Lecture 2

The Lovász Local Lemma

Another way to argue that "nothing bad happens"

If $A_1 \ldots A_n$ are "bad" events

how do we know if there is positive probability that none occur? (or is prob that any occurs <1?)

usual way: Union bound

\[\Pr \left[\bigcup A_i \right] \leq \sum \Pr[A_i] \]

no assumptions on A_i's w.r.t. independence

then need $p < \frac{1}{n}$ to get anything interesting (i.e. sum <1)

if A_i's independent + "nontrivial": \iff "nontrivial" $\iff \Pr(A_i) > 1$

\[\Pr \left[\bigcup A_i \right] \leq 1 - \Pr \left[\bigcap A_i \right] \]

\[= 1 - \prod \Pr (A_i) \]

\[> 0 \]

\[\leq 1 \]

always!!

What if A_i's have "some" independence?

def A "independent" of $B_1 \ldots B_k$ if $\forall J \subseteq [k]$ $J \neq \emptyset$

\[\Pr \left[A \land \bigcap_{j \in J} B_j \right] = \Pr[A] \cdot \Pr \left[\bigcap_{j \in J} B_j \right] \]
Definition: \(A_1 \ldots A_n \) events

\(D = (V, E) \) with \(V = \llbracket n \rrbracket \) is a "dependency digraph of \(A_1 \ldots A_n \)"

if each \(A_i \) independent of all \(A_j \) that don't neighbor it in \(D \) (i.e., all \(A_j \) s.t. \((ij) \notin E\))

Lovász Local Lemma (Symmetric Version):

\(A_1 \ldots A_n \) events s.t. \(\Pr(A_i) \leq p \) \(\forall i \)

with dependency digraph \(D \) s.t. \(D \) is of degree \(\leq d \).

If \(e_{D}(d+1) \leq 1 \) then

\[\Pr[\bigwedge_{i=1}^{n} \overline{A_i}] > 0 \]

Application:

Then, \(S_1 \ldots S_m \subseteq X \), \(|S_i| = l \), each \(S_i \) intersects at most \(d \) other \(S_j \)'s

if \(e_{D}(d+1) \leq 2^{l-1} \)

then can 2-color \(X \) s.t. each \(S_i \) not mono-chromatic

i.e. \(H \) is a hypergraph with \(m \) edges, each containing \(l \) nodes + each intersecting \(\leq d \) other edges.
Proof:

Color each elt of X red/blue with prob $\frac{1}{2}$ iid.

A_i: event that S_i monochromatic

$p = \Pr[L \cap A_i] = 2^{-l(l-1)}$

A_i ind of all A_j st. $S_i \cap S_j = \emptyset$

depends on $\leq d$ other A_j

Since $e^{p(d+1)} = e^{\frac{1}{2d-1}(d+1)} \leq 1$

$\text{LLL } \Rightarrow \exists$ 2-coloring

Comparison:

- $\# $ edges $= m$
- Size of edge $= l$
- $m < 2^{l-1}$

- $\# $ edges $= m$
- Size of edge $\geq l$
- Each edge intersects $\leq d$ others
- $\sum d+1 \leq \frac{2^{l-1}}{e}$
- No dependence on m

A second application:

Given CNF formula s.t. l vars in each clause

Each var in $\leq k$ clauses.

If $\frac{e^{l(k+1)}}{2^{l-1}} \leq 1$ there is a satisfying assignment
How do you find a solution?

Partial history:

Lovász 1975 non-constructive
(no fast algorithm to find soln)

Beck 1991 randomized algorithm
but for more restrictive conditions

... on parameters

Moser 2009 negligible restrictions for SAT

"""

Moser-Tardos

Then: given $S_1, \ldots, S_m \subseteq \mathbb{X}$

- each S_i intersects $\leq d$ other S_j's
- if $e(d+1) \cdot c \leq 2^{d-1}$
- then can find 2-coloring of \mathbb{X} s.t.
 each S_i not monochromatic
 in time poly in m, d, \mathbb{X}

Moser-Tardos Algorithm:

1. 2-color all els of \mathbb{X} randomly
2. While there is a monochromatic set:
 - pick arbitrary monochromatic S_i
 - randomly reassign colors to elements of S_i
Special Case & Slower algorithm: (based on Beck &alon)

Stronger Assumption:

Let $D = d(d-1)^3$

\[l = c_1 + c_2 + l_3 \]

16 $D(1+d) \leq 2^d$ \hspace{1cm} (1)

16 $D(1+d) \leq 2^{d/2}$ \hspace{1cm} (2)

$2c(1+d) \leq 2^{l_3}$

For today, assume l is constant.

Algorithm: Given $S_1, \ldots, S_m \leq X$

First Pass:

For each $j \in X$

if j is "saved" do nothing

else pick color $c \in \{\text{red, blue}\}$ via coin flip

Consider all S_i containing j

if S_i has l_1 pts all same color

and ≤ 4 pts in other colors

then S_i becomes dangerous

and all uncolored pts become "frozen"

(by now, all pts in X are $\in \{\text{red, blue, frozen}\}$)

If S_i not yet 2-colored then S_i "survives"

Second Pass:

Find coloring of surviving S_i via brute force
Big Questions:
(1) Does it work?
(2) Runtime?

Analysis:
Consider a single \(S_i \):
\[
\Pr[\text{\(S_i \) survives}] \geq \Pr[\text{\(S_i \) becomes dangerous}]
\]
\[
= \frac{2}{2^L} = 2^{-L},
\]

When is survival of \(S_i + S_j \) independent?
not \(\iff S_i \cap S_j \neq \emptyset \)

(1) \(S_i \cap S_j \neq \emptyset \)

(2) \(S_i \cap S_k \neq \emptyset \) and \(S_k \cap S_j \neq \emptyset \)

(3) \(\exists k, l \) s.t.
\(S_i \cap S_k \neq \emptyset \)
\(S_k \cap S_l \neq \emptyset \)
\(S_i \cap S_j \neq \emptyset \)

\(S_k \) freezes pts in \(S_i + S_j \Rightarrow S_i \) not 2-colored
Useful Graph G'

\[G \leftarrow \text{nodes } V \subseteq [m], \quad (\text{node } i \sim S_i) \]
\[\text{edges } (i, j) \in E \iff S_i \cap S_j \neq \emptyset \]

Note: S_i only depends on other S_j within distance ≤ 3

Observe: solution exists via LLL by condition 1 after 1st pass, solution for survivors via condition 2

Claim: (with high prob)
all surviving nodes in G form components of size $O(\log m)$

Correct: if c constant:
and pass needs only $O(2^c \cdot \log m) = O(m^{2c})$

What if c not constant?
re-recur on components

Proof of Claim:

What is prob that component C survives?

if C survives, consider

the biggest $T \subseteq C$ st.

(i) all nodes in T are
\[\text{dist} \geq 4 \text{ in } G \]

(ii) if connected nodes in T of $\text{dist} = 4$ then T connected
picking T greedily $\Rightarrow \exists T$ of size $\leq \frac{|C|}{d^3}$

if C survives, $T \subseteq C$ also survives

$\Rightarrow \Pr [T \text{ survives}] \geq \Pr [C \text{ survives}]$

What is $\Pr [T \text{ survives}]$?

$\forall S_i \in T$, S_i survives if

1. dangerous
2. next to dangerous S_i

which froze its elements

Note: if $S_i \neq S_j$
then $S_i \cap S_j = \emptyset$ since S_i and S_j are dist 4

For each $S_i \in T$
pick S_i' possible dangerous from S_i i.e. $\exists \ell \in \mathbb{N}$ ways to make this choice

all S_i' are disjoint

$\Pr [\text{all } k \text{ } S_i' \text{ become dangerous}] \leq 2^{(1-\ell) \cdot k}$

$\Pr [\text{all } S_i \text{ survive}] \leq (d+1)^k \cdot 2^{(1-\ell) \cdot k}$
We need to show no such large tree survives.

Here is the win:

If T is an arbitrary subtree of size u, we have (m) choices of T, need to show all don't survive (lots of term in union bound)

Here T is an arbitrary subtree of size u in a graph $G(u)$ of degree $\leq 8D(d+1)^2$.

Expected # Trees of size u that survive

$$\leq m \cdot (4D)^u \cdot (d+1)^u \cdot \frac{1}{2} \cdot \sum \frac{1}{2^u} \leq m \frac{8D(d+1)^2}{2^{1/2}}$$

$$\Rightarrow \text{if } u \geq \Omega(\log m) \text{ this term is } o(1)$$

If $o(1)$ u-trees survive in expectation, then Markov's \Rightarrow

$$\Pr[\text{more than } k \cdot o(1) \text{ trees survive }] < \frac{1}{k}$$

Pick K so that this is ≤ 1

So $\Pr[\text{any } u \text{-tree survives }] < 1/k$ (note: if no u-tree survives \Rightarrow no u-tree survives)