Randomization + Derandomization?
Today

- Randomized complexity classes
- Derandomization via enumeration
 \[\text{BPP} \subseteq \text{EXP} \]
- Pairwise independence & derandomization
 Max Cut Algorithm
 Defn. of p.i.
 Derandomizing max cut
Some Complexity Classes:

def. a language \(L \) is a subset of \(\Sigma^* \)

\[\exists X \mid X \text{ is a graph with a hamilton path}\]

\[\exists X \mid X \text{ is a collection of sets that have a proper 2-coloring}\]

def \(P \) is class of languages \(L \)

with ptime deterministic algorithms \(A \)

\[\text{st. } x \in L \Rightarrow A(x) \text{ accepts}\]

\[x \notin L \Rightarrow A(x) \text{ rejects}\]

def \(RP \) is class of languages \(L \)

with ptime probabilistic algorithm \(A \)

\[\text{st. } x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \geq \frac{1}{2}\]

\[x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] = 0\]

def \(BPP \) is class of languages \(L \)

with ptime probabilistic algorithm \(A \)

\[\text{st. } x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \geq \frac{2}{3}\]

\[x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] \leq \frac{1}{3}\]
Comments

- Constants arbitrary -
 with mult. cost of \(O(\log \frac{1}{\beta}) \) can get error \(\leq \beta \)

- Clearly \(P \leq \text{RP} \leq \text{BPP} \)

Big Open Question:

is \(P = \text{BPP} \)?

do we need random coins for efficient algorithms?

Derandomization via enumeration

- Given probabilistic algorithm \(A \) on input \(x \)
- Run \(A \) on every possible random string of length \(r(n) \)
- output majority answer

at most time bound of \(A \). Is there a better bound?
Behavior
if $x \in L$, $\geq \frac{2}{3}$ of random strings cause A to accept \Rightarrow majority answer is ACCEPT
if $x \notin L$ reject \Rightarrow REJECT

runtime
$$O(2^{r(n)} \cdot t(n)) \leq O(2^{t(n)})$$
time bound of A

Corollary
$BPP \subseteq \text{EXP}$
\uparrow
$\text{EXP} = \text{DTIME} (\cup 2^{n^c})$

Comments:
$r(n) \leq t(n)$ since can use at most 1 bit per step
if can get better bound on $r(n)$, can improve runtime

E.g., if $r(n) = O(\log n)$, runtime is $\text{poly}(n)$ for ptime A
Given a problem with a randomized ptime algorithm, 1-sided error

Homework problem 3

⇒ ∃ one random string that works for all inputs of size n

i.e. ∃ ckt (with no random bits) that work for all inputs of size n.

• What about 2-sided error?

 also true!
Pairwise independence & derandomization

- A simple randomized algorithm for MaxCut
- Pairwise independent sample spaces
- Derandomization

Max Cut:

given: \(G = (V, E) \)
output: partition \(V \) into \(S, T \) to maximize
\[
\sum_{(u,v) \in E} \delta(u,v) |u \in S, v \in T|
\]

Size of \(S, T \) cut

A randomized algorithm:

Flip \(n \) coins \(r_1, \ldots, r_n \)
Put vertex \(i \) on side \(S \) to get \(S, T \) \(\iff \) add \(i \) to \(S \) if \(r_i = 0 \) and to \(T \) o.w.

Analysis:

Let \(1_{u,v} = 1 \) if \(r_u \neq r_v \) (i.e., placed on different sides so \((u,v)\) crosses \(S \), \(T \))

\[
E[\text{cut}] = E \left[\sum_{(u,v) \in E} 1_{u,v} \right]
\]

\[
= \sum_{(u,v) \in E} E[1_{u,v}] = \sum_{(u,v) \in E} \Pr[1_{u,v} = 1]
\]

\[
= \sum_{(u,v) \in E} \Pr[(r_u = 1 + r_v = 0) \text{ or } (r_u = 0 + r_v = 1)]
\]

\[
= \sum_{(u,v) \in E} \left(\Pr[r_u = 1 r_v = 0] + \Pr[r_u = 0 r_v = 1] \right) = \frac{|E|}{2}\]
Pairwise independent random variables: definition

Pick \(n \) values \(X_1 \ldots X_n \)

each \(X_i \in \mathcal{T} \) (domain) s.t. \(|\mathcal{T}| = t \) (size of domain)

in some way.

def. \(X_1 \ldots X_n \) independent if \(\forall b_1 \ldots b_n \in \mathcal{T}^n \)

\[\Pr[X_1 \ldots X_n = b_1 \ldots b_n] = \frac{1}{t^n} \]

pairwise independent if \(\forall i \neq j \) \(b_i, b_j \in \mathcal{T}^2 \)

\[\Pr[X_i X_j = b_i b_j] = \frac{1}{t^2} \]

\(k \)-wise independent if \(\forall \) \(b_1 \ldots b_k \in \mathcal{T}^k \)

\[\Pr[X_1 \ldots X_k = b_1 \ldots b_k] = \frac{1}{t^k} \]

Main point:

Only use pairwise independence in max-cut algorithm

(i.e., algorithm analysis still works if random bits are only pairwise indep).
Derandomization of max-cut

Full enumeration:
- n fully random bits \rightarrow Algorithm \rightarrow cut
- try all 2^n possible coin tosses
- pick best cut

"Partial enumeration":
- m pairwise independent random bits \rightarrow Algorithm \rightarrow cut
- don't try all possible coin tosses
- just a subset that satisfies pairwise independence

E.g., r_1, r_2, r_3
- pick a row uniformly
- $\begin{cases} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{cases}$

For $i \neq j$, $\forall b_1, b_2 \in \{0, 1\}$:
- $Pr[r_i = b_1 \wedge r_j = b_2] = \frac{1}{4}$
- Good enough to give
- $E[\text{cut}] = \frac{|E|}{2}$

For 3 node graphs, only need to enumerate over 4 rows instead of 8 rows.

Another picture

- $b_1 \ldots b_m$ totally independent
- Enumerate all 2^m choices

"Randomness generator"
- Pick a random row

$\begin{cases} r_1 \ldots r_m \end{cases}$
- Pairwise independent + good enough for our algorithm!
- Can we make $n > m$?
derandomize Max-Cut is given "randomness generator" taking \((\log n + 1) \) bits

- First: construct new randomized MC alg MC'.
 - Given \(\log n \) truly random bits \(b_0 \ldots b_{\log n + 1} \)
 - Use generator to construct \(n \) p.i. random bits \(r_0 \ldots r_n \)
 - Use \(r_i \)'s in MC alg & evaluate cutsize

Then i derandomize via enumeration

Deterministic MC alg:

For all choices of \(b_0 \ldots b_{\log n + 1} \)

run MC' on \(b_0 \ldots b_{\log n + 1} \) & evaluate cutsize

pick best cutsize

Runtime: \((2^{\log n}) \times (\text{time for generator + time to run MC}) = \text{poly}(n) \)

\(\# \) choices of \(b_i \)'s

Comments
- no guarantee of getting OPT cut as in basic enumeration method
- generator determines a very small set of random strings, at least one of which gives a good cut
New Max Cut Algorithm MC' (using m more bits)

do "full enumeration" derandomization on this in $O(2^m) \times [\text{time to generate} + \text{time to run MaxCut}]$
How to generate pairwise independent random variables?

1) Bits

- choose \(k \) truly random bits \(b_1, \ldots, b_k \)

\[\forall s \subseteq [k] \text{ s.t. } s \neq \emptyset \text{ set } c_s = \bigoplus_{i \in s} b_i \]

- output all \(c_s \)

Generates \(2^k - 1 \) bits from \(k \) truly random bits

i.e. \(m = \log n \)

Generated bits are pairwise independent

proof: exercise

2) Integers in \([0, \ldots, q-1]\) (\(q \) prime)

trivial method that works for \(q = 2^l \) (note that \(q \) is not prime)

- repeat "bits" construction independently for each position in \(1 \ldots l \)

uses \(O(\log n \cdot \log q) = O(\log n) \) bits of true randomness
Somewhat better construction:

(when \(n \neq q \) needs \(O(\log q) \) bits of randomness)

- pick \(a, b \in \mathbb{Z}_q \)

- \(r_i \leftarrow a \cdot i + b \mod q \quad \forall i \in [0..q] \)

- output \(r_0 \ldots r_q \)

Useful to think of as an input/output description of a

\[h_{a, b} : [0..q] \to \mathbb{Z}_q \]

Family of functions \(H = \{ h_{a_1, b_1}, \ldots \} \) for \(h_i : [N] \to [M] \) is

"pairwise independent" if:

\[H \in \mathcal{D} \]

1. \(\forall x \in [N], \ H(x) \in [M] \)

2. \(\forall x_1 \neq x_2 \in [N], \ H(x_1) \perp H(x_2) \) independent

Equivalently:

\(\forall x_1 \neq x_2 \in [N] \)

\[\forall y_1, y_2 \in [M] \]

\[\Pr_{H \in \mathcal{D}} \left[\sum_{H(x_i) = y_1} H(x_2) = y_2 \right] = \frac{1}{M^2} \]
Comments

- no single hash is p.i. - have to pick a random hash from a family

- given $H \times x \in \mathcal{N}$, $H(x)$ should be computable in time poly($\log N, \log M$)

- also called "strongly 2-universal hash fncts"

Why is our example p.i.?

$H = \{ h_{a, b} \mid Z_q \rightarrow Z_q \}$

(recall q is prime)

$h_{a, b} = a \times b \mod q$

fix any $x \neq w$, c, d

$Pr_{a, b}[a x + b = c \land h_{a, b}(w) = d] = \frac{1}{q^2}$

$(x, 1) \cdot (b) = (c)$

$w \neq x$ so nonsingular \exists unique soln

how many truly random bits?

$2 \log q$ yields 9 p.i. random field elts.
More Comments

- can construct for all finite fields, even when domain & range have different sizes.

- Original motivation: hashing

 hash fets chosen from p.i. family instead of random fets.

 Why is this good?

 how would you store a random ftn on a domain of size $2^{100000000000000000000}$?