/k. We want to construct p′i
such that |

∑
L pi−

∑
L pi| < 1/k. This can be dome by setting r values of p′i to
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1/k and the remaining to zero, where r = bk ·
∑
L pic. Similarly, we can set the

p′i values for all the non-trivial biases that are larger than 1− 1/k by rounding
to either one or 1− 1/k.

Now, we need to bound the L1 distance between
∑
Zi and

∑
Xi. Fist, we con-

sider the distance between each of these and the corresponding Poissonizations.∥∥∥∑Xi − Poisson(
∑

pi)
∥∥∥
1
≤ 2

n∑
i=1

p2i ≤ 2 · 1

k
·
n∑
i=1

pi =
2

k

∥∥∥∑Zi − Poisson(
∑

p′i)
∥∥∥
1
≤ 2

n∑
i=1

p′i
2 ≤ 2 · 1

k
·
n∑
i=1

p′i =
2

k

Finally, we bound the distance between Poisson(λ1) and Poisson(λ2), where
λ1 =

∑
pi and λ2 =

∑
p′i.∥∥∥Poisson(

∑
pi)− Poisson(

∑
p′i)
∥∥∥
1
≤ e|λ1−λ2| − e−|λ1−λ2| ≤ e 1

k − e− 1
k ≤ 3

k

So, we can now use the triangle inequality to show that∥∥∥∑Xi −
∑

Zi

∥∥∥
1
≤ 2ε+ 3ε+ 2ε = 7ε

This concludes the first step of our construction.

3.2 Constructing the Cover

For the k-sparse case, we will simply round each of the biases p′i. In the original
proof, the rounding is performed to the nearest multiple of 1

k2 . However, to
simplify our analysis, we will instead round to the nearest multiple of 1

k4 i.e.
qi = bk2p′ic · 1

k2 . So, we have at most k3 variables with non-trivial bias, and
each of the biases is changed by at most 1

k2 meaning |p′i − qi| ≤ 1
k2 . The total

L1 distance is then bounded by k3 · 1
k2 = 1

k .

For the non-sparse case, we will approximate the distribution by a Binomial –
B(m′, q), such that

m′ =
(
∑
p′i + t)2

(
∑
p′i

2 + t)

where t is the number of variables whose bias is exactly 1.

To find the bias q, we find l∗ such that
∑
p′i+t
m′ ∈

[
l∗−1
n , l

∗

n

]
.

Finally, we let q = l∗/n.
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