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1 The Probabalistic Method

Some mathematical objects either exist entirely or not at all; ie) they have binary probabilities of 0 or
1. In such cases, it may be first useful to show that they probably exists with a Pr > 0. Since we know
the probability is either 0 or 1, and by proving it is greater than 0, then it must be 1. Therefore, the
existence has been proven.

1.1 Example: 2-colored Sets

First let us define X to be a set of elements. From this X, we are given an input of m sets such that
S1 . . . Sm ⊆ X. Each set Si contains l elements from X.

Question: “Can we 2-color X such that each Si has elements of both colors – is not monochromatic?”

Figure 1: The instance on the left can be 2-colored, but the instance on the right cannot.

Theorem 1 If m < 2l−1, then there will exist a valid 2-coloring of X.

Proof Intuition: Show that there are so many ways to 2-color X, so many so, that even by randomly
coloring nodes, there will be a slight, albeit extremely unlikely, chance that this coloring produces a valid
2-coloring assignment.

Proof
Randomly color the elements of X red/blue, independently and identically distributed with probabil-

ity 1
2 . In order to prove that such construction will yield a valid 2-coloring with non-zero probability, the

probabilities on a set-by-set basis must be analyzed. For each set i, the probability it is monochromatic
is simply the probability that all l elements were either colored all red 1

2l
or all blue 1

2l
. These two events

are disjoint and therefore their probabilities are simply summed.

Pr[Si is monochromatic] =
1

2l
+

1

2l
=

1

2l−1

Now, a union bound may be used over all i sets to get an upper bound on the probability that there
exists a monochromatic set.

Pr[∃i such that Si is monochromatic] ≤
∑
i

Pr[Si is monochromatic] ≤ m

2l−1
< 1
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Since there are m sets, their probabilities of being monochromatic ( 1
2l−1 ) get summed m times. Then,

the leap in m
2l−1 < 1 is achieved based on the theorem’s initial assumption that m < 2l−1. Taking the

complement of Pr[∃i such that Si is monochromatic] will yield the Pr[all Si are 2-colored].

Pr[all Si are 2-colored] = 1− Pr[∃i such that Si is monochromatic] > 0

This non-zero probability implies that there exists a 2-coloring of X that gives all m valid non-
monochromatic sets Si.

1.2 Example: Large Sum-Free Sets

The big picture of this example is to prove that in any set of n numbers, there exists a sub-set of size at
least n

3 in which no two numbers can be taken and sum to a number that also is in the set.
We introduce some definitions required for the theorem.

Definition 2 Zp ≡ {0 . . . p− 1} A set of all integer numbers less than p

Definition 3 Z∗p ≡ {1 . . . p− 1} A set of all integer numbers less than p that are also co-prime with p.
Since p is a prime number itself, this set is virtually equivalent to Zp without the 0. (As a notational
remark, the star denotes the set of numbers that are co-prime with p.)

Fact 4 If p is prime, then multiplicative inverses in modular arithmetic modulo p exist ∀x ∈ Z∗p. In
other words: ∀x, ∃x−1 such that x · x−1 ≡ 1 (mod p)

Definition 5 A is a set of some positive integers. A is “sum-free” if 6 ∃a1, a2, a3 ∈ A such that a1+a2 =
a3. In plain English, a set is “sum-free” if no two elements in the set sum to another element also in
the set.

Theorem 6 (Erdos ’65) ∀B = {b1 . . . bn}∃ sum-free A ⊆ B such that |A| > n
3

Simple Example: B = {1 . . . n} then a possibility is A = {
⌈
n
2

⌉
. . . n} This works because any two

elements taken in the set A will sum to a value greater than n.

Theorem Proof Intuition:

1. First we prove that there is a continuous region C ⊆ Z∗p whose elements pose a sum-free set.

2. Then we show that there is a way to construct A from B in such a way that each value in A can
be randomly and uniquely mapped to this region C. And using this property, we consequently can
prove the sum-free nature of A as well.

3. Lastly, we prove that, in expectation, the size of A will be at least 1
3 the size of B. If the expectation

is at least |B|/3, then there must be some choice of mapping that achieves |B|/3, and we can use
that such one to define A.

Proof For theorem intuition point 1
Without loss of generality, let bn be the maximal element in B.
Pick a prime p such that p > 2bn and p ≡ 2 (mod 3). In other words, p = 3k + 2 for some k.
Let a set C = {k + 1 . . . 2k + 1} represent the “middle third” elements.

1. C ⊆ Z∗p ⊂ Zp

2. C is sum-free, even in Zp
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3. |C|
p−1 = k+1

3k+1 >
1
3

The formulation in (1) falls through by definition. That is the range of C is from k + 1 to 2k + 1
which are well within Z∗p as it was defined.

To prove (2), summing the two smallest elements in C will still bring the result out of the range of
C. Additionally summing the two largest elements in hopes of a wrap around will get to just before the
beginning of C.

More formally:

(k + 1) + (k + 1) = 2k + 2 > 2k + 1

(2k + 1) + (2k + 1) = 4k + 2 (mod p)

= 4k + 2 (mod 3k + 2)

≡ k (mod 3k + 2)

The result of this derivation can be equivalently written as:

∀x, y ∈ C
x+ y ≥ 2k + 1 (mod 3k + 1)

OR

x+ y ≤ k (mod 3k + 1)

Equation (3) relates the size of C with the size of possibilities of numbers, that is p− 1, to show that
|C| is at least a third of the entire set of numbers.

The set C is simply a theoretical sum-free construction of proven minimal size. We now need to
construct a sum-free set A which contains the actual values bi using the help of C. This is done by
mapping numbers from B to locations in C using a random linear map.

Claim 7 Ax is sum-free
Constructing A:

• Pick x ∈R {1 . . . p− 1} ≡ Z∗p.

• Use x to define a random linear map fx(a) = x · a (mod p).

• Then Ax ← {bi such that fx(bi) ∈ C}. In other words “the elements of B mapped to C by x”

Proof For theorem intuition point 2
If ∃bi, bj , bk ∈ Ax such that bi + bj = bk then xbi + xbj = xbk (mod p).
All of xbi, xbj , xbk are in C by construction which is sum-free. Therefore so are bi, bj , bk all sum-free

as well.

Claim 8 ∃x such that |Ax| > n
3

Proof Intuition: We calculate the probability to map a value into C by utilizing how multiplicative
inverses are unique in a prime number space and knowing the size of |C|. Then an indicator random
variable can represent whether a value was mapped into C, and over all of the n elements, the expec-
tation is that at least n

3 values will map into the sum-free C. Furthermore, we can conclude that there
must be some combination of elements that achieve the expectation.

Proof For theorem intuition point 3
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Fact 9 ∀y ∈ Z∗p ∃ unique x ∈ Z∗p such that y ≡ xb (mod p)

⇒ ∀y ∈ Z∗p, ∀iPr[y mapped via fx to bi] = 1
p−1 uses x ≡ yb−1 (mod p)

This statement arises from the notion that only one x exists which can map a given y to bi.
From this follows that ∀i, |C| choices of x map bi into C

Let us define an indicator random variable σ
(x)
i which describes whether x mapped bi into C, ie

(xbi ∈ C).

More formally: σ
(x)
i =

{
1 if x maps bi into C
0 otherwise

The expected value of this indicator value will show us with what frequency bi gets mapped into C.

Ex(σ
(x)
i ) = Prx[σ

(x)
i = 1] = |C|

p−1 >
1
3 .

The numerator in |C|
p−1 comes from the number of choices for x to map bi into C and the denominator

are the total number of choices of x possible. So this value is proven above to be greater than 1
3 .

Now the average value of |Ax| will be the sum of expectations for all n elements that land in C.

|Ax| = Ex[|Ax|] = Ex[
∑

i σ
(x)
i ] =

∑
iE[σ

(x)
i ] >

∑
i
1
3 = n

3
And from this it follows that if the average size of |Ax| > n

3 , there must exist a specific x that is able
to map A to C such that |Ax| > n

3 .

Finally to prove the theorem that ∀B = {b1 . . . bn} ∃ sum-free A ⊆ B such that |A| > n
3

Proof

1. We proved that C ⊆ Z∗p and C is sum-free.

2. We proved that if elements in A are mapped into C, then those elements of A also form a sum-free
constituent.

3. We proved that there will always exist a selection of A for which n
3 can be mapped to C.

Therefore, there always exists A ⊆ B of size at least |A| ≥ n
3 which can be mapped to C. And that

if they are mapped to C, those elements are all mutually sum-free as well. This concludes the theorem’s
proof!
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