
6.5420 Randomness and Computation February 3, 2026

Lecture 1: Polynomial Identity Testing
Lecturer: Ronitt Rubinfeld Scribe: Morgan Prior

1 Introduction & Notation

While many problems which are solvable by efficient randomized algorithms also have fast determin-
istic algorithms, polynomial identity testing is different in that the best known randomized algorithm
is strictly more efficient than the best known deterministic one. This lecture introduced the problem
of polynomial identity testing for both single-variable and multi-variable polynomials. We saw an
efficient randomized algorithm for this problem, as well as applications to the “Person on the Moon”
communication problem and to the bipartite matching problem.

The motivating question is: given two polynomials, say P (x) = (x+1)2 and Q(x) = x2+2x+1,
are they equal? In this concrete example, by expanding P or factoring Q, it is easy to tell that they
are equal.

Consider instead P (x) = (x+ 3)38(x− 4)83 and Q(x) = (x− 4)38(x+ 3)83. Because the degree
here is much higher, comparing these polynomials after expanding them is inefficient. Fortunately,
in the factored form provided, we can give a short justification that P ̸= Q: consider the input x = 0
and observe that P (0) is negative while Q(0) is positive. When the two polynomials are not given
in factored form like this, such a short justification is not always possible. This challenge motivates
the more general problem of polynomial identity testing:

Problem 1. Given two polynomials P and Q, each with degree at most d, is P (x) = Q(x) ∀x?

Problem 2. Given a polynomial R with degree at most d, is R(x) = 0 ∀x?

By taking R = P − Q, which clearly has degree at most max(deg(P), deg(Q)) ≤ d, we can
observe that Problem 1 reduces to Problem 2. In the following sections, we see efficient, randomized
algorithms for solving Problem 2.

Throughout the notes, we use P ≡ Q to denote that P and Q are identical polynomials; that is,
P (x) = Q(x) ∀x. Similarly, we use R ≡ 0 to mean that a polynomial R is identically zero; that
is, R(x) = 0 ∀x. We use i ∈D S where D is a probability distribution to mean that i is a random
D-distributed draw from the set S, and i ∈U S to mean i is a uniformly distributed draw. We use
[n] to denote the set {1, . . . , n}.

2 Univariate Polynomial Identity Testing

Our randomized algorithms make use of the following theorem:

Theorem 3. If R ̸≡ 0 and has deg ≤ d, then R has ≤ d roots.

Remark. Theorem 3 actually holds over any field. In particular, it holds for the field Zq, where
q is a prime, which is the set {0, 1, . . . q− 1} with the operation of addition mod q. This fact will be
useful when doing the Human on the Moon application in Section 2.3.

1

2.1 Deterministic Algorithm

Theorem 3 suggests a simple deterministic algorithm for deciding whether R ≡ 0:

1. Pick d+ 1 distinct points x1, . . . , xd+1 in the domain of R.

2. If ∀i, R(xi) = 0, output “R ≡ 0.”

3. Otherwise (i.e., we found i s.t. R(x) ̸= 0), output “R ̸≡ 0.”

Clearly, this algorithm is correct on all inputs R. Indeed, if R really is identically zero, we will
always terminate at Step 2. If R is not identically zero, by the Pigeonhole Principle and the fact
that deg(R) ≤ d, at least one of the xi will not be a root, and we will always terminate at Step 3.
Despite its correctness, the algorithm requires d+ 1 evaluations of R, which is inefficient when d is
large. This motivates the faster algorithm described in the next subsection.

2.2 Randomized Algorithm

1. Pick 2d distinct points x1, . . . x2d in the domain of R.

2. Do the following k times:

(a) Draw i ∈U [2d].

(b) If R(xi) ̸= 0, output “R ̸≡ 0.”

3. Output “R ≡ 0.”

Remark. Note that in the randomized algorithm above, we do not make any assumption about
the points x1, . . . , x2d other than distinctness. However, the indices i must be drawn uniformly and
independently of each other.

Observe that our algorithm’s error is one-sided; it is always correct when R ≡ 0. However, when
R ̸≡ 0, there is some chance that in all k rounds we select an xi that is a root of R, and thus output
the wrong result. If R ̸≡ 0, using the Fundamental Theorem of Alegbra to upper bound the number
of roots, we have that on any given round,

Pr
i∈[2d]

[R(xi) = 0] =
roots

2d
≤ d

2d
=

1

2
.

Since the xi are drawn independently, we get the following upper bound on the error probability
of the whole algorithm:

Pr[error] = Pr[choose a root on all k iterations] ≤ 1

2k
.

To achieve an error probability less than some fixed parameter δ, we can select k = O(log 1/δ).

2.3 Application: Human on the Moon

Suppose you have some binary string w = w0 . . . wn and you are communicating with someone on
the moon who has binary string w∗ = w∗

0 . . . w
∗
n. You want to know if w = w∗. The naive solution

is for one participant to send their whole string, but this costs O(n) bits of communication, which
is expensive if n is large.

We can use polynomial identity testing to solve this problem by constructing two degree n
polynomials: P (x) = wnx

n + · · ·w1x+w0 and P ∗(x) = w∗
nx

n + · · ·w∗
1x+w∗

0 . We have that w = w∗

iff P ≡ P ∗.

2

2.3.1 Randomized Algorithm (a first attempt)

Consider the following randomized algorithm for the Human on the Moon problem:

1. You (the person on Earth) pick random r1, . . . rk ∈ [2n] and send (r1, P (r1)), . . . (rk, P (rk)) to
the moon person.

2. The moon person evaluates P ∗ on the same inputs and checks if P ∗(ri) = P (ri) for all i ∈ [k].

A second look at this proposed algorithm reveals its ineffectiveness: when evaluating P (x), we
can get values on the order of O(nn), which would require O(n log n) bits to send to the person on
the moon. This is worse than the naive strategy of sending the entire string.

2.3.2 Randomized Algorithm, revised

To remedy the problems with our first attempt, we will do all computations modulo some prime
q ≥ 2n:

1. You (the person on Earth) pick random r1, . . . rk ∈ [2n] and compute pi = P (ri) (mod q) for
all i ∈ [k].

2. You send (r1, p1), . . . (rk, pk) to the moon person.

3. The moon person evaluates whether P ∗(ri) mod q = pi for all i ∈ [k].

Fact 4 (Bertrand’s Postulate). For any n, there exists a prime q ∈ (2n, 4n).

By Fact 4, q can be chosen to be at most 4n, which means it takes at most O(logn) bits to
represent. Then both the ri and pi take at most O(logn) bits to present, and since k = O(1), the
entire algorithm requires O(logn) bits of communication, outperforming the naive approach.

3 Multivariate Polynomial Identity Testing

We can ask the same question for multivariate polynomials:

Problem 5. Given R(x1, x2, . . . , xn) with degree at most d, is R ≡ 0?

When we refer to degree in Problem 5, we mean total degree:

Definition 6 (Total degree). Given a polynomial P (x1, x2, . . . , xn), the total degree of P is the
maximum over all terms in P of the sum of the degrees of the xi’s in the term.

Example 7. Let P (x, y, z) = 2xy+3z3+4xyz2. The degree of the first term is 1+1 = 2, the degree
of the second term is 3, and the degree of the third term is 1 + 1 + 2 = 4. The total degree of P is
max(2, 3, 4) = 4.

The multivariate case has some new challenges:

• There exist multivariate polynomials R such that R ̸≡ 0 but R has many roots. For example,
define R(x, y) = xy. When x and y are both non-zero, R(x, y) ̸= 0. However, if, say x = 0, we
get a distinct root of R for each possible value of y.

• If we have n variables and degree d, we can have
(
n
d

)
distinct degree-d terms.

Using the following lemma, we can construct a randomized algorithm in this case analogous to
the one in Section 2.2:

Lemma 8 (DeMillo–Lipton–Schwartz–Zippel). Let R(x1, . . . , xn) be a polynomial of total degree d
such that R ̸≡ 0. Let S be a set of elements in the domain of R. Pick xi ∈U S ∀i ∈ [n] then
Pr[R(x1, . . . xn) = 0] ≤ d

|S| .

The lemma can be proved by induction on the degree.

3

u1

u2

u3

v1

v2

v3

x11

x12

x21

x23

x32

x11 x12 0

x21 0 x23

0 x32 0




u1

u2

u3

v1 v2 v3

Figure 1: An example of a bipartite graph G and the corresponding matrix AG, labeled based on
the edges of G.

3.1 Bipartite Perfect Matching

Recall that a bipartite graph is a graph with no odd cycles. Multivariate polynomial identity testing
can actually be used to determine a given bipartite graph has a perfect matching. This problem is
solvable in polynomial time deterministically by using network flows.

We define the matrix AG such that ai,j =

{
Xij if (i, j) ∈ G

0 otherwise
. Figure 3.1 shows an example of

a bipartite graph and its associated matrix.
Let Sn denote set of permutations of 1 to n. A permutation is a bijective function σ ∈ Sn. Notice

that we can associate each permutation σ with a matching in G, by thinking of the pairs (i, σ(i)) as
the edges in the matching.

Definition 9 (determinant, permanent). Given a matrix A, the determinant of A is defined as:

det(A) =
∑
σ∈Sn

sign(σ)

n∏
i=1

ai,σ(i).

The permanent of A is similar, but with the summands unsigned:

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

Notice that for an n-vertex graph G, if σ corresponds to a perfect matching in G, then the term∏n
i=1 ai,σ(i) in per(AG) equals one. This tells us that per(AG) is equal to the number of perfect

matchings in G. However, the permanent is significantly harder to compute than the determinant
(in terms of computational complexity), so we would like to be able to say something about the
presence of a perfect matching using the determinant instead. It turns out that we can:

Lemma 10. G has a perfect matching if and only if det(AG) ̸= 0.

Proof. If there is no perfect matching, then for each permutation σ, at least one edge (i, σ(i)) must
be absent from G. Hence the entry ai,σ(i) in AG is zero, and the whole product

∏n
i=1 ai,σ(i) will be

equal to zero. This will be true of each term, so the sum
∑

σ∈Sn
sign(σ)

∏n
i=1 ai,σ(i) = det(AG) = 0.

On the other hand, if there is a perfect matching, then there is a permutation σ so that the
edges (i, σ(i)) are all present and thus the entries ai,σ(i) are all equal to 1. So det(AG) ̸= 0 because
it contains the nonzero term sign(σ)

∏n
i=1 ai,σ(i).

Now to tell whether G has a perfect matching, we just need to be able to compute det(AG). The
challenge is that ordinarily we compute the determinant of a matrix whose entries are constants,
and in AG, some of the entries are variables. To compute the determinant when there are variables,

4

we use the following clever trick: observe that det(AG) is a polynomial with total degree at most n
(the number of vertices), so we can do polynomial identity testing on it by evaluating it with random
choices for the variables Xij .

5

