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Concentration inequalities are inequalities which state that a random variable X is unlikely to be
“too far” from its expected value EX.

We will typically think of events like X > EX + t or X < EX — t (where t > 0) as “bad events”, where
the variable X deviates far from its mean. We would like to ensure that such bad events don’t happen
by writing down an inequality like

Pr[X >EX +1] <6

for some “small” probability J.

Concentration inequalities give us the means to do this. This note is a reference for useful concentration
inequalities which appear often in the analysis of randomized algorithms. We won’t give proofs for
these inequalities.

What is 6?

Two regimes for § to keep in mind are (1) when ¢ is a small constant (e.g. § = 1%) and (2) when § is a
function of n which goes to zero (e.g. § = ©(n~2) or § = ©(e™™)).

A very common reason we might need to pick, say, § = @(n~?) is if we actually have n? random
variables Xj,..., X, and we want to be sure that none of the bad events X; > EX; + ¢ occur. A
straightforward way to do so is to first show that the inequality

PI’[X,‘ > EX; + t] <é
holds for each i with § = 1% - n™2, and then apply the union bound:

Pr[any of the X; > EX; + t occur] < Z Pr[X; > EX; + t] < n%*§ = 1%.
i

Markov

Theorem 1 (Markov’s inequality).

Let X > 0 be a nonnegative random variable with finite mean. Then

EX
Pr(X >t] < e

for any t > 0.

« Rephrased: For any & € (0, 1), the inequality X < EX - 57! holds with probability at least 1 — 5.
« Simple and applies to any nonnegative random variable.

+ Disadvantage: Only a linear relationship between t and 6.



Chebyshev

Theorem 2 (Chebyshev’s inequality).

Let X be a random variable with finite variance. Then

Var X
tZ

Pr(|X —EX| > ¢] <

for any t > 0.

« Rephrased: X lies in the interval EX + VVar X - §~! with probability 1 — 6.
« Useful when X = }; X; is a sum of pairwise independent X; since then Var X = }}; Var X;.

« Disadvantage: Still only a quadratic relationship between t and §.

Hoeffding

Theorem 3 (Hoeffding’s inequality).

Let X = }}; X; where X3, ..., Xj are independent random variables such that X; € [a;, b;] for all
i. Then

212
Pr[X > EX +t] < exp 7

for any t > 0, where R = ;(b; — a;)%.

» Rephrased: X < EX + /%R In -1 with probability 1 — §.

+ The inequality Pr[X < EX —t] < exp (—%Z) is obtained by applying Theorem 3 to —X.

« The inequality Pr[|X — EX| > t] < 2exp (—%2) is obtained by union bounding Theorem 3 and
the previous inequality together.

« Exponential relationship between t and é.

« Disadvantage: The X; must be fully independent.

Chernoff
Theorem 4 (Chernoff bound).

Let X = }; X; where X, ..., Xy are independent random variables such that X; € [0, 1] for all i.
Then

Pr[X > EX - t] < e BXP(D)

Pr[X <EX -s]

IA

fort>1

o~ EXh(s) fors € (0,1)

IA

where h(t) =tlnt —t + 1.



« If the exact value of EX is unknown but we have the bounds L < EX < U, then the inequalities

Pr(X > U - t] <exp(-U - h(t)) fort > 1
Pr[X < L-s] <exp(—L- h(s)) fors € (0,1)
still hold.!
« Exponential relationship between EX - t and 6.
« Disadvantage: The X; must be fully independent.

To apply Theorem 4, we often want to lower-bound h(t). The following looser bounds are obtained by
this method. I recommend graphing h(t) to get a sense of which lower bound is appropriate for the
particular regime of ¢ appearing in your application.

Corollary 5 (Chernoff bounds (looser versions)).

Let X = }; X; where X, ..., Xy are independent random variables such that X; € [0, 1] for all i.
Then:

(t-1)?
Pr[X > EX - t] <exp|-EX - —— fort>1
Pr[X > EX - t] < exp(-EX - 1) fort > 6.4
Pr[X > EX - t] < exp(-EX - 2t) fort > 19.1
(t—1)?
Pr[X <EX -s] <exp|-EX - — fors € (0,1)

I'The second one is easy but the first is trickier; it can be shown by applying Theorem 4 to Y = X + U — EX,, considering
U — EX as a sum of [U — EX] trivial random variables.



