
6.842 Randomness and Computation February 11, 2020

Lecture 3
Lecturer: Amartya Shankha Biswas Scribe: Lillian Zhang

1 Introduction

Today we’ll first present a randomized algorithm for Polynomial Identity Testing with two applications:
(1) checking the equality of two strings and (2) checking if a perfect bipartite matching exists. Next, we
will present an algorithm to uniformly generate satisfying assignments to a DNF formula, which will be
used next class in approximately counting of the number of satisfying assignments to a DNF formula.

2 Polynomial Identity Testing (PIT)

Definition 1 Polynomial Identity Testing (PIT) is the following problem: Given two polynomials p and
q in n variables, we want to determine if they are the same, i.e. is p(x1, x2, . . . , xn) = q(x1, x2, . . . , xn)
for all x1 . . . xn.

For example, consider

(x1+x2)(x3+x4)40(x25+x6)
?≡(x1−x2)(x3−x4)40(x25+x6)+(x1+2x2)(x3−x4)40(x25+x6)+x1x3x

2
5+x2x6x

40
3 .

We would like to figure out if the polynomial on the left is identically equal to the polynomial on
the right. The problem with opening up the brackets and expanding is that we could possibly get an
exponential (in the degree of the polynomial) number of terms. For instance, if there are n variables
and the degree of d, there could be more that

(
n
d

)
terms!

Consider the following related problem of Polynomial Zero Testing, which we will show is equivalent
to Polynomial Identity Testing.

Definition 2 Polynomial Zero Testing (PZT) is the following problem: Given a polynomial p(x1, . . . , xn),
we want to determine if it’s identically 0, i.e. is p(x1, x2, . . . , xn) = 0 for all x1 . . . xn.

Polynomial Zero Testing is a special case of Polynomial Identity Testing when q is the zero polynomial.
Further, any PIT problem can be re-framed as a PZT problem. To determine if p(x1, x2, . . . , xn) =
q(x1, x2, . . . , xn), we may instead consider if (p− q)(x1, x2, . . . , xn) is identically 0, as p− q ≡ 0 iff p ≡ q.

Thus an algorithm for PZT is an algorithm for PIT, but before presenting the algorithm, let us
clarify some notions.

Assume that the domain is a field such as R or Zp. For example, if the field is Z7, then

(x+ 3)2 ≡ x2 + 6x+ 9 ≡ x2 + 6x+ 2 (mod 7).

The degree of a univariate polynomial is the highest exponent of a term in the polynomial. For
instance, the degree of x10 + x3 + 1 is 10. The total degree of a multivariate polynomial is the max over
all terms of the sum of degrees in the term. This is the notion we’ll tend to use most of the time unless
specified otherwise. The maximum degree of a multivariate polynomial is the maximum over all terms
of the degree of the maximum degree variable in that term. For example, if the polynomial is xy2 + x2,
then the total degree is 3, and the maximum degree is 2.

2.1 Algorithm for Polynomial Zero Testing

Assume a polynomial p in n variables and of degree d is given as a black-box oracle. The oracle takes
as input x̄ = (x1, . . . , xn) and outputs p(x̄).

1

2.1.1 Deterministic Algorithm for the Case when p is Univariate.

Consider a strategy where we plug a value x into the black-box. If p(x) is nonzero, then p is nonzero. If
p(x) is zero, then p is zero or x is a root of p. Since a non-zero polynomial of degree d can have at most
d roots, then the following is a deterministic algorithm for this problem using O(d) evaluations:

Plug in any d+ 1 distinct values to the black-box. If all are 0, then output “≡0”. Else, output “6≡0”.

2.1.2 Randomized Algorithm for the Univariate Case.

We can randomize the above algorithm and use only O(1) evaluations as follows:
Pick an element uniformly at random from a set S ⊆ F of size at least 2d and plug it into the

black-box. If it outputs 0, then output “≡0”. Else, output “6≡0”.
Since at most d/|S| ≤ 1/2 of the fraction of all field elements are zeroes of the polynomial, then if

p 6≡ 0, Pr[algorithm outputs “≡0”] ≤ d/|S| ≤ 1/2. Thus if p ≡ 0, the algorithm outputs “ ≡ 0′′. If
p 6≡ 0, Pr[algorithm outputs “6≡0”] ≥ 1/2.

Technical note: There is a very unlikely but unfortunate case where we pick a field such that p is
identically 0 in the field, but not in Z, such as if the coefficients of p are multiples of a prime n and we
restrict to Z/nZ, the field of integers modulo n. Using multiple fields would alleviate this problem.

This same idea is generalized to give an algorithm that works in the multivariate case.

2.1.3 Randomized Algorithm for the Multivariate Case. (Schwartz Zippel Lemma)

Observe that a multivariate polynomial can have infinitely many roots - for example: p(x, y) = x · y
over a field of infinite size has infinitely many roots. However, the same kind of test that works in the
univariate case works in this case so as long as the field is of large enough size, and a random value is
picked for each xi.
The following is the algorithm that works in the multivariate case (for total degree d, needs |F | ≥ 2d):

1. Pick S ⊆ F arbitrarily such that |S| ≥ 2d.

2. Pick uniformly at random x1, x2, . . . , xn ∈R S.

3. If p(x1, . . . , xn) = 0, output “≡0”; else output “ 6≡0”.

Again, the algorithm needs just O(1) evaluations of p on numbers of size O(log d).This is shown by the
below claim, which can be proved by induction on n, with the univariate case as the base case.

Claim 3 If the polynomial p 6≡ 0, then Pr[p(x1, . . . , xn) = 0] ≤ d
|S| .

The behavior of the algorithm is as follows. If p ≡ 0, the algorithm outputs “≡0”. If p 6≡ 0,
Pr[algorithm outputs “ 6≡0”] ≥ 1/2. This probability can be improved by either repeating the algorithm
multiple times, or picking a bigger field size.

2.2 Applications of PIT

Now, we present some applications of both univariate, and multivariate polynomial identity testing.

2.2.1 Problem Set Transmission

Assume you at MIT have a problem set represented as a string ā = a1a2 . . . an and Ronitt at a very
fancy seminar very far away has a version of your problem set represented as a string b̄ = b1b2 . . . bn.
You want to decide if Ronitt has the right version of your problem set, that is, if ā = b̄.

One way of doing this would be for you to transmit ā to Ronitt. This would take n bits of transmission.

2

Alternatively, you could view ā as the coefficients of a degree n univariate polynomial p =
∑
aix

i

over a field of size at least 2n. Then, pick arbitrarily S ⊆ F such that |S| ≥ 2n, pick x ∈R S, and send
x and ā(x) to Ronitt. She checks if ā(x) = b̄(x). If yes, you conclude that ā = b̄. Else they’re different.

By our previous analysis, the above algorithm indeed works. If ā = b̄ then you will always conclude
that they are equal, and if ā 6= b̄, then with probability at least a half, you would find that out. In the
above randomized algorithm, only O(log n) bits are needed to be transmitted.

2.2.2 Bipartite Matching

We’ll first introduce some preliminaries. A bipartite graph G = (V,E) is one in which the set of vertices
V can be partitioned into two sets S and T such that all the edges in G go between S and T , and there
are no edges with both endpoints lying in the same set. A matching M is a subset of the set of edges
E such that no two edges in M share a vertex. A perfect matching is one that has an edge adjacent to
each vertex.

A natural question that arises in graph theory is that given a graph, decide if it has a perfect matching.
The problem of actually finding a perfect matching in a graph that has one can be solved using network
flows. The result we’ll show here is not as strong, but is a first step in the direction of getting the best
algorithm for finding a bipartite matching. We’ll show how to use Polynomial Zero Testing to give a
randomized algorithm for determining if a given graph has a perfect matching.

Given a graph G = (V,E), the Tutte matrix AG = [aij] of the graph is a matrix whose entries are
variables or zeroes. In particular, aij = xij if (i, j) ∈ E, and aij = 0 otherwise.

Claim 4 A graph G has a perfect matching iff det(AG) 6= 0.

Proof We begin by writing out the expression for the determinant as a sum of products of entries.

det(AG) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσi

Here Sn denotes the set of all permutations of 1 through n. Observe that every permutation represents
a possible matching between the two vertex sets. Also,

∏n
i=1 aiσi 6≡ 0 if and only if all the edges

corresponding the the perfect matching represented by the permutation σ are present in G. Since every
other term has a different combination of variables, the non-zero terms don’t get canceled out. This
completes the proof of the above claim.

Determining if there exists a perfect matching Since the determinant of AG is a multivariable
polynomial of degree n, it can be tested by the Polynomial Zero Testing algorithm to see if it’s identically
zero or not, and hence to determine if the graph G contains a perfect matching. We use Polynomial Zero
Testing because the determinant polynomial may give n! terms, which is too many for us to compute
quickly. However, after randomly assigning the variables xij to values, the determinate can be computed
quickly, in O(nω) time sequentially, for ω ≈ 2.38, and O(log2 n) time in parallel with poly(n) processors.

Finding a perfect matching If a bipartite graph has a perfect matching, we can find one such
matching by repeatedly removing an edge from the graph and checking if there is still a perfect matching
in the graph.

(a) If there are still perfect matchings after the removal of the edge, then we can continue removing
and checking edges.

(b) If there are no longer any perfect matchings, then before the removal every perfect matching uses
that edge, so we add it to the perfect matching we are building and remove its two endpoints from the
graph. Then the new graph again has perfect matchings, so we can continue removing and checking
edges.

3

By the end of this process, we will have built a perfect matching because at every step we are assured
that there is a perfect matching, and each removed edge brings us closer to such a matching because
when graph we are looking for perfect matchings in has no edges, we have built a perfect matching.

Other applications for this idea The above idea was used by Lovász to determine if a perfect
matching exists in a graph. Since then, it has been shown that similar approaches can be extended
to the non-bipartite case as well. For instance, Mucha and Sankowski (FOCS 2004) showed that one
can find a maximum matching in general graphs in time O(nω), which is the time required for matrix
multiplication. Nick Harvey at MIT (FOCS 2006) showed a simpler algorithm with the same running
time.

3 DNF Sampling

Definition 5 A DNF formula F = F1 ∨ F2 ∨ · · · ∨ Fm on m clauses and n variables is a boolean
formula that is an “OR of ANDs”. Precisely, given n variables x1, . . . , xn, each clause Fi is of the form
Fi = yj1 ∧ yj2 ∧ . . . , where the yj are literals xk or xk.

3.1 Satisfying DNF Formulas

DNF formulas are easy to satisfy, because satisfying the formula reduces to satisfying a single clause Fi.
So we can pick a clause that for all i does not have both xi and x̄i and to satisfy it we assign xi to T if
xi is in the clause, and to F otherwise. For instance, to satisfy the formula

F = x1x2x3 ∨ x1x2x4,

we could satisfy the first clause by choosing x1 = x2 = T , x3 = F . As an aside, note that if the ∨
are replaced by XORs ⊕, then F becomes a polynomial in the variables over Z2, and finding satisfying
assignments reduces to random polynomial zero-finding.

Our goal is to uniformly randomly generate satisfying assignments of DNF formulas. Not surprisingly,
this is closely related to counting the number of such assignments. However, exact answers to this
problem are difficult to obtain: the negation of a DNF formula is a CNF formula, e.g. (x∨y∨z)∧(x∨x∨y).
CNF formulas are the subject of the famous 3CNF −SAT problem, which shows that finding satisfying
assignments for CNF formulas with three variables per clause is NP-complete. Since counting the number
of satisfying assignments of a DNF formula would reveal the existence of a satisfying assignment of its
negation, counting the number of assignments is a problem of class #P.

3.2 A First Idea

To randomly sample from the satisfying assignments of DNF formulas, we can randomize the procedure
to satisfy a formula as below:

A Random Sampler
Step i: Pick i ∈R [m].
Step ii: Pick a random satisfying assignment π of Fi by picking xi = T for xi in Fi,

xi = F for x̄i in Fi, and arbitrary values for each other xi.

However, the first step causes the sampler to be biased towards satisfying assignments from clauses
with fewer satisfying assignments, and the second step causes the sampler to be biased toward assign-
ments satisfying several different clauses.

Because we want a uniform distribution of outputs, we make two modifications to address these
biases.

4

3.3 Two Refining Ideas

Let Si be the set of assignments satisfying Fi. Since |Si| = 2 # vars not in Ci , we can and should pick
i ∈ [m] with probability proportional to |Si| to offset the differing sizes of Si. Further, for any assignment
π, we can count cπ, the number of clauses it satisfies, and thus can be returned from, by checking it
against every clause. Then when π is selected, we can and should return it with probability 1/cπ to
offset the number of ways it can be reached. If it is not returned, we can repeat the procedure from the
beginning.

3.4 An Algorithm for Uniform Generation of Satisfying DNF Assignments

To uniformly randomly generate π satisfying F :

Step i: Pick i ∈ [m] with probability |Si|∑
|Si| .

Then uniformly pick a random satisfying assignment π of Fi.
Step ii: Compute cπ = |{j ∈ {1, 2, . . . ,m} : π ∈ Sj}|.

Then toss a coin with bias 1/cπ.
If the coin is “Heads”, OUTPUT π and halt.
Otherwise, restart at step i.

3.4.1 Algorithm Correctness

Claim 6 Algorithm A outputs satisfying assignments uniformly at random.

Proof of Claim 6: It suffices to show that each loop iteration is equally likely to output all satisfying
assignments π. For a given π, as before let cπ = |{j ∈ {1, 2, . . . ,m} : π ∈ Sj}|. By conditional
probability,

Pr[π picked in step 1] =
∑

j∈[m] s.t. π∈Sj

Pr[Step i picks clause j]
1

|Sj |

=
∑

j∈[m] s.t. π∈Sj

|Sj |∑
|Sj |
· 1

Sj

=
∑

j∈[m] s.t. π∈Sj

(
∑
|Sj |)−1

=
cπ∑
|Sj |

.

So the probability that this loop iteration actually outputs π is 1
cπ

cπ∑
|Sj | = 1∑

|Sj | , which is independent

of π.

3.4.2 Algorithm Runtime

Claim 7 The number of loops needed to choose π satisfies

E[# loops until OUTPUT] ≤ m.

Proof of Claim 7: For each π examined, we have cπ ≤ m, giving 1/cπ ≥ 1/m. A coin with bias p has
1/p expected runs until it outputs “Heads”, so

E[# loops] = 1/bias ≤ m.

5

