Reducing Randomness Via Random Walks on special graphs
Reducing Randomness

For decision problem L,

Let A be algorithm st. 1) $\forall x \in L \quad \Pr [A(x) = 1] = 0.99$

2) $\forall x \notin L \quad \Pr [A(x) = 0] = 1$

To get error $< 2^{-k}$:

Method:

1) run k times output "yes" if ever see "yes"

2) use p.i. random bits

3) today: use random walk on graph to choose random bits

random bits used

$O(kr)$

$O(k+r)$

$r + O(k)$

Plan:

- associate all (random) strings in $\{0,1\}^n$ with nodes of a graph G

- problem of picking a random string is now equivalent to problem of picking a random node

picking several random strings \Rightarrow picking several nodes

picking several strings, one of which is "good" \Rightarrow picking several nodes, one of which is "good"

easier?
The graph \(G \):

- Constant degree \(d \)-regular, connected, nonbipartite

- Transition matrix \(P \) for r.w. on \(G \) has \(|\lambda_2| \leq \frac{1}{10} \)

- Stationary distribution \(\pi \) uniform since \(d \)-reg

- \# nodes = \(2^r \) \(\sim \) \(r \) random bits

The Algorithm:

- Pick random start node \(w \in \mathbb{S}^{Q, \mathbb{R}}^r \)

- Repeat \(\mathbb{K} \) times:

 \(w \leftarrow \) random neighbor of \(w \)

 Run \(A(x) \) with \(w \) as random bits

 If \(A(x) \) outputs "X\&L", then output "X\&L"; halt.

 Else continue.

- Output "X\&L"

Claim: error of new algorithm \(\leq \left(\frac{1}{5}\right)^k \) for X\&L

(0-error for X\&L)
The idea:

very unlikely to get good after 2 steps

pick a start location
that is bad after k steps.
Behavior:

bad case - walk only on "bad" random strings
+ never get out to "good" random strings

why would this not work on arbitrary \(G \)?

\(\{ \text{e.g. } G = \text{lune} \} \)

if \(x \notin L \):
algorithm never errs (there are no bad strings)

if \(x \in L \):
most random bits say \(x \in L \); \(\geq \frac{99}{100} . 2^r \)

\[|B| \leq \frac{2^r}{100} \]

Want linear algebraic way of describing walks that stay in bad set:

define \(N \) diagonal matrix such that

\[Nw = \begin{cases} 1 & \text{if } w \in B \rightarrow \text{incorrect} \\ 0 & \text{else} \end{cases} \]

\[
N = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & 0 & \cdots \\
\end{pmatrix}
\]
For any probability distribution, \(q^N \) is

\[\|q^N\|_1 = \operatorname{Pr}_{w \sim q} \left[w \text{ is bad} \right] \]

ie. \(q^N \) deletes weight that finds a witness to \(x \in L \)

Can compose:

\[\|q \cdot PN\|_1 = \operatorname{Pr}_{w \sim q} \left[\text{start at } q, \text{ take a step \& land on "bad"} \right] \]

\[\|q \cdot (PN)^k\|_1 = \operatorname{Pr}_{w \sim q} \left[\text{start at } q, \text{ take } k \text{ steps \& each is "bad"} \right] \]

Lemma

\[\forall T \quad \|TPN\|_2 \leq \frac{1}{5} \|T\|_2 \]

First: How do we use the lemma?

If always see bad \(w \)'s, then answer incorrect

\[\operatorname{Pr} \left[\text{incorrect} \right] \leq \|p_0 \cdot (PN)^k\|_2 \]

\[\leq \sqrt{2^k} \|p_0 \cdot (PN)^k\|_2 \]

\[\leq \sqrt{2^k} \cdot \|p_0\|_2 \left(\frac{1}{5} \right)^k \]

\[\leq \sqrt{2^k} \cdot \frac{1}{5^k} \]

\[\leq \left(\frac{1}{5} \right)^k \]

since start at uniform + \(l_2 \) norm of uniform = \(\sqrt{\frac{1}{\sqrt{2^n}}} \)
Proof of lemma. Let \(V_1 - V_{ar} \) be e-vects of \(P_j \), \(j \) be such, \(\| V_i \|_2 = 1 \)

Note: \(V_i = (\frac{1}{\| \omega \|_2}, \ldots, \frac{1}{\| \omega \|_2}) \)

Then \(\Pi = \sum_{i=1}^{2^n} \alpha_i \lambda_i V_i \)

Note:
1) \(\| \Pi \|_2 = \sqrt{\sum_i \alpha^2_i} \) (from before)
2) \(\forall \omega \quad \| w N \|_2 = \sqrt{\sum_{i \in B} \omega_i^2} \leq \sqrt{\sum_{i \in A} \omega_i^2} = \| \omega \|_2 \)

So:
\[
\| \Pi P N \|_2 = \| \sum_{i=1}^{2^n} \alpha_i \lambda_i V_i \Pi N \|_2
\]
\[
= \| \sum_{i=1}^{2^n} \alpha_i \lambda_i \lambda_i V_i N \|_2
\]
\[
\leq \| \alpha \lambda_i V_i N \|_2 + \| \sum_{i=2}^{2^n} \alpha_i \lambda_i V_i N \|_2 \]

(A) Cauchy-Schwarz

(B) bunding:
\[
\alpha \lambda_i V_i N \|_2 = \| \alpha \lambda_i V_i N \|_2
\]
since \(\lambda_i = 1 \)
\[
= \alpha \lambda_i \sqrt{\sum_{i \in B} (\lambda_i \omega_i)^2}
\]
since \(V_i = (\frac{1}{\| \omega \|_2}, \ldots, \frac{1}{\| \omega \|_2}) \)
\[
= \alpha \lambda_i \sqrt{\sum_{i=2}^{2^n} (\lambda_i \omega_i)^2}
\]
since \(\frac{\| B \|}{\| \omega \|_2^2} \leq \frac{1}{100} \)
\[
\leq \| \Pi \Pi N \|_2 = \sqrt{\sum_i \lambda_i^2}
\]
since \(\Pi \Pi N \|_2 = \sqrt{\sum \lambda_i^2} \)
Bonding

\[\| \sum_{i=2}^{2^n} \alpha_i \lambda_i v_i N \|_2 \leq \| \sum_{i=2}^{2^n} \alpha_i \lambda_i v_i v_i^T \|_2 \]

= \sqrt{\sum (\alpha_i \lambda_i)^2}

\leq \sqrt{\sum \alpha_i^2 (\lambda_i)^2}

\leq \frac{1}{10} \| \Pi \Pi \|_2

\lambda_i \leq \frac{1}{10}

So:

\[\| \Pi P N \|_2 \leq \| \Pi \Pi \|_2 \frac{1}{5} \]