Lecture 1

Lecturer: Ronitt Rubinfeld
Scribe: Damian Barabonkov

1 The Probabalistic Method

Some mathematical objects either exist entirely or not at all; ie) they have binary probabilities of 0 or 1. In such cases, it may be first useful to show that they probably exists with a $\operatorname{Pr}>0$. Since we know the probability is either 0 or 1 , and by proving it is greater than 0 , then it must be 1 . Therefore, the existence has been proven.

1.1 Example: 2-colored Sets

First let us define X to be a set of elements. From this X, we are given an input of m sets such that $S_{1} \ldots S_{m} \subseteq X$. Each set S_{i} contains l elements from X.

Question: "Can we 2-color X such that each S_{i} has elements of both colors - is not monochromatic?"

Figure 1: The instance on the left can be 2-colored, but the instance on the right cannot.

Theorem 1 If $m<2^{l-1}$, then there will exist a valid 2-coloring of X.
Proof Intuition: Show that there are so many ways to 2 -color X, so many so, that even by randomly coloring nodes, there will be a slight, albeit extremely unlikely, chance that this coloring produces a valid 2-coloring assignment.

Proof

Randomly color the elements of X red/blue, independently and identically distributed with probability $\frac{1}{2}$. In order to prove that such construction will yield a valid 2-coloring with non-zero probability, the probabilities on a set-by-set basis must be analyzed. For each set i, the probability it is monochromatic is simply the probability that all l elements were either colored all red $\frac{1}{2^{l}}$ or all blue $\frac{1}{2^{l}}$. These two events are disjoint and therefore their probabilities are simply summed.

$$
\operatorname{Pr}\left[S_{i} \text { is monochromatic }\right]=\frac{1}{2^{l}}+\frac{1}{2^{l}}=\frac{1}{2^{l-1}}
$$

Now, a union bound may be used over all i sets to get an upper bound on the probability that there exists a monochromatic set.

$$
\operatorname{Pr}\left[\exists i \text { such that } S_{i} \text { is monochromatic }\right] \leq \sum_{i} \operatorname{Pr}\left[S_{i} \text { is monochromatic }\right] \leq \frac{m}{2^{l-1}}<1
$$

Since there are m sets, their probabilities of being monochromatic ($\frac{1}{2^{l-1}}$) get summed m times. Then, the leap in $\frac{m}{2^{l-1}}<1$ is achieved based on the theorem's initial assumption that $m<2^{l-1}$. Taking the complement of $\operatorname{Pr}\left[\exists i\right.$ such that S_{i} is monochromatic $]$ will yield the $\operatorname{Pr}\left[\right.$ all S_{i} are 2-colored].

$$
\operatorname{Pr}\left[\text { all } S_{i} \text { are } 2 \text {-colored }\right]=1-\operatorname{Pr}\left[\exists i \text { such that } S_{i} \text { is monochromatic }\right]>0
$$

This non-zero probability implies that there exists a 2-coloring of X that gives all m valid nonmonochromatic sets S_{i}.

1.2 Example: Large Sum-Free Sets

The big picture of this example is to prove that in any set of n numbers, there exists a sub-set of size at least $\frac{n}{3}$ in which no two numbers can be taken and sum to a number that also is in the set.

We introduce some definitions required for the theorem.
Definition $2 \mathbb{Z}_{p} \equiv\{0 \ldots p-1\}$ A set of all integer numbers less than p
Definition $3 \mathbb{Z}_{p}^{*} \equiv\{1 \ldots p-1\}$ A set of all integer numbers less than p that are also co-prime with p. Since p is a prime number itself, this set is virtually equivalent to \mathbb{Z}_{p} without the 0 . (As a notational remark, the star denotes the set of numbers that are co-prime with p.)

Fact 4 If p is prime, then multiplicative inverses in modular arithmetic modulo p exist $\forall x \in \mathbb{Z}_{p}^{*}$. In other words: $\forall x, \exists x^{-1}$ such that $x \cdot x^{-1} \equiv 1(\bmod p)$

Definition $5 A$ is a set of some positive integers. A is "sum-free" if $\nexists a_{1}, a_{2}, a_{3} \in A$ such that $a_{1}+a_{2}=$ a_{3}. In plain English, a set is "sum-free" if no two elements in the set sum to another element also in the set.

Theorem 6 (Erdos '65) $\forall B=\left\{b_{1} \ldots b_{n}\right\} \exists$ sum-free $A \subseteq B$ such that $|A|>\frac{n}{3}$
Simple Example: $B=\{1 \ldots n\}$ then a possibility is $A=\left\{\left\lceil\frac{n}{2}\right\rceil \ldots n\right\}$ This works because any two elements taken in the set A will sum to a value greater than n.

Theorem Proof Intuition:

1. First we prove that there is a continuous region $C \subseteq \mathbb{Z}_{p}^{*}$ whose elements pose a sum-free set.
2. Then we show that there is a way to construct A from B in such a way that each value in A can be randomly and uniquely mapped to this region C. And using this property, we consequently can prove the sum-free nature of A as well.
3. Lastly, we prove that, in expectation, the size of A will be at least $\frac{1}{3}$ the size of B. If the expectation is at least $|B| / 3$, then there must be some choice of mapping that achieves $|B| / 3$, and we can use that such one to define A.

Proof For theorem intuition point 1
Without loss of generality, let b_{n} be the maximal element in B.
Pick a prime p such that $p>2 b_{n}$ and $p \equiv 2(\bmod 3)$. In other words, $p=3 k+2$ for some k.
Let a set $C=\{k+1 \ldots 2 k+1\}$ represent the "middle third" elements.

1. $C \subseteq \mathbb{Z}_{p}^{*} \subset \mathbb{Z}_{p}$
2. C is sum-free, even in \mathbb{Z}_{p}
3. $\frac{|C|}{p-1}=\frac{k+1}{3 k+1}>\frac{1}{3}$

The formulation in (1) falls through by definition. That is the range of C is from $k+1$ to $2 k+1$ which are well within \mathbb{Z}_{p}^{*} as it was defined.

To prove (2), summing the two smallest elements in C will still bring the result out of the range of C. Additionally summing the two largest elements in hopes of a wrap around will get to just before the beginning of C.

More formally:

$$
\begin{aligned}
(k+1)+(k+1) & =2 k+2>2 k+1 \\
(2 k+1)+(2 k+1) & =4 k+2 \quad(\bmod p) \\
& =4 k+2 \quad(\bmod 3 k+2) \\
& \equiv k \quad(\bmod 3 k+2)
\end{aligned}
$$

The result of this derivation can be equivalently written as:

$$
\begin{aligned}
& \forall x, y \in C \\
& x+y \geq 2 k+1 \quad(\bmod 3 k+1) \\
& \quad O R \\
& x+y \leq k \quad(\bmod 3 k+1)
\end{aligned}
$$

Equation (3) relates the size of C with the size of possibilities of numbers, that is $p-1$, to show that $|C|$ is at least a third of the entire set of numbers.

The set C is simply a theoretical sum-free construction of proven minimal size. We now need to construct a sum-free set A which contains the actual values b_{i} using the help of C. This is done by mapping numbers from B to locations in C using a random linear map.

Claim $7 A_{x}$ is sum-free
Constructing A :

- Pick $x \in_{R}\{1 \ldots p-1\} \equiv \mathbb{Z}_{p}^{*}$.
- Use x to define a random linear map $f_{x}(a)=x \cdot a(\bmod p)$.
- Then $A_{x} \leftarrow\left\{b_{i}\right.$ such that $\left.f_{x}\left(b_{i}\right) \in C\right\}$. In other words "the elements of B mapped to C by x "

Proof For theorem intuition point 2
If $\exists b_{i}, b_{j}, b_{k} \in A_{x}$ such that $b_{i}+b_{j}=b_{k}$ then $x b_{i}+x b_{j}=x b_{k}(\bmod p)$.
All of $x b_{i}, x b_{j}, x b_{k}$ are in C by construction which is sum-free. Therefore so are b_{i}, b_{j}, b_{k} all sum-free as well.

Claim $8 \exists x$ such that $\left|A_{x}\right|>\frac{n}{3}$
Proof Intuition: We calculate the probability to map a value into C by utilizing how multiplicative inverses are unique in a prime number space and knowing the size of $|C|$. Then an indicator random variable can represent whether a value was mapped into C, and over all of the n elements, the expectation is that at least $\frac{n}{3}$ values will map into the sum-free C. Furthermore, we can conclude that there must be some combination of elements that achieve the expectation.

Proof For theorem intuition point 3

Fact $9 \forall y \in \mathbb{Z}_{p}^{*} \exists$ unique $x \in \mathbb{Z}_{p}^{*}$ such that $y \equiv x b(\bmod p)$

$$
\Rightarrow \forall y \in \mathbb{Z}_{p}^{*}, \forall i \operatorname{Pr}\left[y \text { mapped via } f_{x} \text { to } b_{i}\right]=\frac{1}{p-1} \text { uses } x \equiv y b^{-1}(\bmod p)
$$

This statement arises from the notion that only one x exists which can map a given y to b_{i}.
From this follows that $\forall i,|C|$ choices of x map b_{i} into C
Let us define an indicator random variable $\sigma_{i}^{(x)}$ which describes whether x mapped b_{i} into C, ie $\left(x b_{i} \in C\right)$.

More formally: $\sigma_{i}^{(x)}=\left\{\begin{array}{l}1 \text { if } x \text { maps } b_{i} \text { into } C \\ 0 \text { otherwise }\end{array}\right.$
The expected value of this indicator value will show us with what frequency b_{i} gets mapped into C.
$E_{x}\left(\sigma_{i}^{(x)}\right)=\operatorname{Pr}_{x}\left[\sigma_{i}^{(x)}=1\right]=\frac{|C|}{p-1}>\frac{1}{3}$.
The numerator in $\frac{|C|}{p-1}$ comes from the number of choices for x to map b_{i} into C and the denominator are the total number of choices of x possible. So this value is proven above to be greater than $\frac{1}{3}$.

Now the average value of $\left|A_{x}\right|$ will be the sum of expectations for all n elements that land in C.
$\left|A_{x}\right|=E_{x}\left[\left|A_{x}\right|\right]=E_{x}\left[\sum_{i} \sigma_{i}^{(x)}\right]=\sum_{i} E\left[\sigma_{i}^{(x)}\right]>\sum_{i} \frac{1}{3}=\frac{n}{3}$
And from this it follows that if the average size of $\left|A_{x}\right|>\frac{n}{3}$, there must exist a specific x that is able to map A to C such that $\left|A_{x}\right|>\frac{n}{3}$.

Finally to prove the theorem that $\forall B=\left\{b_{1} \ldots b_{n}\right\} \exists$ sum-free $A \subseteq B$ such that $|A|>\frac{n}{3}$
Proof

1. We proved that $C \subseteq \mathbb{Z}_{p}^{*}$ and C is sum-free.
2. We proved that if elements in A are mapped into C, then those elements of A also form a sum-free constituent.
3. We proved that there will always exist a selection of A for which $\frac{n}{3}$ can be mapped to C.

Therefore, there always exists $A \subseteq B$ of size at least $|A| \geq \frac{n}{3}$ which can be mapped to C. And that if they are mapped to C, those elements are all mutually sum-free as well. This concludes the theorem's proof!

