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Lecture 9
Lecturer: Ronitt Rubinfeld Scribe: Kuo-An Wei

Lecture Preview: Random Walks

• Stationary Distributions

• Cover Times

• s-t connectivity in undirected graphs (will be covered next lecture)

We first introduce some basic properties of markov chains.

Definition 1 A matrix P is stochastic if every row sums to 1. P is doubly stochastic if every row and
column sum to 1.

The transition matrix of a markov chain must be stochastic, but it does not have to doubly stochastic.

Definition 2 A markov chain is irreducible if for all x, y

∃t s.t. P t(x, y) > 0.

Irreducibility tell us that the markov chain is strongly connected in some sense.

Definition 3 A markov chain is ergodic if there exists t0 such that for all x, y

∀t > t0, P t(x, y) > 0.

Note that ergodicity is naturally a stronger condition than irreducibility.

Definition 4 A markov chain is aperiodic if for all x

gcd{t | P t(x, x) > 0} = 1.

Theorem 5 A markov chain is ergodic if and only if it is irreducible and aperiodic.

We will not prove this formally, but it is not hard to see why both irreducibility and aperiodicity are
necessary and sufficient conditions for ergodicity in a finite graph.

Definition 6 Given a stochastic matrix P , we say that a probability distribution π over the nodes is
stationary iff for all y,

π(y) =
∑
x

π(x)P (x, y).

Hence, π is stationary if and only if πP t = π for all t.
For any given graph, we will assume a corresponding markov chain with uniform transition proba-

bilities at each node, unless specified otheriwse.
Here is an example stationary distribution for an undirected graph:

π =

(
deg(x1)

2|E|
, . . . ,

deg(xn)

2|E|

)
.

Also, if a markov chain has a doubly stochastic transition matrix, the uniform distribution over all nodes
will be a stationary solution. Some examples include d-regular undirected and directed graphs.

Theorem 7 Every ergodic markov chain has a unique stationary distribution.

This is a very important theorem on markov chains that we will come back to later.
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Definition 8 We define the hitting time between nodes i and j in a markov chain to be

hij = Exp[time starting at i to reach j].

Theorem 9 Given an ergodic markov chain and its unique stationary distribution π, we have

∀i, hii =
1

π(i)
.

Definition 10 Define the cover time of a graph G w.r.t. a node i to be

Ci(G) = Exp[time starting at i to reach all nodes in G]

Then, the cover time of G is defined as

C(G) = max
u

Ci(G).

For example, here are the cover times for some specific graphs

• C(K∗
n) = Θ(n lnn)

• C(L∗
n) = Θ(n2)

• C(lollipopn) = Θ(n3)

Note that K∗
n is the complete graph on n vertices with self loops, L∗

n is the line graph on n vertices
with self loops, and lollipopn is the graph on n vertices where we attach Kn/2 to one end of Ln/2.

It is worthwhile to note that lollipopn gives an asymptotically worst case construction, as we shall
see later. Our goal

Definition 11 Define the commute time between nodes i and j in a markov chain to be

Cij = Exp[time starting at i to reach j and return to i].

By linearity of expectation, we have simply that Cij = hij + hji.

Lemma 12 For all nodes i, j where (i, j) ∈ E, we have

Cij = O(|E|).

Proof Without loss of generality, assume G is irreducible. Otherwise, we can simply consider the
irreducible component that contains nodes i and j.

Construct the directed graph G′ = (V ′, E′) from G = (V,E) where V ′ = V by replacing each
undirected edge with two directed edges. In addition, for each node i ∈ V , add deg(i) self loops to the
corresponding node i ∈ V ′. This will guarantee the aperiodicty of G′, so G′ must be ergodic and have a
unique stationary distribution.

At every node in G′, we now have 1
2 probability of staying at the same node, and 1

2 probability of
following the original transition matrix of G. Hence, for all nodes i and j, we have

C ′
ij = 2Cij .

Next, note that traversing the edge (i, j) twice must give a commute between i and j in G′, which
upper bounds the commute time in G. Hence, we could try taking the line graph of G′ and analyze the
hitting time of the vertex corresponding to (i, j).

In other words, construct G′′ = (V ′′, E′′) where

V ′′ = E′ and E′′ = {(e1, e2) ∈ E′ × E′ | e1 = (u, v), e2 = (v, w) for some u, v, w ∈ V ′}
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Finally, one can check that G′′ is doubly stochastic by construction. Hence, its stationary distribution
must be the uniform distribution over all vertices. We can then bound the commute time Cij using
Theorem 5

Cij =
1

2
· C ′

ij ≤
1

2
· h′′

(i,j),(i,j) = O(|E|).

Theorem 13 For any graph G, we can bound its cover time by

C(G) = O(mn) = O(n3)

where n = |V | and m = |E|.

Proof Without loss of generality, we can assume that G is irreducible. Consider a spanning tree T of
G. For a given node i, consider a depth-first traversal of T with i as the root node, represented by the
sequence of nodes u1, u2, . . . , u2n−2. Since each edge is traversed exactly twice in a depth-first traversal,
we can bound the cover time of G w.r.t. node i using Lemma 12 by

Ci(G) ≤
2n−1∑
j=1

hujuj+1
=

∑
(u,v)∈T

(huv + hvu) =
∑

(u,v)∈T

Cuv = O(mn).

Since this is true for every node i, we have C(G) = maxi Ci(G) = O(mn), as desired.
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