
6.842 Randomness and Computation February 25, 2020

Homework 2

Lecturer: Ronitt Rubinfeld Due Date: March 5, 2020

Homework guidelines: You may work with other students, as long as (1) they have not yet
solved the problem, (2) you write down the names of all other students with which you discussed
the problem, and (3) you write up the solution on your own. No points will be deducted, no
matter how many people you talk to, as long as you are honest. If you already knew the answer
to one of the problems (call these ”famous” problems), then let me know that in your solution
writeup – it will not affect your score, but will help me in the future. It’s ok to look up famous
sums and inequalities that help you to solve the problem, but don’t look up an entire solution.

The following problem is NOT to be turned in.

• Consider an algorithm that returns a random satisfying assignment to any given DNF
with n variables and poly(n) clauses. Every satisfying assignment must be returned with
non-zero probability (not necessarily uniform). Given an input DNF formula φ on n
variables, the algorithm must satisfy the following requirements:

– Every satisfying assignment {x1, x2, · · · , xn} ∈ {0, 1}n, must have non-zero proba-
bility of being output (need not be uniform).

– Assignments that do not satisfy φ, have zero probability of being output

Does there exist such an algorithm that uses at most
√
n random bits?

The following problems are to be turned in.

1. Suppose you are given n boxes, each containing between 1 and k balls, where n >> k.
However, you do not know the number of balls in each box. All you can do is pick one of
the boxes, and count the number of balls inside (assume this takes O(1) time). The goal
of this problem is to design an algorithm to choose an uniformly random ball.

(a) The naive algorithm of viewing each box uses O(n) run-time. Show that this task
can be performed with O(k) expected run-time.

(b) What if counting the number of balls in a box that contains d balls, actually takes
O(d) time, instead of O(1)? In this case, what is the best run-time you can achieve?

2. (Pairwise independence) A pairwise independent space on n variables is a subset S ⊆
{−1,+1}n such that for every i 6= j ∈ {1, . . . , n}, if x is uniformly-random element of S
then (xi,xj) is a pair of independent bits each drawn uniformly from {−1,+1}. The size
of the pairwise independent space is |S|.

(a) In class, we stated without proof, a construction which generates n = 2l−1 pairwise
independent bits, from l = log (n+ 1) truly random bits1. In other words, this is a

1Note that we used {0, 1} random bits in class, and considered the parity of all n possible non-empty subsets.
Here, we will use {−1,+1} random bits, and consider the product of the elements in all possible subsets. You
can easily check that this leads to the same outcome when replacing 0 with −1.

1

pairwise independent space of size 2l = n+1. Prove that the bits are indeed pairwise
independent.

Any algorithm that generates n pairwise independent random bits, will sample from a
pairwise independent space S = {x(1),x(2), · · · ,x(s)}, where s = |S|.
Arrange the vectors in S into a matrix S, with rows corresponding to x(i).

(b) Interpret the condition of pairwise independence in terms of the columns of S. Using
this, prove that S must contain at least n vectors (think about the rank of S).

(c) Show that this implies that construction is optimal, in the sense that every pairwise
independent space on n variables, requires at least log n truly random bits.

You can solve this part by assuming the statement of (b).

3. Let {M1,M2, · · · ,Mk} be subsets of [1 · · ·n], that isMi ⊆ [n]2. Given a set S containingN
integers, we randomly assign weights wx ∈R S, to each x ∈ [n]. We also define the weight
of Mi to be the sum of the weights of its elements i.e. w(Mi) =

∑
x∈Mi

wx. The goal of
this problem is to prove that the minimum weight set is likely unique. To clarify, a unique
minimum weight Mi is one, such that, for every other Mj , we have w(Mj) > w(Mi). We
will prove that

P[There is a unique w(Mi) of minimum weight] ≥ 1− n

|S|
.

The astonishing fact is that this holds, even if the collection of sets {M1,M2, · · · ,Mk}
comprises of all 2n subsets of [n]. We begin by defining the quantity α(x) for all x ∈ [n].

α(x) = min
i∈[k],x 6∈Mi

w(Mi)− min
i∈[k],x∈Mi

w(Mi \ {x})

Note that above, we use the set-minus notation Mi \ {x} to denote the set Mi with the
element x removed. In other words, w(Mi \ {x}) = w(Mi)− wx.

(a) Calculate the probability (over the choice of weights) that α(x) is equal to w(x) for
a specific x ∈ [n]. Next, upper bound the probability that this happens for some
x ∈ [n]. Specifically, show that:

P [∃x such that α(x) = w(x)] ≤ n

|S|

(b) Now, we show that it is unlikely to that two distinct Mj and Ml have the same
minimum weight (compared to all other w(Mi) where i ∈ [k]). Apply the result from
part (a) for some suitable x, to obtain the main result:

P[There is a unique w(Mi) of minimum weight] ≥ 1− n

|S|
.

2This notation [n] stands for the set of integers {1, 2, · · · , n}.

2

4. Parallel Perfect Matchings: In class, we used PIT to check whether a bipartite graphG
contains a perfect matching. In this problem, we will think about the problem of actually
finding a perfect matching. Sequentially, the problem of finding a perfect matchings in
bipartite graphs can be solved using flows, but as we mentioned in class, we are interested
in a parallel algorithm. The goal of this problem is to show that a perfect matching can be
computed in parallel, by a polynomial number of processors, in poly(log n) time. For the
purpose of this assignment, you may assume that there is a shared memory, and locations
within this memory can be read and written by any of the processors in O(1) time.

Importantly, you can use the fact that arithmetic operations on n bit numbers, can be
performed in poly(log n) time, using poly(n) processors.

(a) To begin, let us consider a black box algorithm A (we don’t know how the internals
of A work), that checks whether a given graph G contains a perfect matching not,

A(G) =

{
1, if G contains a perfect matching.

0, otherwise,

and runs in time T seqA (G). Use this to construct a sequential algorithm B, that finds
a perfect matching in time O(m · T seqA (G)).

Next, we recap the algorithm from class. Given a bipartite graph G = (L ∪R,E), where
|L| = |R| = n, E ⊆ L × R (all edges go between left and right set), and |E| = m, we
constructed a n× n matrix A with entries:

Au,v =

{
Xu,v, if (u, v) ∈ E
0, otherwise

Subsequently, for each (u, v) ∈ E, we assigned random values to variables Xu,v ← xu,v,
and evaluated the determinant of the resulting matrix:

Det(A) =
∑

σ is a permutation of [n]

sign(σ) ·
∏
u∈L

Au,σ(u)

(b) Interpret the value of the above expression in terms of the perfect matchings of G.
What is the value when there is exactly one perfect matching? What if there are
several? This should be similar to what we did in class, but note that this time, we
are asking about the actual value (as opposed to whether it is just zero or non-zero).

There is no “wrong answer” to this part, but it will help you think about the rest of
the problem.

(c) Assume that the graph G has exactly one perfect matching, and also assume that the
determinant of a n×n matrix, can be be computed in parallel by poly(n) processors,
in poly(log n) time. Combine parts (a) and (b) to obtain a parallel algorithm that
finds this perfect matching in poly(log n) time.

Now, for every edge e = (u, v) ∈ E, we assign a random integer weight wu,v, and define
the weight of a matching to be the sum of the weights on all its edges. As we proved
in the previous Problem 3, even if G contains many perfect matchings (there could be
exponentially many), it probably contains only one of minimum weight.

3

(d) If we assign values 2wu,v to the variables Xu,v, what can you conclude about the
value of the determinant? Specifically, if the weight of the minimum weight perfect
matching is w∗, how does the value of the determinant relate to 2w

∗
?

There is no “wrong answer” to this part, but it will help you think about the rest of
the problem.

(e) Does this property (from the previous part) still hold, if the random weights wu,v
result in more than one minimum weight perfect matching?

(f) How can you detect whether a specific edge e is in the minimum weight perfect
matching or not?

(g) Now, you are ready to put all of the pieces togther, and present a randomized parallel
algorithm for finding a perfect matching in poly(log n) time.

4

