Sublinear time algorithms II

Ronitt Rubinfeld
MIT

FODSI Summer School August 2022
Plan

• Yesterday:
 • Diameter of point set
 • Estimate the degree of a graph
 • Estimate the number of connected components of a graph
 • Estimate Minimum Spanning Tree weight

• Today:
 • Sublinear algorithms from distributed algorithms
 • Sublinear algorithms from greedy algorithms
 • Property testing -- monotonicity
More specific plan

• Oracle reduction framework
• Implementing the oracle via simulating parallel algorithms in sublinear time
• Implementing the oracle via simulating greedy algorithms in sublinear time
• Property testing -- monotonicity
The oracle reduction framework
[Parnas Ron]
Example problem: Vertex Cover

• Given graph $G(V,E)$, a vertex cover (VC) C is a subset of V such that it “touches” every edge.

• What is minimum size of a vertex cover?
 • NP-complete
 • Poly time multiplicative 2-approximation based on relationship of VC and maximal matching
Approximation for VC

• Multiplicative?
 • VC of graph with no edges vs. graph with 1 edge

• Additive?
 • Need to allow some multiplicative error: Computationally hard to approximate to better than 1.36 factor

• Combination?
 • Def. y' is (α, ϵ)-estimate of y if $y \leq y' \leq \alpha \cdot y + \epsilon \cdot n$
 Good for minimization problems
Vertex cover approximation

• Can get **CONSTANT TIME** \((\alpha, \epsilon)-estimate\) for vertex cover on sparse graphs!

How?

• **Oracle reduction framework** [Parnas Ron]
 • Construct “oracle” that tells you if node \(u\) in 2-approx vertex cover
 • Use oracle + standard sampling to estimate size of cover

Def. \(y'\) is \((\alpha, \epsilon)\)-estimate of \(y\) if \(y \leq y' \leq \alpha \cdot y + \epsilon \cdot n\)
Implementing the oracle – two approaches:

• Sequentially simulate computations of a fast distributed algorithm [Parnas Ron]

• Figure out what greedy maximal matching algorithm would do on u [Nguyen Onak]
Constructing oracles via distributed algorithms
Distributed Algorithms: LOCAL model (simple version)

- Network
 - Processors
 - Links
 - (assume maximum degree is known to all)

- Communication round
 - Each node sends message to each neighbor

- Vertex Cover Problem:
 - Network graph = input graph
 - After k rounds, each node knows if it is in VC
LOCAL distributed algorithms give sublinear algorithms for oracles

[Parnas Ron]

- If there is a k round distributed algorithm for VC, then:
 - v’s output depends only on inputs (unique IDs, neighbors, randomness) and computations of k-radius ball around v
 - **Sequentially** read/simulate in Δ^k probes!

- How big is k?
How fast are distributed algorithms?

• Vertex cover: $O\left(\left(\frac{d}{\epsilon}\right)^{O\left(\log d/\epsilon\right)}\right)$ sequential time via [Kuhn Moscibroda Wattenhoffer]

• Lots and lots of very fast distributed algorithms!
 • Packing and covering problems, matching, maximal independent set, coloring,...
Oracle reduction framework via simulating distributed algorithms

Thm [Parnas Ron]: t-round distributed algorithm for vertex cover yields $d_{max}^{O(t)}$ sequential query approximation algorithm for vertex cover.

Estimation idea:
Sample vertices of graph
For each sampled vertex v,
 simulate distributed algorithm to see if v is in VC
Output $(fraction \ in \ VC) \cdot n$

Bounded degree graph G
Constructing Oracles via simulating greedy
Vertex Cover and Maximal Matching

• Maximal Matching:
 • $M \subseteq E$ is a matching if no node in it is in more than one edge.
 • M is a maximal matching if adding any edge violates the matching property.

• Classic result: nodes of M are a pretty good Vertex Cover!
 (i.e., no more than twice value of optimal \Rightarrow Maximal matching gives good enough approximation)
Greedy algorithm for maximal matching

• Sequential Greedy Algorithm:
 • $M \leftarrow \emptyset$
 • For every edge (u,v)
 • If neither of u or v matched
 • Add (u,v) to M
 • Output M

• Why is M maximal?
 • If (u,v) not in M then either u or v already matched by earlier edge
Why can local algorithms hope to simulate behavior of greedy?

• Easy case: If edge has smaller rank than all neighboring edges, greedy will put it into matching
Implementing the Oracle via Greedy

• To decide if edge e in matching:
 • Must know if adjacent edges that come before e in the ordering are in the matching
 • Do not need to know anything about edges coming after

• Arbitrary edge order can have long dependency chains!
Breaking long dependency chains

[Nguyen Onak]

• Assign random ranks (ordering) to edges
 • Greedy works under any ordering
 • Important fact: random order has short dependency chains
Implementing oracle O

[Nguyen Onak]

• Preprocessing:
 • assign random number $r_e \in [0,1]$ to each $e \in E$

• Oracle implementation:
 • Input: edge $e \in E$,
 • Output: is e in M?
 • Algorithm:
 • Find all the adjacent edges of e, $e' \in E$, such that $r_e < r_{e'}$
 • Recursively check if any in M
 • If any in the matching, output NO
 • If none are in the matching, output YES
Example Run
Example Run 0 (cont.)
Example Run \(\Theta\) (cont.)
Example Run 0 (cont.)
Example Run 0 (cont.)
Example Run 0 (cont.)
Example Run Θ (cont.)
Example Run θ (cont.)
Example Run Θ (cont.)
Example Run 0 (cont.)
Example Run 0 (cont.)
Example Run 0 (cont.)
Example Run θ (cont.)
Correctness

• This algorithm simulates run of classical greedy algorithm
 • Greedy works under any ordering of edges

• Outputs estimate t such that

$$MM(G) \leq t \leq MM(G) + \epsilon n$$

where $MM(G)$ is size of some maximal matching
Complexity

• Claim: Expected number queries to graph per oracle query is $2^{O(d)}$

 • Total complexity is $2^{O(d)}/\varepsilon^2$

• Main idea:
 • Bound probability a path of length k explored:
 • Ranks must decrease along the path
 • So probability $\leq 1/(k)!$
Complexity

• Claim: Expected number queries to graph per oracle query is $2^{O(d)}$

• Proof:
 • $\Pr[\text{given path of length } k \text{ explored}] \leq 1/(k)!$
 • Number of neighbors at distance $k \leq d^k$
 • $E[\text{Number of nbrs explored at dist } k] \leq d^k/(k)!$
 • $E[\text{number of explored nodes}] \leq \sum_{k=0}^{\infty} d^k/(k)! \leq e^d/d$
 • $E[\text{query complexity}] = O(d) e^d/d$
 $= 2^{O(d)}$
Better Complexity for VC

• Always **recurse on least ranked edge** first
 • Heuristic suggested by [Nguyen Onak]
 • Yields time nearly linear in degree [Yoshida Yamamoto Ito][Onak Ron Rosen R.][Behnezhad]
Further work

• More complicated arguments for maximum matching, set cover, positive LP... (and lots more)

• Even better results for some of these problems on hyperfinite graphs [Hassidim Kelner Nguyen Onak][Newman Sohler][Levi Ron]
 • e.g., planar

Can dependence be made poly in average degree?
Property testing
Main Goal:

- **Quickly** distinguish inputs that **have** specific property from those that are **far from having** the property

![Diagram]

- all inputs
- inputs with the property
- close to having property

Benefits:

- **natural question**
- just as good when data constantly changing
- fast sanity check: rule out "bad" inputs (i.e., restaurant bills)
- when is expensive processing worthwhile?

Machine learning: Model selection problem
Property Testing

• Properties of any object, e.g.,
 • Functions
 • Graphs
 • Strings
 • Matrices
 • Codewords
• Model must specify
 • representation of object and allowable queries
 • notion of close/far, e.g.,
 • number of bits/words that need to be changed
 • edit distance
A simple property tester
Sortedness of a sequence

• Given: list $y_1 y_2 \ldots y_n$
• Question: is the list sorted?

• Clearly requires n steps – must look at each y_i
Sortedness of a sequence

• Given: list \(y_1 y_2 \ldots y_n \)

• Question: can we quickly test if the list close to sorted?
What do we mean by ``quick''?

- **query complexity** measured in terms of list size n

- Our goal (if possible):
 - *Very small* compared to n, will go for $clog n$
What do we mean by “close’’?

Definition: a list of size n is ε-close to sorted if can delete at most εn values to make it sorted. Otherwise, ε-far.

(ε is given as input, e.g., $\varepsilon=1/5$)

Sorted: 1 2 4 5 7 11 14 19 20 21 23 38 39 45
Close: 1 4 2 5 7 11 14 19 20 39 23 21 38 45
 1 4 5 7 11 14 19 20 23 38 45
Far: 45 39 23 1 38 4 5 21 20 19 2 7 11 14
 1 4 5 7 11 14
Requirements for algorithm:

• Pass sorted lists
• Fail lists that are ε-far.
 • Equivalently: if list likely to pass test, can change at most ε fraction of list to make it sorted

 Probability of success > $\frac{3}{4}$
 (can boost it arbitrarily high by repeating several times and outputting “fail” if ever see a “fail”, “pass” otherwise)

• Can test in $O(1/\varepsilon \log n)$ time
 (and can’t do any better!)
An attempt:

- Proposed algorithm:
 - Pick random i and test that $y_i \leq y_{i+1}$

- Bad input type:
 - $1,2,3,4,5,...n/4, 1,2,...n/4, 1,2,...n/4, 1,2,...,n/4$
 - Difficult for this algorithm to find “breakpoint”
 - But other tests work well...
A second attempt:

- Proposed algorithm:
 - Pick random \(i < j \) and test that \(y_i \leq y_j \)

- Bad input type:
 - \(n/4 \) groups of 4 decreasing elements
 - \(4,3,2,1,8,7,6,5,12,11,10,9... \)
 - Largest monotone sequence is \(n/4 \)
 - must pick \(i,j \) in same group to see problem
 - need \(\Omega(n^{1/2}) \) samples
A minor simplification:

• Assume list is distinct (i.e. $x_i \neq x_j$)

• Claim: this is not really easier
 • Why?
 Can “virtually” append i to each x_i
 \[x_1, x_2, \ldots, x_n \rightarrow (x_1, 1), (x_2, 2), \ldots, (x_n, n) \]
 e.g., 1, 1, 2, 6, 6 \rightarrow (1, 1), (1, 2), (2, 3), (6, 4), (6, 5)
 Breaks ties without changing order
A test that works

• The test:

Test $O(1/\epsilon)$ times:
 • Pick random i
 • Look at value of y_i
 • Do binary search for y_i
 • Does the binary search find any inconsistencies? If yes, FAIL
 • Do we end up at location i? If not FAIL

Pass if never failed

• Running time: $O(\epsilon^{-1} \log n)$ time

• Why does this work?
Behavior of the test:

• Define index \(i \) to be good if binary search for \(y_i \) successful
• \(O(1/\varepsilon \log n) \) time test (restated):
 • pick \(O(1/\varepsilon) \) \(i \)'s and pass if they are all good
• Correctness:
 • If list is sorted, then all \(i \)'s good (uses distinctness) \(\rightarrow \) test always passes
 • If list likely to pass test, then at least \((1-\varepsilon)n \) \(i \)'s are good.
 • Main observation: good elements form increasing sequence
 • Proof: for \(i < j \) both good need to show \(y_i < y_j \)
 • let \(k \) = least common ancestor of \(i, j \)
 • Search for \(i \) went left of \(k \) and search for \(j \) went right of \(k \) \(\rightarrow \) \(y_i < y_k < y_j \)
 • Thus list is \(\varepsilon \)-close to monotone (delete \(< \varepsilon n \) bad elements)
In closing

• These examples are just the tip of the iceberg
• Lots of cool results in the workshop this week!
Thank you