

6.5420 Lecture 1: Randomness & Computation

Lecturer: Ronitt Rubinfeld

TA: Lily Chung

Course website:

<https://people.csail.mit.edu/ronitt/COURSE/526/>

Today:

- Course Overview
- Polynomial Identity Testing

applications to:

- "person on the moon"
- bipartite matching

What is this course about?

- How can randomness help in computation?

- algorithm design

- simpler, faster, new problems

- show existence of combinatorial objects
 - good solutions, codes, nice graphs

- easy to verify proofs
 - interactive proofs, PCPs

- distributed algorithms

- learning algorithms

- testing algorithms

- A theme:

Randomness vs. Predictability

- computational learning theory (predictable)
 - learning vs. predictability
 - learning const depth ckts, decision trees,
noisy parity fnns
 - weak learning + BOOSTING
- Pseudorandomness (unpredictable)
 - Pseudorandom generators
 - de randomization
 - recycling randomness

. Tools:

Fourier representation

random walks / Markov chains

algebraic techniques

probabilistic proofs

Lovasz Local Lemma

graph expansion, extractors

Szemeredi Regularity Lemma

Administratrivia

(see course handout)

Polynomial Identity Testing

Is $P(x) = (x+1)^2$ the same as $Q(x) = x^2 + 2x + 1$?

What about $P(x) = (x+3)^{38} (x-4)^{83}$

↓ $Q(x) = (x-4)^{38} (x+3)^{83}$

A cartoon character with a speech bubble containing the text "Obviously not! $P(0) \neq Q(0)$!".

A cartoon character with a speech bubble containing the text "Doesn't look like it, but lots of terms to compare!".

Problem: given 2 polynomials P, Q

is $P \equiv Q$?

i.e. is $P(x) = Q(x) \forall x$?

Problem': given polynomial R

is $R \equiv 0$?

i.e. is $R(x) = 0 \forall x$?

Problems are equivalent!!

Let $R(x) = P(x) - Q(x)$
then

$R \equiv 0$ iff $P \equiv Q$

(Fundamental Thm of Algebra)

Fact: If $R \neq 0$ has degree $\leq d$ then

R has at most d roots $*$ (recall: a "root" is x st. $R(x)=0$)

Algorithm for deciding whether $R \equiv 0$: (Promised that $\deg R \leq d$)

pick $d+1$ distinct inputs x_1, \dots, x_{d+1}

if $\forall i \ R(x_i) = 0$ output " $R \equiv 0$ "

else $(\exists i \text{ st. } R(x_i) \neq 0)$ output " $R \neq 0$ "

How many evaluations of R ?

$d+1$

* this is true over any field

$\mathbb{Z}, \text{ mod } q, \dots$
any prime $> d$

Faster randomized algorithm for deciding whether $R \equiv 0$:

Pick $2d$ distinct inputs x_1, \dots, x_{2d}

Do K times:

Pick $i \in [2d]$, if $R(x_i) \neq 0$ output " $R \neq 0$ "

Output " $R \equiv 0$ "

Behavior:

if $R \equiv 0$, $\forall x_i R(x_i) = 0$ so always outputs " $R \equiv 0$ "

if $R \neq 0$, $\Pr_{i \in [2d]} [R(x_i) = 0] \leq \frac{\# \text{roots}}{2d} \leq \frac{1}{2}$

$\Pr[\text{err}] = \Pr[\text{choose root in all } K \text{ iterations}] \leq \frac{1}{2^K}$

$\Rightarrow \Pr[\text{correct}] = \Pr[\text{output } "R \neq 0"] \geq 1 - \frac{1}{2^K}$

↑
Pset 1
practice
problem 4

If you are willing to tolerate prob of error $\leq \delta$,

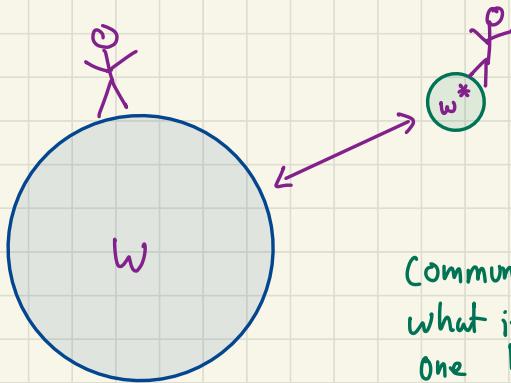
pick $K = \log \frac{1}{\delta}$

How many evaluations?

$O(\log \frac{1}{\delta})$

WOW! doesn't depend
on degree, just δ

Application: "Person - on - the - moon"



Question:
Is $w = w^*$?

Communication is expensive!!
what if they differ in only
one bit?

$$w = w_0 \dots w_n \quad (n+1 \text{ bit string})$$

naive solution: send $n+1$ bits

$$\text{Let } P(x) = w_n \cdot x^n + w_{n-1} \cdot x^{n-1} + \dots + w_1 x + w_0$$

$$P^*(x) = w_n^* x^n + w_{n-1}^* x^{n-1} + \dots + w_1^* x + w_0^*$$

$$w = w^* \Leftrightarrow P \equiv P^* \quad \text{for } P, P^* \text{ of degree } n$$

Instead of sending full description of w ,

- earth person picks random $r_1 \dots r_k$ & sends $(r_1, P(r_1)) (r_2, P(r_2)), \dots (r_k, P(r_k))$
- person on moon then
 - 1) computes $P^*(r_1), P^*(r_2), \dots, P^*(r_k)$
 - 2) checks $P(r_i) = P^*(r_i) \ \forall i \in [k]$

{ mod
q }

Wait!!! x^n needs $\log(x^n) = n \log x$ bits to write down
Too big!!!

Solution: compute mod q

where q is a prime $> 2n$

Fact: q doesn't need to be bigger than $C \cdot n$
so only need $O(\log n)$ bits per number

How many bits of communication?

r_i 's in $[2n] \Rightarrow O(\log n)$ bits to specify

$P(r_i)$'s in $[q] \Rightarrow O(\log n)$ " "

$$k = O(\log \frac{1}{\delta})$$

total communication bits: $O(\log n \cdot \log \frac{1}{\delta})$

Behavior:

if $P \equiv P^*$,	$P(r_i) = P^*(r_i) \quad \forall i$
if $P \not\equiv P^*$,	$P(r_i) = P^*(r_i)$ with prob $\leq 1/2$

Multivariate Polynomial Identity Testing

Test if $R(x_1, x_2, \dots, x_n) \equiv 0$

Total degree: $\max_{s \in \text{terms}} (\text{sum of degrees of } x_i^{\text{!s}} \text{ in terms})$

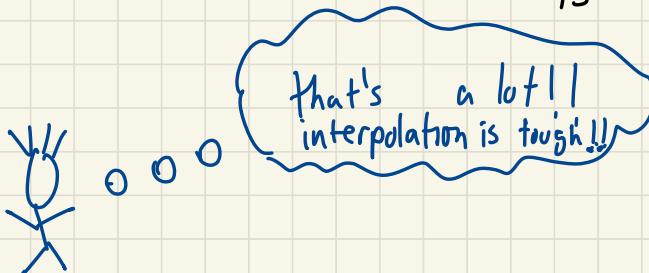
e.g. $2xy + \underbrace{3z^3}_{\text{deg 3}} + \underbrace{4xyz^2}_{\text{deg 4}}$ total deg 4

difficulty 1: $R \neq 0$ can have **infinitely** many roots

e.g. $R(xy) = x \cdot y$

$R_2(xy) = x - y$

difficulty 2: # terms in total degree $\cdot d$ poly
is $\leq \binom{n}{d}$



Good news!

[Schwartz-Zippel - DeMillo Lipton]

For R of total degree d s.t. $R \not\equiv 0$:

Given S containing $2d$ elements

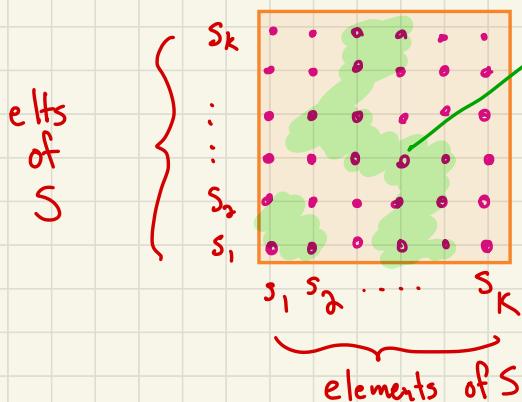
Pick $x_i \in S \quad \forall i \quad \leftarrow$ Pick x_1, \dots, x_n from "n-dim cube"

Then $\Pr [R(x_1, \dots, x_n) = 0] \leq \frac{d}{|S|}$

Proof induction on d

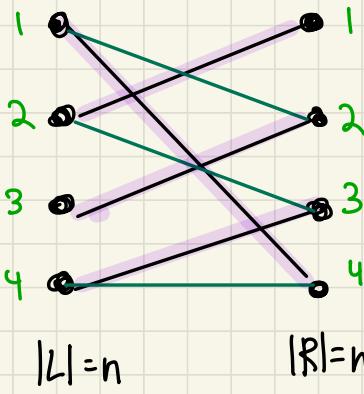
e.g. for $n=2$

$$\Pr [R(S_i, S_k) = 0] \leq \frac{d}{|S|}$$



Application:

Bipartite Perfect Matching



Matching: $M \subseteq E$

no two edges share
endpt

Perfect Matching:

$$|M|=n$$

(all nodes get matched)

Can solve in polytime via flows

Today: another approach!

def S_n : all "permutations" of 1 to n

e.g. $\delta: [n] \rightarrow [n]$ + δ is a bijection
(for $i \neq j$, $S_n[i] \neq S_n[j]$
for all $k \in [n]$, $\exists i$ s.t. $S_n[i] = k$)

a few examples of bijections:

note that this is the purple matching in our graph

nonexample:

i	$b_1(i)$	$b_2(i)$	$b_3(i)$	$\phi(i)$
1	1	4	2	2
2	2	1	3	3
3	3	2	4	2
4	4	3	1	4

these are not matchings in our example

Define special matrix for G :

$$a_{ij} = \begin{cases} x_{ij} & \text{if } (i, j) \in E \\ 0 & \text{o.w.} \end{cases}$$

$$A = \begin{bmatrix} a_{ij} \end{bmatrix}$$

in example:

$$A = \begin{bmatrix} 0 & x_{12} & 0 & x_{14} \\ x_{21} & 0 & x_{23} & 0 \\ 0 & x_{32} & 0 & 0 \\ 0 & 0 & x_{43} & x_{44} \end{bmatrix}$$

notoriously hard to compute

permanent $\text{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i, \sigma(i)}$

determinant $\det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^n a_{i, \sigma(i)}$

easy?

Note that: permutation δ corresponds to perfect matching M in our graph

of $[n]$

$\forall i, (i, \delta(i))$ is edge in matching

Main insight: For given permutation δ :

term
drops out
if not
perfect
matching.

$\prod_{i=1}^n a_{i, \delta(i)}$ will be 0 if even
one of $(i, \delta(i)) \notin E$

so $\prod_{i=1}^n a_{i, \delta(i)} \neq 0$ iff δ is a perfect
matching

In example:

$$\text{perm}(A_G) = x_{21} \cdot x_{32} \cdot x_{43} \cdot x_{14}$$

} all other terms = 0

$$\det(A_G) = \text{sign}(\delta_2) \cdot x_{21} \cdot x_{32} \cdot x_{43} \cdot x_{14}$$

so $\left\{ \begin{array}{l} \text{Perm}[A] \neq 0 \\ \text{Det}[A] \neq 0 \end{array} \right\}$ iff \exists some δ

Some term
remains

which is a matching

- Permanent is hard to compute
- Can compute Det of matrix of integers in poly time, but this a matrix containing variables

Det[A] is a polynomial! ← and a very BIG one!

n^2 vars (1 for each edge)

total degree n

terms $n!$ ← huge!!

Luckily, we don't need to compute Det[A]
We just need to decide if it is $\equiv 0$

Algorithm: Test $\text{Det}[A] \not\equiv 0$ via Schwarz-Zippel -Demillo-Lipton

use $|S| = 2n$