
6
.
842 lecture 3

The Lovnsz Local Lemma

The Lovasz Local Lemma

Another way
to

argue that it's possible that

"nothing bad Kappens"

If A
, Ay ... An are bad events

how do we know that there is a

positive probability that

None occur ?

- Pr[Ai] #1 Fi

if As independentt "nontrivial" :

Pr[UAi] = 1- Pr[Mi]

= 1 - IPrIAi)
To

4

else
,
usual way

: Union Bound

T/ Pr[UA] = [Pr[A]no assumptions
on As if each A: occurs with prob = P,
with respect to
independence then need pat to get

interesting bound i
.

e
.
Pr[VA] < 1

What if Ais have "some" independence ?

def . A "independent" of B
,
By ... By if

F J[[k] then Pr[AN1B;J + 9

i thimeans (1 ... k3
= Pr[A] . Pr[1B;]

jet

def. A
,
... An events

D = (V ,
E) with V = [n] is

"dependency digraph of A
... An

"

if each An independent of all Aj that
are not neighbors in D Lip

.

all Aj st. (j)#E)

Lovasz Local Lemma (symmetric version)

A... An events st
. pr(Ail = p Fi

with dependency digraph D st
.

D

has max degree =d .

If epd [1 then

Pr[[] > o

bup=+)

1

Application

Ihm
.

Given S
,
... SmEX: Kill

each S
:
intersects at most of other Sj's

if e . (d+) < 21-

incere then can 2-color such that

onthere
each Si not monochromatic

is a

restriction
on "degree"

i

.e
.

It is hypergraph with m edges,
each containing & nodes & each

intersecting d other edges

color each elt of red/blue ind withpribt
A= exent that Si even the proof starts&~ is monochromatic

Out the same !
n
J

p = Pr[Ai]
= 1/2

v Y

As indep of all Aj st. Sils= I
so depends onId other Aj

since ep
. (dH) = e . Yet dH

↑ by assumption
(2)= 72-coloring

Comparison :

Hedges = m Hedges = m

size of edies =l size of edies =l

mal- each edie intersects

S with d others

dense da

Application 2 : Boolean Formulae

Given CNF formula St
.
1 vars in each

clause+ each clause intersects [d other clauses

If(+ = 1 there is a satisfying assignment:
2l

(n = #vars
,
m = # clarses)

How do you find a solution ?

partial history :

Lorasz 1975 nonconstructive d =2
(no fast algorithm to e

find soln)

Back 1991 randomized algorithm
but for more restrictive

=2000

conditions on parameters
Alon 1991

parallel version d= 248
5

&

y %

I

Moser 2009 negligible restrictions 2
for SAT I

a most other problems
Moser Tardos

I

&

&

&

Today Given U=C wherei is

clause with 1 literals + each Ci

intersects 1d other Cis.
l

If d+ 1 = 2 then can find2. !

of St
.

each C satisfied

in time poly in md , n
*# variables

n = # vars

m =# clauses p= Pr[bad event Civusat] = 21
d = max degree

Moser's Algorithm :

1
.
Pick random assignment to vars ... n

2. For each it (m]

If C unsatisfied

Fix (Ci) (x)

3. Output assignment

Fix (C) :

rerandomize vars in C

For C' in GC5UEmbrs of 23

If C' unsatisfied then Fix (C)

↑
· how long does it run ?

· does it terminate?

&servation terminates
,

we have a sat assignment

Why does it terminate ?

Idea view Muser's algorithm as a "compression algorithm"

· Input is random string R st IRI =t

· Rule : if algorithm terminates or

run out of bits in R
, stop

When stop , output E =

encoding of
trace of computation

do not write down bits
Trace of Computation of R that we sed

· bit string bi for iE[m]

be = 31if
Fix (C) called on linei

Stop level only(

· for each recursive call to Fix savebywhich
x writing
nbr

,
not

record : (1) which her clause called full clarea
() bits for recursive structure

b = 5 ! i child all

b=E if I right sibling
O . W,

See picture)

· Final variable assignment
⑧ Any remaining random bits in R

Warning: for this lecture
will interchange TIFPicture of encoding + 1/0

bo

- for each "1"
1 if f child

to fix
-> I O bit, draw

0 0 . W. tree of
DFS

recursive

abr 111br100
calls

3 each entry contains:

2

↳
br 110 * · which nor clause "fix" called on : log (d+) bits

1
· child bit : 1 if 7 child to fix, O 0 .W .

nbr 101
nbr 100 / · sibling bit : 1 if I sibling to fix

,
0 0 .W.

save since only write which abr,
not full clurse ID.

Laim can recover R from encoding containing:

Phanging trees
· final var assignment
·

remaining unused bits of R

(Concatenated as bit strings)

· 00 001100110,000 10111011001

ple R

=FFTTFFTTT-uFix3 unused
vars

Q ③ ⑪
(x

, vXzVXz)(,VXs)(XyVXVXa)(X,VYX)

① ② ⑤ ⑪
#tally (FF)(T + F) (FFF)(FTT)

Fix() (TTF) (F F F) (FFF)STTT)
Fix (2) (FFF) (TT F) (FFF) (FTT)
Fix (1) (TFT) (FTF) (FFF) (iTT)

Fix (3) (TFT) (FTF) CTTF) ITTT)

Run of algorithm :
X, X2X3

· Call Fix (1) : use next bits of R (namely TTF)
I is now ok,

, h is now bad , 4 is stillok
X, X2X5

· Recursively call Fix /2) : next bits of R are FFF

I is now bad
, 2 is now ok

,
4 stillok

X, X2X3
· Recursively call Fix (1) : next bits of R are TFT

1
,
2
,
4 are all ok

XyX8X
9

· Call Fix (3) : next bits of R are TTF

3 ok

init assignment unused
-onR= 000001100110000 101/

encoding of example :

/thisisnotpatabe
Adjacency list representation reconstructed
of clauses that intersect : (Clauses intersect

with themselves) by viewing input
.

Cause Ou O1 10

1 +N+B+
00 01 10

2 ->k+B+
00

3-
4--

b : <10 10]
↓Wand Clause↳on adj list

↳ ↓

,o
↓ Encoding : final variable unusedb tree1 tree2

#, 0, 0 E = T
settingsnnu M

1010/01100000 10110111011001

isclause
on adj
list &

How can we reconstruct R from encoding E ?

First pass ; Parse bits of encoding

1
.

15t m bits give us b 21010]

2
.

Each "I" in b gives us hanging free
- recover structure of tree via

DFS bits

child exists in
DFS 21 0 1 0]

↓ no sibling bit is I
↓ ↓

so 7 subtree-> D ⑧ bit is
⑭0 ↓ Zeru

↑ next logd +2 -> ⑭0 so no

and ubr clause child info # ↓
subtreeitare

no child orbr
relabel as "2" ⑳star clause
via adjlist relabel as "I

I

via
,

3. next n bits are final variable assignment at
X X2 XzXyX5XyXyXgX9
TFTT FTTT F

4 , remaining bits are unused bits

2nd Pass : Fill in R

- we already know what the unused bits are

· start with final
var assignment

X = T using tree :

Xz=F look at calls to "fix" in
X3= T reverse order
Xy = T- E
EXj = T last call to Fix is Fix (3)

X6 = T
Xy= T * XO ,Xq all False

Xg = T = F => last 3 bits of R= TTF
*q =F F 1

this partof

X = T = F

Xz=F = F

Xz= T= F 2nd to last call to Fix is Fix (1)
Xy =T F

EXj = T X
,X2 , X3

all False

X6 = T
Xy= T => and to last 3 bits of
Xg =T F this part of R

= TFT

*q = F = F

/

=> Initial vars ; FFF FF TTFF

rolls :TTTF

NETEE 3rd to last call to Fix is

Xz=T
Fix (2) *Ta ,X5 false

Xy =T F
so X

,
=Xz= T

Xj == F

X6 = T Xy = F
Xy= T

Xg =T F => 3rd to last 3 bits of
*q = F = F this part of R = FFF

4th to last (first) call to Fix
is Fix (1) X

,
Xz

, Xz false

=> 4th to last (first 3 bits

of this part of R = TTF

Initial assignment : (read rightmost setting)

NEE Initial assignment
FFFFFTT FF

Xy =T F

Xj == F

X6 = T FFTTFFXy= T

Xg =T F

*q = F = F
R=1100 NOO TOITTOO

How compressed is this encoding of random bits?

Let W = # bits actually used by algo
S = # Calls to Fix

(including recursive)

Then W = n + S .l

n + s :lLength of trace encoding ER
↓

=> m + (log(d+ 1) + 2)xs + n + 11 - w
~

~
~R2 bits -remainingdescriba describe output
node in for DFS assignment
"hanging tree"

=
m + (log(d+ 1) +2-1)xs + An + IR)

so

1 Epl-IRI = m + (log(d+ 1) + 2-1)xs
in

we assumed
D-2. 1

d+12

=> logd+ El-2 . /

=> m + (1 -2.1 +2-1)xs = m - 0 .(x5

So
,
when S is big enough , ITracel IRI

Is compression of Trace a problem?

· we just gave a "lossless" compression
scheme for random strings that
lead to long runtimes.

· how may (random) strings can be
-b

compressed by b bits? I
fraction

why? let compression
fath f : <0 ,135-50 ,13

*

f is 1

(can reconstruct X from f(x)

150 ,135) = 2 t
t-b

/U 3013t1 < 2
t-t -b

fruction[

compressed
by b bits

O(m) bound onalls
to fix

Suppose S = 10(m +b)

then IErl-IR) = m - 0 .I

= m - 0 . 1 (10(m+b)
= M - m - b

above => at most 2 fraction of strings R

can have s?10(m +b)

let b = 10e .g.

Pr[calls to fix = IOm+100] 12 to

