
6.842 Randomness and Computation April 15, 2020

Homework 5

Lecturer: Ronitt Rubinfeld Due Date: April 23, 2020

Homework guidelines: You may work with other students, as long as (1) they have not yet
solved the problem, (2) you write down the names of all other students with which you discussed
the problem, and (3) you write up the solution on your own. No points will be deducted, no
matter how many people you talk to, as long as you are honest. If you already knew the answer
to one of the problems (call these ”famous” problems), then let me know that in your solution
writeup – it will not affect your score, but will help me in the future. It’s ok to look up famous
sums and inequalities that help you to solve the problem, but don’t look up an entire solution.

1. Dictator functions, also called projection functions, are the functions mapping {+1,−1}n
to {+1,−1} of the form f(x) = xi for i in [n].

Consider the following test for whether a function f is a dictator: Given parameter δ,
the test chooses x, y, z ∈ {1,−1}n by first choosing x, y uniformly from {1,−1}n, next
choosing w by setting each bit wi to −1 with probability δ and +1 with probability 1− δ
(independently for each i), and finally setting z to be x◦y◦w, where ◦ denotes the bitwise
multiply operation. Finally, the test accepts if f(x)f(y)f(z) = 1 and rejects otherwise.

(a) Show that the probability that the test accepts is 1
2 + 1

2

∑
s⊆[n](1− 2δ)|S|f̂(S)3.

(b) Show that if f is a dictator function, then f passes with probability at least 1− δ.
(c) Show that if f passes with probability at least 1− ε then there is some S such that

f̂(S) is at least 1− 2ε and such that f is ε-close to χS .

(d) Why isn’t this enough to give a dictator test? (i.e., what nondictators might pass?)
Give a simple fix.

2. Consider the following graph-based linearity test. Let G = (V,E) be a graph on k = |V |
vertices and let f : {±1}n → {±1} be given.

• Sample x1, . . . , xk ∈R {±1}n

• Query f(xi) for all i ∈ [k] and f(xi � xj) for all (i, j) ∈ E where xi � xj denotes the
coordinate-wise product of xi and xj .

• Accept if and only if f(xi)f(xj) = f(xi � xj) for all (i, j) ∈ E.

Note that if f is linear, then this graph-test always accepts.

(a) Prove that: For all S ⊆ E such that S 6= ∅, then

E[Π(i,j)∈Sf(xi)f(xj)f(xixj)] ≤ maxα|f̂(α)|

(b) Conclude that the probability that the above graph-test accepts is at most

1

2|E|
+ max

α
|f̂(α)|

1

3. Distribution Free Learning: The goal of this problem is to present an algorithm that
learns an unknown conjunction f : {0, 1}n → {0, 1}, for example:

f(x) = xi ∧ ¬xj ∧ xk ∧ · · ·

In this problem, the distribution D of x ∈D {0, 1}n is unknown. The goal is to obtain
(with probability at least 1− δ), a conjunction h : {0, 1}n → {0, 1} such that:

Px∼D [f(x) 6= h(x)] < ε (1)

Present an algorithm that takes in m = poly(n, 1/ε, 1/δ) samples, and outputs a conjunc-
tion h in poly(n, 1/ε, 1/δ) time, such that Equation 1 is satisfied with probability at least
1− δ.
Note that in class, we considered a special case of this problem, where D was the uniform
distribution.

4. Occam Learning of Decision Lists: We are given a function f : {0, 1}n → {0, 1}
which is known to be a decision list (a special case of the decision trees we studied in
class): Concretely, f must be constructed from a sequence of decisions, each of which
relies on only one literal (see Figure 1).

Figure 1: A sample decision list function.

(a) Starting with a set of samples S show how to find a consistent decision list h, such
that for all x ∈ S, we have h(x) = f(x). Note that there may be more than one
decision list that is consistent with the data, but proof of Occam’s razor shows that
all consistent decision lists must be close to f . What value of |S| is necessary to
ensure (ε, δ) PAC learning?

(b) Present an efficient (runtime polynomial in n) algorithm to find a decision list h
such that, with probability at least 1− δ:

Px∼D [f(x) 6= h(x)] < ε

Hint: Start with an empty decision list, and gradually add more literals, along with
their consequences (the red output).

2

