6.896 Sublinear Time Algorithms February 28, 2017

Lecture 5
Lecturer: Ronitt Rubinfeld Scribe: Jianing Xiong

1 Property testing

It takes linear time to distinguish graphs that are connected and disconnected. However, it is much
quicker to distinguish two graphs if they are close to each other. If there is a graph with property p and
there is another one that is e-close to P, then to distinguish these two may only take the sub-linear time.

All graphs

€ close to P

1.1 Compromise

Can We distinguish the graphs with propoerty P and those that are far away from P?

i.e. G (degree < d) is "e-far” from planar if we need to remove > ed,q-n edges to make it planar.

1.2 Property testing algorithm

if G planar

then output pass with probability >1—-p
if G is 7e—far” from planar

then output fail with probability >1—-7

2 Testing Planarity

All graphs have max degree < d

2.1 Testing H-minor freeness

Definition 1 H is minor of G if you could obtain H from G via either vertex removals, edge removals
or edge contractions.

Definition 2 G is "H-minor-free” if H is not a minor of G.
Definition 3 G is "¢ to H-minor-free” if we can remove < edn edges to make it H-minor-free.
Definition 4 G is has minor closed property p if all the minors of G have property P.

Theorem 5 (Robertson & Seymour) FEvery minor-closed property is expressible as a constant num-
ber of excluded minors.

because the minor closed graph has this unique property: breaking them into pieces will only require
remove very few edges.

Definition 6 G is (k, €)-hyperfinite if one can remove < en edges and remain with components of size
<k.

Definition 7 G is p-hyperfinite if ¥V € > 0, G is (€, p(e))-hyperfinite.

Theorem 8 (Useful Theorem) Given H 3 Cy such that V 0 < € < 1, every H-minor free graph of
deg < d is (2—5, ed)-hyperfinite. (i.e. Remove < edn edges and components of size O(e%))

note:

whenever you have a minor close property, this graph has hyper-finite, they depends on e.

Each of ¢ is still planar, which is still hyperfinite, can even be broke down to smaller planars.

sub-graphs of H-minor free graphs are also H-minor free and hyperfinite but only remove number of
edges in porportion to number of nodes in the subgraphs

2.2 Why is hyperfinite useful?

Partition G into G’
—remove at most €dn edges
— Constant size component remain
—1f no way to do this, G is not a planar
If G’ is close to planar, so is G
— so let G’ by picking random components & seeing if they have the property

3 Partition oracle

3.1 Partition Oracle

Assume we have ”partition oracle” P with parameter k, %, such that Vv € V,
[Pl <k
Plv]connected

If G is H-minor free with prob > 1%

Given partition oracle:

; Fo_ P edn
estimate f = number of edges (u,v) such that Plu]# Plv] to additive error < <g.

if f>%edn, output 7 fail” and halt
else choose S=0(L) nodes randomly

if for any s€S8, P[s] not planar, ”fail” and halt

Accept

If G planar, E|[f] = edT"

: £ d dn __ 3
Sampling bounds f < <+ CF = gend

All partitions planar, then pass
If G is "e-far” from H-minor free,
Case 1

p’s output is such that |e(u,v) € Elp(u) # p(v)| < 4=
sampling bounds fg%—i—%:%end
output fail with prob 21%
Case 2
p’s output satisfies |e(u,v) € Elp(u) # p(v)| < 4=
G’ = G with cross edges removed
if G’ is §—far from having property, third step likely to fail
else G’ is § close to property & G is 5 close to G’
so G is e—close to having property

if G’ is 5—far from planar, need to remove > gdn edges to make planar

3.2 Global partitioning algorithm

let T,
p=9
For i=1...n do
if mp is still in the graph then
if 3(k,0) — isolated neighborhood of m; in remaining graph
then s = this nbhd

else s = {m}

p =pUs

remove s from graph

..,m, be random labelling of nodes, m #m;, m € [n]

For hyperfinite graphs, most nodes have (k, 0)-isolated nbhds
Lemma 9 if G is hyperfinite, most nodes have (k,d)-isolated nbhd

To compute p[v] locally, recursively compute p[w] V w of rank | rank[v] with distance k of v

if 3 w such that veplw] and rk(w) <rk(v), then plv] = plu]
else look for (k,0) isolated nbrhd of v

if find it p[v]

else plv]

3.3 Local simulation of oracle

assign random number € (0,1) to v
when first see it , use rank orders to define =
to compute plv]
recursively compute plw| Yw of rank <v within distance <k of v
if Jw such that v e plw] then plv] = plw]
else look for (k,0)—isolated nbhd of wv
(ignoring any node which is in p[w] for any w with smaller rank)
if find it, pv]= this nbhd
else plv]= {v}

3.4 Query complexity

d* nodes within distance k

247" ysing [NO] analysis & k= p(

&3)
big constant

