
6.5420 Randomness and Computation February 5, 2026

Lecture 2
Lecturer: Ronitt Rubinfeld Scribe: Edward Xiong

Today we apply the probabilistic method to several problems. This method essentially does
the following: we construct an object with a random procedure, and show that the probability the
random object satisfies our desired properties is nonzero. That implies that such an object exists.

1 Hypergraph Coloring

A hypergraph is analogous to a graph, where instead of edges between pairs of vertices, we have
hyperedges that connect any subset of vertices. Formally, a hypergraph contains a set X of elements
(vertices), and some hyperedges S1, S2, . . . , Sm ⊆ X. In the 2-coloring problem, we ask whether it is
possible to color the elements of X red or blue such that none of the hyperedges are monochromatic.
On arbitrary hypergraphs, this problem is known to be NP-hard.

Instead, we’ll look at the case where the size of all hyperedge are the same and the number of
hyperedges is relatively small: letting ℓ be the number of elements |Si| in each hyperedge and m be
the number of hyperedges, we can guarantee that a 2-coloring exists if m < 2ℓ−1.

Theorem 1. If m < 2ℓ−1, there always exists a proper 2-coloring.

Proof. Consider any hypergraph X with hyperedges S1, . . . , Sm. We randomly color each element
x ∈ X red or blue, independently and uniformly at random. Then for any hyperedge Si, there is a
1/2ℓ probability that all x ∈ Si are randomly colored red, and 1/2ℓ probability that all x ∈ Si are
randomly colored blue so the probability that Si is monochromatic is

Pr[Si monochromatic] =
1

2ℓ−1
.

Now by taking the union bound over all m hyperedges, the probability that at least one Si is
monochromatic is at most

Pr[at least one Si monochromatic] ≤
m∑
i=1

Pr[Si monochromatic] =
m

2ℓ−1
.

Thus if m < 2ℓ−1, this probability is strictly less than 1. Equivalently, the probability that there are
no monochromatic edges is positive and our random coloring is legal; this implies that there exists
at least one legal 2-coloring of X.

Note that this proof is not constructive; on any given input, we know that a legal 2-coloring exists,
but we don’t know what that coloring is or how to find it. If we make the bound slightly looser and
consider graphs on which m < 2ℓ−2, then observe that in our proof, the probability of having a legal
coloring is greater than 1/2. Then it is possible to construct a legal coloring in expected constant
time by randomly sampling a coloring and checking whether any edges are monochromatic.

2 Dominating Set

We look at another example of the probabilistic method. On a graph G = (V,E), a subset of vertices
U ⊆ V is a dominating set if every other vertex v ∈ V \ U is adjacent to at least one vertex in U .
Just as in hypergraph coloring, the problem of finding the smallest dominating set is NP-hard. With
the probabilistic method, we can derive some upper bounds.
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Theorem 2. If G has minimum degree ∆ then G has a dominating set of size at most

4n ln(4n)

∆ + 1
.

Proof. We randomly construct a candidate set Û by including each node v ∈ V independently with
probability

p =
ln(4n)

∆ + 1
.

We call a vertex w ∈ V good if it is in Û or it is adjacent to a vertex in Û , and call it bad otherwise.
It’s clear from the definition that Û is a dominating set if all vertices w ∈ V are good. Since we
included the vertices independently, the probability that any w is bad is at most

Pr[w bad] ≤ (1− p) · (1− p)∆ = (1− p)∆+1.

Taking the union bound of all vertices w ∈ V , the probability that at least one of the vertices is bad
is

Pr[at least one bad vertex] ≤ n(1− p)∆+1 = n

(
1− ln 4n

∆+ 1

)∆+1

≤ ne− ln 4n =
n

4n
=

1

4
,

where we used the fact that (1 − 1/x)x < e−1 for all positive x. Thus the probability that our
candidate set Û is a dominating set is at at least 3

4 .

Now recalling our theorem, Û satisfies the conditions if it is a dominating set and has at most
4np vertices. Each vertex is in Û with probability p, so the expected number of vertices in Û is np.
Applying the Markov bound, there is probability 3/4 that the number of vertices in Û is at most
4np. Thus applying another union bound, the probability that Û is a dominating set and is small
enough is at least 1/2, so such a set exists.

In this proof, our random sampling has probability at least 1/2 of yielding a sufficiently small
dominating set, so this also yields an efficient algorithm of generating such a set.

3 Sum-Free Subsets

A set A ⊆ N of positive integers is sum-free if there are no triples a1, a2, a3 ∈ A such that a1+a2+a3.
For example, if we have the set B = {1, . . . , n}, there is a sum-free subset of size ⌈n/2⌉ by taking
the larger half A = {n+1

2 , . . . , n}.

Theorem 3. For any set B of positive integers with size |B| = n, there exists a sum-free subset
A ⊆ B with size |A| ≥ n/3.

Proof. Let bn be the largest number in B and fix a prime p > 2bn such that p ≡ 2 (mod 3). In this
proof, we work in the integers modulo p, denoted Zp. We also denote Z×

p to be the multiplicative
group {1, 2, . . . , p− 1}. Importantly, every number in Z×

p has a multiplicative inverse mod p.
We have that p = 3k + 2 for some integer k. Letting C be the set {k + 1, k + 2, . . . , 2k + 1}

covering roughly the middle third of Zp, we can observe that C is always sum-free in Zp since the
sum of any two elements ranges from 2k + 2 to 4k + 2 ≡ k (mod 3k + 2). .

Now for each x ∈ Z×
p , define the set

Ax = {b ∈ B : xb mod p ∈ C}.

That is, Ax contains the elements of b of which multiplication by x maps to C. The set Ax will
always be sum-free; otherwise, if there are elements a1, a2, a3 ∈ Ax such that a1 + a2 = a3, this
would imply xa1 + xa2 ≡ xa3 (mod p) which is impossible since C is sum-free.
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Since all elements in Z×
p have inverses, for each b ∈ B and y ∈ Z×

p , there is exactly one element
x ∈ Z×

p such that xb ≡ y (mod p).This means that if we pick random x, the value of xb is a uniformly
random distribution across all elements of Z×

p .
This lets us apply the probabilistic method as follows: we pick a uniformly random x ∈ Z×

p .
Observing that C contains k + 1 elements, the probability that any element b is mapped to C is

Pr[xb ∈ C] =
|C|
p− 1

=
k + 1

3k + 2
> 1/3.

Thus any b ∈ B is included in A with probability more than 1/3, and by linearity of expectation
the expected size of A is greater than n/3. This means that at least one of the Ax has size greater
than n/3, and we are done.
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