6.842 Lecture 3

- The Lovasz Local Lemma (recap + finish)
- Polynomial Identity Testing
Lovasz Local Lemma: Recap & finish

Goal: Show that possibly no bad events happen!

Possible tools:
- if independent, then obvious
- if not independent, use union bound
- What if A_i's have "some" independence?

def. A "independent" of $B_1, B_2, ..., B_k$ if

$$\forall J \subseteq [k] \text{ then } \Pr\left[A \land \bigwedge_{j \in J} B_j \right] = \Pr\left[A\right] \cdot \Pr\left[\bigwedge_{j \in J} B_j \right]$$

Note: $[k]$ means $\{1, ..., k\}$

def. $A_1, ..., A_n$ events

$D = (V, E)$ with $V = [n]$ is "dependency digraph of $A_1, ..., A_n$"

if each A_i independent of all A_j that are not neighbors in D (i.e. all A_j st. $(ij) \in E$)
Lovász Local Lemma (symmetric version)

A_1,\ldots, A_n events s.t. $\Pr(A_i) \leq p$ $\forall i$

with dependency digraph D s.t. D has max degree $\leq d$.

If $e_p(d+1) \leq 1$, then

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i} \right] > 0$$

Application

Thm. Given $S_1,\ldots, S_m \subseteq X$ $|S_i| = l$

each S_i intersects at most d other S_j's

If $e_p(d+1) \leq 2^{l-1}$

then can 2-color \overline{X} such that

each S_i not monochromatic

ie. H is hypergraph with m edges, each containing l nodes & each intersecting $\leq d$ other edges
Stronger assumptions:

(1) For today, assume \(l, d \) constants.

(2) Binary Entropy: \(H(x) = -x \log_2 x - (1-x) \log_2 (1-x) \)

Let \(p = 2 \cdot 2^{(H(x)-1) \cdot l} \)

\[e \cdot \frac{1}{d+1} < \frac{1}{2} \]

(3) \(2 e (d+1) < 2^\alpha n \)
Algorithm: Given $S_1, \ldots, S_m \subseteq X$, $|S_i| = l \ \forall i$

First pass:

for each $j \in X$ pick color red/blue via coin toss

S_i is "bad" if $\leq \alpha \cdot l$ reds or $\leq \alpha \cdot l$ blues

$B = \{ S_i \mid S_i$ is bad $\}$

1st pass is successful if all "connected components" of B are $\leq d \log m$

(if not successful, retry)

Second Pass:

Brute force each connected component (w/o violating their nbrs)
After 1st pass: orange Si's are "good", red Si's are "bad"

Some questions:

1. Why is output legal? What if changing Si's in B makes Si & B monochromatic?
2. How fast is pass 2?
3. How many time to repeat pass 1?

No way this is fast!
Why is output legal?

First pass:
For each $j \in X$ pick color red/blue via coin toss

S_i is "bad" if $\leq \alpha_\ell$ reds
or $\leq \alpha_\ell$ blues

$B = \{ S_i \mid S_i$ is bad $\}$

Pass successful if all "connected components"
of bad S_i's are $\leq d \log m$
(if not successful, retry)

Second Pass: Brute force each connected component

If S_i not bad + < αn nodes in bad nbrs
then S_i will still be bichromatic after recoloring.

If S_i not bad + has $\geq \alpha n$ nodes in bad nbrs,
then $\geq \alpha n$ nodes get recolored

Main idea:
remaining subproblems each have property
that all remaining sets have enough uncolored points
so that LLL
\Rightarrow soln exists

If S_i not bad + < αn nodes in bad nbrs
then S_i will still be bichromatic after recoloring.

If S_i not bad + has $\geq \alpha n$ nodes in bad nbrs,
then $\geq \alpha n$ nodes get recolored

- if recolored randomly, $\Pr[S_i \text{ is monochrom}] < 2^{-\alpha n}$
- using LLL
 - assume $2e(d+1) < 2^{\alpha n}$

This was assumption 3

\Rightarrow solution exists!
Main idea:
Components small \Rightarrow involve few sets
\Rightarrow involve few elements (since assume l is $O(1)$)
\Rightarrow can brute force each one separately

How fast is Pass 2?

size of Surviving components $\leq O(d \log m)$

$\# \text{ settings to vars in a surviving component} \leq 2^l O(d \log m)$

$= O(l^d)$

$= m$

total time: $\# \text{ surviving components} \times m = m$

if dl constant: poly(m) time \ast assumption

else, recurse on components
How many times to repeat pass 1?

Complications:
- Need "refined" def of "connected component" for pass 2 to work
 Why? since need to recolor some non-bad sets that neighbor bad sets
Let's be more careful in our defn. of conn components.

Hypergraph: nodes for each \(x \in X \)

hyperedge \(S_i \) corresponds to subset of \(X \)

(all \(|S_i| = 2 \Rightarrow \) usual notion of graph)

Hyperedge \(S_i \):

Dependency digraph: nodes for each \(S_i \)

edge between \(S_i \) & \(S_j \) if intersect

Not directed in this case

Dependency digraph:

All \(S_i \)s:

Piece of Dependency Digraph:

assumption \(\Rightarrow \) this graph has degree \(\leq d \)
After 1st pass: orange S_i's are "good", red S_i's are "bad"

How should we define "connected component"?

Try 1: use dependency graph
degree of nodes by assumption
we will see a difficulty with this soon

Try 2: use "square" of dependency graph:
connect nodes of dist 1 or 2

example:

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\text{graph } G
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\text{graph } G^2
\end{array}
\]
degree of "square" graph:

\[\text{deg} \leq \text{# nodes that can be reached in 1 or 2 steps in original graph} \]

\[\leq d + d \cdot d \begin{array}{c} \uparrow \text{1 step} \\
\text{1st step} \leftrightarrow \text{2nd step} \\
\downarrow \text{2 steps} \end{array} \]

\[\leq 2d^2 \]

why "square" graph?

1+3 both cause elts in a to be recolored

\[\Rightarrow \text{step 2 needs to recolor 1, 2, 3 simultaneously} \]

For this lecture,

"Connected" component means

all nodes reachable in square graph
After 1st pass: orange S_i's are "good", red S_i's are "bad"

In pass 2, might need to fix neighbors of bad components:

Recall:

If S_i not bad & has $\geq 2 \times l$ nodes in bad nbrs,
then $\geq 2 \times l$ nodes get recolored

Say S_i "survives" if bad or has $\geq 2 \times l$ nodes in bad nbrs
We will show that connected components of "bad" sets S_i are small: $O(\log n)$

Algorithm needs to recolor bad sets and possibly some of their nbrs in original graph (the ones that survive):

each bad set S_i has $\leq d$ nbrs

\Rightarrow total size ($\#s_i$'s) of component to recolor is $O(d\log n)$
How many repetitions of Pass 1?

\[\forall S_i, \quad \Pr [S_i \text{ bad}] \leq 2 \cdot \sum_{i \leq \alpha n} \left(\frac{i}{2} \right) \leq 2 \cdot 2^\left(H(\alpha) - 1 \right) \leq \rho \]

Given dependency digraph \(G \), put edge between \(S_i \) and \(S_j \) if \(S_i \cap S_j \neq \emptyset \)

if \(S_{i_1}, S_{i_2}, \ldots, S_{i_m} \) are independent set

\[(\text{so } S_{i_k} \cap S_{i_l} = \emptyset \quad \forall i_k, i_l) \]

then \(\Pr [S_{i_1} \ldots S_{i_m} \text{ all in } B] \leq \rho^m \)

since mutually independent
First try

Show no big component survives:

\[\Pr[\text{specific big component survives}] \subseteq \Pr[\text{big independent set in component survives}] \leq p^{s'} \]

\[\Pr[\text{any big component survives}] \leq \# \text{ potential big components in dependency graph} \cdot p^{s'} \]

What is a good bound? (\(\mathcal{S} \))? Way too big!!

Can use degree bound to improve!!

Can use degree bound to improve!!

How does \(S' \) compare to \(S \)?

If component is clique, then \(s' \) could be 1 but, use degree bound!
Plan: hope to show no big component survives.

if big component \(C \) survives.

then \(C \) has a big subtree

doesn't exist

then can find (less) big independent

Set in subtree

Well known fact:

\[\text{# subtrees of size } u \text{ in graph of degree } \Delta \text{ is } \leq n \cdot \frac{1}{(\Delta - 1)(u+1)} (\Delta u)^u \]

\[\text{# nodes } = n \]

\[\leq n (e \Delta)^u \]

much much better than \(\binom{n}{u} \)

when \(\Delta \) is constant
Given a subtree of size u, it has an independent set of size $\geq \frac{u}{\Delta+1}$.

Why?

Repeat:

- Each round:
 - $|I|$ gets bigger by 1.
 - Subtree gets smaller by $\leq \Delta+1$.
- Remove u and all neighbors of u from subtree.

Until subtree is empty.

\Rightarrow # rounds = $|I|$ $\geq \frac{u}{\Delta+1}$.
New try:

Show no big component survives:

\[E \left[\# \text{ of size } > S \text{ subtrees that survive} \right] \]
\[\leq \sum_{i=S}^{m} E[\# \text{ size } i \text{ subtrees that survive}] \]
\[\leq \sum_{i=S}^{m} (\# \text{ size } i \text{ subtrees}) \times \Pr[\text{size } i \text{ subtree survives}] \]
\[\leq \sum_{i=S}^{m} m \cdot (ed)^i \times \left(\frac{i}{2^{d+1}} \right) \]
\[\leq \sum_{i=S}^{m} m \cdot \left(\frac{1}{2^i} \right) \leq \frac{m}{2^{s-1}} \]

For \(s = \log 4m \)

Upper bound on expected \# of big components:

\[\leq \frac{m}{4m} = \frac{1}{4} \]
By Markov's inequality:

\[\Pr[\# \text{ of size } \geq \log 4m \text{ subtrees } > 0] < \frac{1}{4} \]

So \(\Pr[\# \text{ components of size } \geq \log 4m \text{ is } > 0] < \frac{1}{4} \)

\[\Rightarrow \text{ expected # times to repeat first pass} \leq \frac{1}{4} \]
Polynomial Identity Testing

Is \(P(x) = (x+1)^2 \) the same as \(Q(x) = x^2 + 2x + 1 \)?

\[
\begin{align*}
\text{YES!} & \\
\text{What about } P(x) = (x+3)^3 (x-4)^3 \quad & \text{and } Q(x) = (x-4)^3 (x+3)^3
\end{align*}
\]

Obviously not! \(P(0) \neq Q(0) \).

Problem: given 2 polynomials \(P, Q \)

is \(P = Q \)?

i.e. is \(P(x) = Q(x) \forall x \)?

Problem': given polynomial \(R \)

is \(R = 0 \)?

i.e. is \(R(x) = 0 \forall x \)?

\[
\begin{align*}
\text{Let } & R(x) = P(x) - Q(x) \\
\text{then } & R = 0 \iff P = Q
\end{align*}
\]
Fact: If \(R \neq 0 \) has degree \(\leq d \) then
\(R \) has at most \(d \) roots (recall: a "root" is \(x \) st. \(R(x) = 0 \))

Algorithm for deciding whether \(R = 0 \):

pick \(d+1 \) distinct inputs \(x_1 \ldots x_{d+1} \)

if \(\forall i \ R(x_i) = 0 \) output "\(R = 0 \)"
else \(\exists i \) st. \(R(x_i) \neq 0 \) output "\(R \neq 0 \)"

Runtime: \(O(d) \) evaluations of \(R \)