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Today we apply the probabilistic method to several problems. This method essentially does
the following: we construct an object with a random procedure, and show that the probability the
random object satisfies our desired properties is nonzero. That implies that such an object exists.

1 Hypergraph Coloring

A hypergraph is analogous to a graph, where instead of edges between pairs of vertices, we have
hyperedges that connect any subset of vertices. Formally, a hypergraph contains a set X of elements
(vertices), and some hyperedges S, Sa,...,S, C X. In the 2-coloring problem, we ask whether it is
possible to color the elements of X red or blue such that none of the hyperedges are monochromatic.
On arbitrary hypergraphs, this problem is known to be NP-hard.

Instead, we’ll look at the case where the size of all hyperedge are the same and the number of
hyperedges is relatively small: letting ¢ be the number of elements |S;| in each hyperedge and m be
the number of hyperedges, we can guarantee that a 2-coloring exists if m < 2~

Theorem 1. If m < 2°71, there always exists a proper 2-coloring.

Proof. Consider any hypergraph X with hyperedges Si,...,S,. We randomly color each element
x € X red or blue, independently and uniformly at random. Then for any hyperedge S;, there is a
1/2¢ probability that all z € S; are randomly colored red, and 1/2¢ probability that all z € S; are
randomly colored blue so the probability that S; is monochromatic is

Pr[S; monochromatic] = 21

Now by taking the union bound over all m hyperedges, the probability that at least one S; is
monochromatic is at most

m
Pr[at least one S; monochromatic] < ZPT[&' monochromatic] = Y=
i=1
Thus if m < 2¢71, this probability is strictly less than 1. Equivalently, the probability that there are
no monochromatic edges is positive and our random coloring is legal; this implies that there exists
at least one legal 2-coloring of X. O

Note that this proof is not constructive; on any given input, we know that a legal 2-coloring exists,
but we don’t know what that coloring is or how to find it. If we make the bound slightly looser and
consider graphs on which m < 2¢=2, then observe that in our proof, the probability of having a legal
coloring is greater than 1/2. Then it is possible to construct a legal coloring in expected constant
time by randomly sampling a coloring and checking whether any edges are monochromatic.

2 Dominating Set

We look at another example of the probabilistic method. On a graph G = (V, E), a subset of vertices
U C V is a dominating set if every other vertex v € V' \ U is adjacent to at least one vertex in U.
Just as in hypergraph coloring, the problem of finding the smallest dominating set is NP-hard. With
the probabilistic method, we can derive some upper bounds.



Theorem 2. If G has minimum degree A then G has a dominating set of size at most

4dnln(4n)
A+1

Proof. We randomly construct a candidate set U by including each node v € V' independently with
probability

In(4n)

A+1°

We call a vertex w € V' good if it is in U or it is adjacent to a vertex in U , and call it bad otherwise.
It’s clear from the definition that U is a dominating set if all vertices w € V are good. Since we
included the vertices independently, the probability that any w is bad is at most

Pr[w bad] < (1 —p)- (1 —p)> =(1—p)>TL

p:

Taking the union bound of all vertices w € V', the probability that at least one of the vertices is bad
is

Indn \ 2+ n 1
Prat least one bad vertex] < n(1 —p)2*t =n (1 - ) <pe Imdn =~ —

A+1 dn 4

where we used the fact that (1 — 1/x)® < e~! for all positive z. Thus the probability that our
candidate set U is a dominating set is at at least 3

Now recalling our theorem, U satisfies the condltlons if it is a dominating set and has at most
4np vertices. Each vertex is in U with probability p, so the expected number of vertices in Uis np.
Applying the Markov bound, there is probability 3/4 that the number of vertices in U is at most
4np. Thus applying another union bound, the probability that Uisa dominating set and is small
enough is at least 1/2, so such a set exists. O

In this proof, our random sampling has probability at least 1/2 of yielding a sufficiently small
dominating set, so this also yields an efficient algorithm of generating such a set.

3 Sum-Free Subsets

A set A C N of positive integers is sum-free if there are no triples ay, as,as € A such that a1 +as+as.
For example, if we have the set B = {1,...,n}, there is a sum-free subset of size [n/2] by taking
the larger half A = {”T'H, coo,nt.

Theorem 3. For any set B of positive integers with size |B| = n, there exists a sum-free subset
A C B with size |A] > n/3.

Proof. Let b, be the largest number in B and fix a prime p > 2b,, such that p =2 (mod 3). In this
proof, we work in the integers modulo p, denoted Z,. We also denote Z) to be the multiplicative
group {1,2,...,p — 1}. Importantly, every number in Z has a multiplicative inverse mod p.

We have that p = 3k + 2 for some integer k. Letting C be the set {k + 1,k + 2,...,2k + 1}
covering roughly the middle third of Z,, we can observe that C is always sum-free in Z, since the
sum of any two elements ranges from 2k 4+ 2 to 4k +2 =k (mod 3k +2). .

Now for each z € Z;, define the set

+=1{b€ B:zbmodp € C}.

That is, A, contains the elements of b of which multiplication by & maps to C. The set A, will
always be sum-free; otherwise, if there are elements a1, as,a3 € A, such that a; + as = ag, this
would imply za; + zas = zas (mod p) which is impossible since C is sum-free.



Since all elements in Z have inverses, for each b € B and y € Z,', there is exactly one element

x € Z,; such that b = y (mod p).This means that if we pick random z, the value of zb is a uniformly
random distribution across all elements of Z.

This lets us apply the probabilistic method as follows: we pick a uniformly random = € Z.
Observing that C contains k 4 1 elements, the probability that any element b is mapped to C is

ICl k41
p—1 3k+2

Prizb e C] = > 1/3.

Thus any b € B is included in A with probability more than 1/3, and by linearity of expectation
the expected size of A is greater than n/3. This means that at least one of the A, has size greater
than n/3, and we are done. O



