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Concentration inequalities are inequalities which state that a random variable 𝑋 is unlikely to be
“too far” from its expected value E𝑋 .

We will typically think of events like 𝑋 ≥ E𝑋 + 𝑡 or 𝑋 ≤ E𝑋 − 𝑡 (where 𝑡 > 0) as “bad events”, where
the variable 𝑋 deviates far from its mean. We would like to ensure that such bad events don’t happen
by writing down an inequality like

Pr[𝑋 ≥ E𝑋 + 𝑡] ≤ 𝛿

for some “small” probability 𝛿 .

Concentration inequalities give us themeans to do this. This note is a reference for useful concentration
inequalities which appear often in the analysis of randomized algorithms. We won’t give proofs for
these inequalities.

What is 𝛿?

Two regimes for 𝛿 to keep in mind are (1) when 𝛿 is a small constant (e.g. 𝛿 = 1%) and (2) when 𝛿 is a
function of 𝑛 which goes to zero (e.g. 𝛿 = Θ(𝑛−2) or 𝛿 = Θ(𝑒−𝑛)).

A very common reason we might need to pick, say, 𝛿 = Θ(𝑛−2) is if we actually have 𝑛2 random
variables 𝑋1, . . . , 𝑋𝑛2 , and we want to be sure that none of the bad events 𝑋𝑖 ≥ E𝑋𝑖 + 𝑡 occur. A
straightforward way to do so is to first show that the inequality

Pr[𝑋𝑖 ≥ E𝑋𝑖 + 𝑡] ≤ 𝛿

holds for each 𝑖 with 𝛿 = 1% · 𝑛−2, and then apply the union bound:

Pr[any of the 𝑋𝑖 ≥ E𝑋𝑖 + 𝑡 occur] ≤
∑︁
𝑖

Pr[𝑋𝑖 ≥ E𝑋𝑖 + 𝑡] ≤ 𝑛2𝛿 = 1%.

Markov

Theorem 1 (Markov’s inequality).

Let 𝑋 ≥ 0 be a nonnegative random variable with finite mean. Then

Pr[𝑋 ≥ 𝑡] ≤ E𝑋
𝑡

for any 𝑡 > 0.

• Rephrased: For any 𝛿 ∈ (0, 1), the inequality 𝑋 < E𝑋 · 𝛿−1 holds with probability at least 1 − 𝛿 .

• Simple and applies to any nonnegative random variable.

• Disadvantage: Only a linear relationship between 𝑡 and 𝛿 .
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Chebyshev

Theorem 2 (Chebyshev’s inequality).

Let 𝑋 be a random variable with finite variance. Then

Pr[|𝑋 − E𝑋 | ≥ 𝑡] ≤ Var𝑋
𝑡2

for any 𝑡 > 0.

• Rephrased: 𝑋 lies in the interval E𝑋 ±
√
Var𝑋 · 𝛿−1 with probability 1 − 𝛿 .

• Useful when 𝑋 =
∑

𝑖 𝑋𝑖 is a sum of pairwise independent 𝑋𝑖 since then Var𝑋 =
∑

𝑖 Var𝑋𝑖 .

• Disadvantage: Still only a quadratic relationship between 𝑡 and 𝛿 .

Hoeffding

Theorem 3 (Hoeffding’s inequality).

Let 𝑋 =
∑

𝑖 𝑋𝑖 where 𝑋1, . . . , 𝑋𝑘 are independent random variables such that 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] for all
𝑖 . Then

Pr[𝑋 ≥ E𝑋 + 𝑡] ≤ exp
(
−2𝑡

2

𝑅

)
for any 𝑡 ≥ 0, where 𝑅 =

∑
𝑖 (𝑏𝑖 − 𝑎𝑖)2.

• Rephrased: 𝑋 ≤ E𝑋 +
√︃

1
2𝑅 ln𝛿−1 with probability 1 − 𝛿 .

• The inequality Pr[𝑋 ≤ E𝑋 − 𝑡] ≤ exp
(
− 2𝑡2

𝑅

)
is obtained by applying Theorem 3 to −𝑋 .

• The inequality Pr[|𝑋 − E𝑋 | ≥ 𝑡] ≤ 2 exp
(
− 2𝑡2

𝑅

)
is obtained by union bounding Theorem 3 and

the previous inequality together.

• Exponential relationship between 𝑡 and 𝛿 .

• Disadvantage: The 𝑋𝑖 must be fully independent.

Chernoff

Theorem 4 (Chernoff bound).

Let 𝑋 =
∑

𝑖 𝑋𝑖 where 𝑋1, . . . , 𝑋𝑘 are independent random variables such that 𝑋𝑖 ∈ [0, 1] for all 𝑖 .
Then

Pr[𝑋 ≥ E𝑋 · 𝑡] ≤ 𝑒−E𝑋 ·ℎ (𝑡 ) for 𝑡 ≥ 1
Pr[𝑋 ≤ E𝑋 · 𝑠] ≤ 𝑒−E𝑋 ·ℎ (𝑠 ) for 𝑠 ∈ (0, 1)

where ℎ(𝑡) = 𝑡 ln 𝑡 − 𝑡 + 1.
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• If the exact value of E𝑋 is unknown but we have the bounds 𝐿 ≤ E𝑋 ≤ 𝑈 , then the inequalities

Pr[𝑋 ≥ 𝑈 · 𝑡] ≤ exp(−𝑈 · ℎ(𝑡)) for 𝑡 ≥ 1
Pr[𝑋 ≤ 𝐿 · 𝑠] ≤ exp(−𝐿 · ℎ(𝑠)) for 𝑠 ∈ (0, 1)

still hold.1

• Exponential relationship between E𝑋 · 𝑡 and 𝛿 .

• Disadvantage: The 𝑋𝑖 must be fully independent.

To apply Theorem 4, we often want to lower-bound ℎ(𝑡). The following looser bounds are obtained by
this method. I recommend graphing ℎ(𝑡) to get a sense of which lower bound is appropriate for the
particular regime of 𝑡 appearing in your application.

Corollary 5 (Chernoff bounds (looser versions)).

Let 𝑋 =
∑

𝑖 𝑋𝑖 where 𝑋1, . . . , 𝑋𝑘 are independent random variables such that 𝑋𝑖 ∈ [0, 1] for all 𝑖 .
Then:

Pr[𝑋 ≥ E𝑋 · 𝑡] ≤ exp
(
−E𝑋 · (𝑡 − 1)2

𝑡 + 1

)
for 𝑡 ≥ 1

Pr[𝑋 ≥ E𝑋 · 𝑡] ≤ exp(−E𝑋 · 𝑡) for 𝑡 ≥ 6.4
Pr[𝑋 ≥ E𝑋 · 𝑡] ≤ exp(−E𝑋 · 2𝑡) for 𝑡 ≥ 19.1

Pr[𝑋 ≤ E𝑋 · 𝑠] ≤ exp
(
−E𝑋 · (𝑡 − 1)2

2

)
for 𝑠 ∈ (0, 1)

1The second one is easy but the first is trickier; it can be shown by applying Theorem 4 to 𝑌 = 𝑋 +𝑈 − E𝑋 , considering
𝑈 − E𝑋 as a sum of ⌈𝑈 − E𝑋 ⌉ trivial random variables.
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