April 23, 2020

Homework 6

Lecturer: Ronitt Rubinfeld

Due Date: May 5, 2020

Influence of Variables on Functions

For $x = (x_1, \ldots, x_n) \in \{\pm 1\}^n$, let $x^{\oplus i}$ be x with the *i*-th bit flipped, that is,

$$x^{\oplus i} = (x_1, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_n).$$

The influence of the *i*-th variable on $f : \{\pm 1\}^n \to \{\pm 1\}$ is

$$\operatorname{Inf}_{i}(f) = \Pr\left[f(x) \neq f\left(x^{\oplus i}\right)\right].$$

The total influence of f is

$$\operatorname{Inf}(f) = \sum_{i=1}^{n} \operatorname{Inf}_{i}(f).$$

This definition will be useful for the last two problems.

Turn in solutions to **TWO out of the following THREE** problems:

- 1. Show that if there is a PAC learning algorithm for a class C with sample complexity $\operatorname{poly}(\log n, 1/\epsilon, 1/\delta)$, then there is a PAC learning algorithm for C with sample complexity dependence on δ (the confidence parameter) that is only $\log 1/\delta$ i.e., the "new" PAC algorithm should have sample complexity $\operatorname{poly}(\log n, 1/\epsilon, \log 1/\delta)$. (It is ok to assume that the learning algorithm is over the uniform distribution on inputs, although the claim is true in general.)
- 2. A function $f : \{\pm 1\}^n \to \{\pm 1\}$ is monotone if, for all $x, y \in \{\pm 1\}^n$ such that $x \preceq y$ (meaning $x_i \leq y_i \ \forall i \in [n]$), we have $f(x) \leq f(y)$.
 - (a) Show that for any monotone function $f : \{\pm 1\}^n \to \{\pm 1\}$, the influence of the i^{th} variable is equal to the value of the Fourier coefficient of $\{i\}$, that is $Inf_i(f) = \hat{f}(\{i\})$.
 - (b) Show that the majority function $f(x) = \operatorname{sign}(\sum_i x_i)$ maximizes the total influence among *n*-variable monotone functions mapping $\{\pm 1\}^n$ to $\{\pm 1\}$, for *n* odd.
- 3. Consider the sample complexity required to learn the class of monotone functions mapping $\{+1, -1\}^n$ to $\{+1, -1\}$ over the uniform distribution (without queries).
 - (a) Show that

$$\sum_{|S| \ge Inf(f)/\epsilon} \hat{f}(S)^2 \le \epsilon$$

(b) Show that the class of monotone functions can be learned to accuracy ϵ with $n^{\Theta(\sqrt{n}/\epsilon)} = 2^{\tilde{O}(\sqrt{n}/\epsilon)}$ samples under the uniform distribution (where the confidence parameter δ is some small constant).

Hint: Use the result from the previous problem.