

6.842 lecture 3

The Lovász Local Lemma

The Lovász Local Lemma

Another way to argue that it's possible that
"nothing bad happens"

If A_1, A_2, \dots, A_n are bad events

how do we know that there is a
positive probability that

none occur?

if A_i 's independent + "nontrivial":
 $\Pr[A_i] \neq 1 \forall i$

$$\begin{aligned}\Pr[\cup A_i] &\leq 1 - \Pr[\cap \bar{A}_i] \\ &= 1 - \prod \underbrace{\Pr(\bar{A}_i)}_{>0} \\ &< 1\end{aligned}$$

else, usual way: Union Bound

↑
no assumptions
on A_i 's
with respect to
independence

$$\Pr[\cup A_i] \leq \sum \Pr[A_i]$$

if each A_i occurs with prob $\leq p$,

then need $p < \frac{1}{n}$ to get

interesting bound ie, $\Pr[\cup A_i] < 1$

What if A_i 's have "some" independence?

def. A "independent" of $B, B_2 \dots B_k$ if

$$\forall J \subseteq [k] \quad \text{then} \quad \Pr[A \cap \bigcap_{j \in J} B_j]$$

$$= \Pr[A] \cdot \Pr_{j \in J} [B_j]$$

note:
[k] means $\{1 \dots k\}$

def. $A_1 \dots A_n$ events

$D = (V, E)$ with $V = [n]$ is

"dependency digraph of $A_1 \dots A_n$ "

if each A_i independent of all A_j that
are not neighbors in D (i.e. all A_j st. $(i, j) \notin E$)

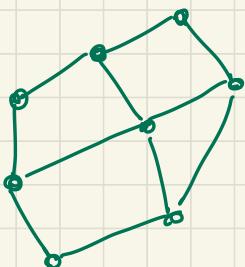
Lovász Local Lemma (symmetric version)

A_1, \dots, A_n events s.t. $\Pr(A_i) \leq p \quad \forall i$

with dependency digraph D s.t. D has max degree $\leq d$.

If $epd \leq 1$ then

$$\Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] > 0$$



$$\frac{\text{Union bnd}}{\text{need}} \quad p \leq \frac{1}{n}$$

LLL
if $d \leq 4$
only need
 $p \leq \frac{1}{e \cdot (4+1)}$

Application

Thm. Given $S_1, \dots, S_m \subseteq \bar{X}$ $|S_i| = l$

each S_i intersects at most d other S_j 's

previously needed
 $m \leq 2^{l-1}$
now no restriction
on m
but there
is a
restriction
on "degree"

if $e \cdot (d+1) \leq 2^{l-1}$

then can 2-color \bar{X} such that
each S_i not monochromatic

i.e. \mathcal{H} is hypergraph with m edges

each containing l nodes & each
intersecting $\leq d$ other edges

Pf color each elt of \bar{X} red/blue iid with prob $\frac{1}{2}$

A_i = event that S_i
is monochromatic

even the proof starts
out the same!

$$p = \Pr[A_i] = 1/2^{l-1}$$

A_i indep of all A_j s.t. $S_i \cap S_j = \emptyset$
so depends on $\leq d$ other A_j

Since $e^p \cdot (d+1) = e \cdot \frac{1}{2}e^{-1} \cdot d+1 \leq 1$ by assumption

LLL $\Rightarrow \exists$ 2-coloring ◻

Comparison:

$$\# \text{edges} = m$$

$$\text{size of edges} = l$$

$$m < 2^{l-1}$$

no dependence
on m

$$\# \text{edges} = m$$

$$\text{size of edges} = l$$

each edge intersects
with $\leq d$ others

$$d+1 \leq \frac{2^l}{e}$$

Application 2: Boolean Formulae

Given CNF formula s.t. l vars in each clause & each clause intersects $\leq d$ other clauses

If $\frac{e(d+1)}{2^l} \leq 1$ there is a satisfying assignment.

($n = \# \text{ vars}$, $m = \# \text{ clauses}$)

How do you find a solution?

partial history:

Lovász 1975 nonconstructive
(no fast algorithm to
find soln)

$$d \leq \frac{l}{2/e}$$

Beck 1991 randomized algorithm
but for more restrictive
conditions on parameters

$$d \leq \frac{l}{2^{1/1000}}$$

Alon 1991 parallel version

$$d \leq 2^{l/8}$$

⋮

Moser 2009

negligible restrictions

for SAT

& most other problems

$$d \leq \frac{2^l}{c}$$

Moser Tardos

-
-
-

.

Today Given $\phi = \bigwedge_{i=1}^m C_i$ where C_i is

Clause with l literals & each C_i
intersects $\leq d$ other C_j 's.

If $d+1 \leq \frac{2^l}{2^{2 \cdot l}}$ then can find

of X s.t. each C_i satisfied
in time poly in m, d, n

↑ # variables

$$n = \# \text{ vars}$$

$$m = \# \text{ clauses}$$

$$d = \max \text{ degree}$$

$$p = \Pr[\text{bad event } C_i \text{ unsat}] = 2^{-l}$$

Moser's Algorithm:

1. Pick random assignment to vars 1..n
2. For each $i \in [m]$
 If C_i unsatisfied
 Fix (C_i) (*)
3. Output assignment

Fix (C) :

rerandomize vars in C

For C' in $\{C\} \cup \{\text{nbrs of } C\}$

If C' unsatisfied then $\text{fix } (C')$

- how long does it run?
- does it terminate?

Observation

if it terminates, we have a sat assignment

Why does it terminate?

Idea view Moser's algorithm as a "compression algorithm"

- Input is random string R s.t. $|R|=t$

- Rule: if algorithm terminates or run out of bits in R , stop

When stop, output $E =$ encoding of trace of computation

Trace of Computation

do not write down bits
of R that we used

- bit string b_i for $i \in [m]$

$$b_i = \begin{cases} 1 & \text{if } \text{Fix}(L_i) \text{ called on line } k \\ 0 & \text{O.w.} \end{cases} \quad \begin{matrix} \text{(top level only)} \\ \text{save by writing which nbr, not full clause name} \end{matrix}$$

- for each recursive call to Fix

record: (1) which nbr clause called

(2) bits for recursive structure

$$b_1 = \begin{cases} 1 & \text{if } \exists \text{ child call} \\ 0 & \text{O.w.} \end{cases}$$

$$b_2 = \begin{cases} 1 & \text{if } \exists \text{ right sibling} \\ 0 & \text{O.w.} \end{cases}$$

(see picture)

- Final variable assignment
- Any remaining random bits in R

Warning: for this lecture
will interchange T/F
+ 1/0

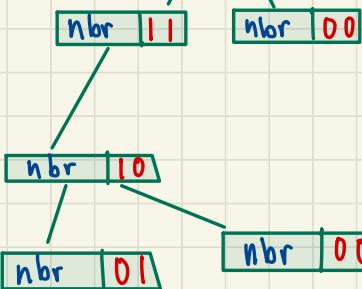
Picture of encoding

b:

01000001001000001111

1 if 3 child
to fix

0 o.w.



each entry contains:

- * which nbr clause "fix" called on: $\log_2(d+1)$ bits
- child bit: 1 if 3 child to fix, 0 o.w.
- sibling bit: 1 if 3 sibling to fix, 0 o.w.

 Give since only write which nbr, not full clause ID.

why +1? because of 00000000000000000000000000000000

Claim can recover R from encoding containing:

- b
- hanging trees
- final var assignment
- remaining unused bits of R

(Concatenated as bit strings)

Example $R = \underbrace{\text{FFFFFTTFF}}_{\text{use for initial assignment}} \underbrace{\text{110000}}_{\text{Fix 1}} \underbrace{\text{110}}_{\text{Fix 2}} \underbrace{\text{101}}_{\text{Fix 1}} \underbrace{\text{110}}_{\text{Fix 3}} \underbrace{\text{110001}}_{\text{unused vars}}$

$$(x_1 \vee x_2 \vee x_3) \quad (x_1 \vee \bar{x}_2 \vee x_5) \quad (x_4 \vee x_8 \vee x_9) \quad (x_5 \vee x_6 \vee x_7)$$

Initially $(F \ F \ F) \quad (\bar{T} \ T \ F) \quad (F \ F \ F) \quad (F \bar{T} \ T)$

Fix(1) $(TTF) \quad (F \ F \ F) \quad (FFF) \quad (T \ T \ T)$
 Fix(2) $(FF \ F) \quad (TT \ F) \quad (FFF) \quad (F \ T \ T)$
 Fix(1) $(TFT) \quad (FT \ F) \quad (FFF) \quad (\bar{T} \ T \ T)$
 Fix(3) $(TFT) \quad (FT \ F) \quad (TTF) \quad (TTT)$

Run of algorithm:

- Call Fix(1): use next bits of R (namely TTF)
 1 is now ok, 2 is now bad, 4 is still ok
- Recursively call Fix(2): next bits of R are FFF
 1 is now bad, 2 is now ok, 4 still ok
- Recursively call Fix(1): next bits of R are TFT
 $1, 2, 4$ are all ok
- Call Fix(3): next bits of R are TTF
 3 ok

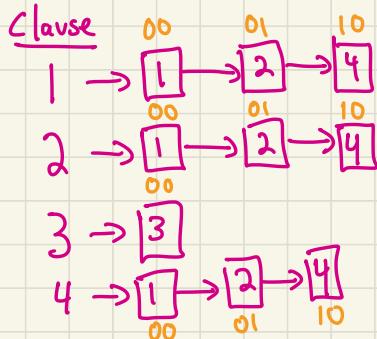
encoding of example:

inst assignment Unused
 $R = 00000110011000010111011001$

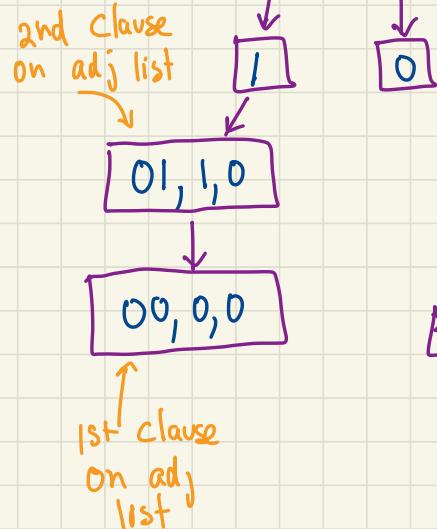
this is not part
of encoding. Can be
reconstructed
(clauses intersect
with themselves) by viewing input.

Adjacency list representation

of clauses that intersect:



$b: [1 \ 0 \ 1 \ 0]$



Encoding:

$$E = \underbrace{b}_{1010} \ \underbrace{\text{tree1}}_{10110} \ \underbrace{\text{tree2}}_{00000} \ \underbrace{\text{final variable settings}}_0 \ \underbrace{\text{Unused}}_{10110111011001}$$

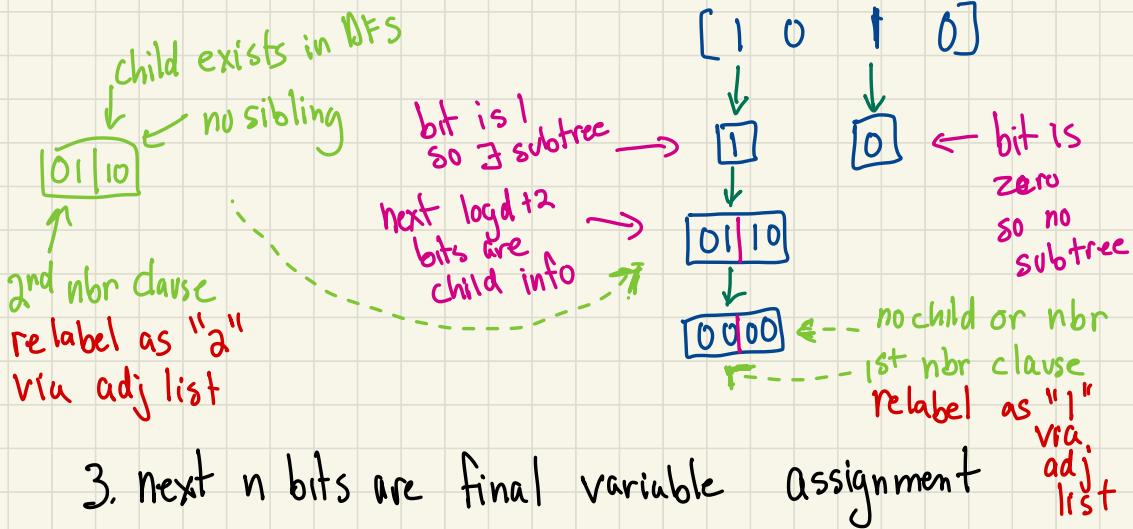
How can we reconstruct R from encoding E ?

First pass: Parse bits of encoding

1. 1st m bits give us b [1010]

2. Each "1" in b gives us hanging tree
- recover structure of tree via

DFS bits



3. Next n bits are final variable assignment

$x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9$
T F T T F T T T F

4. remaining bits are unused bits

2nd Pass: Fill in R

- We already know what the unused bits are
- start with final var assignment

$X_1 = T$
 $X_2 = F$
 $X_3 = T$
 $X_4 = T \leftarrow F$
 $X_5 = F$
 $X_6 = T$
 $X_7 = T$
 $X_8 = T \leftarrow F$
 $X_9 = F \leftarrow F$

using tree:

look at calls to "fix" in reverse order

last call to Fix is Fix(3)

X_4, X_8, X_9 all False
 \Rightarrow last 3 bits of R = TTF
 this part of

$X_1 = T \leftarrow F$
 $X_2 = F \leftarrow F$
 $X_3 = T \leftarrow F$
 $X_4 = T \leftarrow F$
 $X_5 = F$
 $X_6 = T$
 $X_7 = T$
 $X_8 = T \leftarrow F$
 $X_9 = F \leftarrow F$

2nd to last call to Fix is Fix(1)

X_1, X_2, X_3 all False
 \Rightarrow 2nd to last 3 bits of
 this part of R = TFT

Initial vars: FFF F F TFT FF

rolls: TFT FFF TFT TFT

$X_1 = T \leftarrow F \leftarrow T \leftarrow F$
 $X_2 = F \leftarrow F \leftarrow T \leftarrow F$
 $X_3 = T \leftarrow F \leftarrow F$
 $X_4 = T \leftarrow F$
 $X_5 = F \leftarrow F$
 $X_6 = T$
 $X_7 = T$
 $X_8 = T \leftarrow F$
 $X_9 = F \leftarrow F$

3rd to last call to Fix is
 Fix (2) $\bar{X}_1, \bar{X}_2, X_5$ false
 so $X_1 = X_2 = T$
 $X_5 = F$
 \Rightarrow 3rd to last 3 bits of
 this part of $R = FFF$

4th to last (first) call to Fix
 is Fix (1) X_1, X_2, X_3 false
 \Rightarrow 4th to last (first) 3 bits
 of this part of $R = TTF$

Initial assignment: (read rightmost setting)

$X_1 = T \leftarrow F \leftarrow T \leftarrow F$
 $X_2 = F \leftarrow F \leftarrow T \leftarrow F$
 $X_3 = T \leftarrow F \leftarrow F$
 $X_4 = T \leftarrow F$
 $X_5 = F \leftarrow F$
 $X_6 = T$
 $X_7 = T$
 $X_8 = T \leftarrow F$
 $X_9 = F \leftarrow F$

Initial assignment
 $FFF F F T T F F$
 $\underbrace{FFF F F}_{\text{Initial}} \underbrace{T T F}_{\text{fix 1}} \underbrace{\overbrace{FFF}^{\text{fix 2}} \overbrace{T T F}^{\text{fix 1}} \overbrace{T T F}^{\text{fix 3}}}$

$R = \overbrace{0 0 0 0 0 1 1 0 0}^{\text{Initial}} \overbrace{1 1 0}^{\text{fix 1}} \overbrace{0 0 0}^{\text{fix 2}} \overbrace{1 0 1}^{\text{fix 1}} \overbrace{1 1 0}^{\text{fix 2}} \overbrace{1 1 0 0 1}^{\text{fix 3}}$

How compressed is this encoding of random bits?

Let $W = \# \text{ bits actually used by algo}$
 $S = \# \text{ calls to fix}$
(including recursive)

Then $W = n + s \cdot l$

Length of trace encoding E_R

$$\leq m + \underbrace{(\log(d+1) + 2)}_{\substack{\text{describe} \\ b}} \times S + n + |R| - W$$

describe node in "hanging tree" $\xrightarrow{2 \text{ bits for DFs}}$ output assignment $\xrightarrow{\text{Remaining}}$

$$\xrightarrow{n+s \cdot l}$$

$$\leq m + (\log(d+1) + 2 - l) \times S + \cancel{n - n} + |R|$$

so

$$|E_R| - |R| \leq m + (\log(d+1) + 2 - l) \times S$$

we assumed
 $d+1 \leq 2^{l-2.1}$

$$\Rightarrow \log(d+1) \leq l-2.1$$

$$\leq m + (l-2.1 + 2 - l) \times S = m - 0.1 \times S$$

So, when S is big enough, $|Travel| \ll |R|$

Is compression of Trace a problem?

- we just gave a "lossless" compression scheme for random strings that lead to long runtimes.
- how many (random) strings can be compressed by b bits? $\leq 2^{-b}$ fraction

why? let compression fctn $f: \{0,1\}^t \rightarrow \{0,1\}^{t^*}$

f is 1-1

(can reconstruct x from $f(x)$)

$$|\{0,1\}^t| = 2^t$$

$$|\bigcup_{t' \leq t-b} \{0,1\}^{t'}| \leq 2^{t-b}$$

$$\text{fraction compressed by } b \text{ bits} \leq \frac{2^{t-b}}{2^t} = 2^{-b}$$

$\mathcal{O}(m)$ bound on $\underbrace{\# \text{ calls to fix}}_{=S}$:

Suppose $S \geq 10(m+b)$

$$\begin{aligned} \text{then } |E_R| - |R| &\leq m - 0.1 \times S \\ &= m - 0.1(10(m+b)) \\ &= m - m - b \end{aligned}$$

above \Rightarrow at most 2^{-b} fraction of strings R
can have $S \geq 10(m+b)$

e.g. let $b = 10$

$$\Pr[\# \text{ calls to fix} \geq 10m + 100] \leq 2^{-10}$$