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Abstract

One of the most important aspects of solving a problem is that of choosing an appropri-
ate parameterization. This trivial observation can be seen in many forms in image pro-
cessing and computer vision. Global parametrizations include the Hough and Fourier
transforms, whereas local parameterizations include sparsity-based patch models and
over-parameterized approaches. This research explores important cases in motion anal-
ysis and 3D reconstruction where a careful choice of the parameterization matters. It
leads, in these cases, to simple and yet generic formulations that can be efficiently im-
plemented.

The first part of the work related to 2D stereovision, where we suggest to use the
plane equation and planar homographies as a basis for an over-parameterized optical
flow estimation. The algorithm achieves state of the art results in term of accuracy in
optical flow computation. The regularization term has a physically meaningful inter-
pretation bridging the gap between optical flow computation and scene understanding.

The second part of the the dissertation relates to 3D motion understanding, where
we reformulate articulated motion as edge-preserving smoothing of Lie-group-valued
images of two types. By choosing carefully the parameterization and regularization
terms, the resulting algorithms obtain results comparable to those of domain specific
tools, on 3D range data. One of these algorithms can be implemented at real-time speeds
due to a novel formulation. Furthermore, it applies also to other inverse problems such
as diffusion tensor imaging reconstruction, and direction diffusion.

In the third and final part of the dissertation, we show how structured light recon-



ABSTRACT

struction can be formulated as probability maximization with respect to the scene geom-
etry, given the camera and projector images. This allows us to incorporate sparse priors
for the surface into the non-linear reconstruction process itself. These priors, resulting
from the data, have a natural and intuitive interpretation, and in themselves parameter-
ize epipolar motion between the camera and projector. Furthermore, they help us obtain

3D reconstruction that is robust to low sensor exposure and motion artifacts.
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Chapter 1

Introduction

The choice of a natural measure of regularity is important in many areas of engineering
such as signal processing and numerical analysis, and has been part of computer vision
and control theory since its early days (see for example [65, 225, 240]). Regularization
of images and multidimensional signals has been also given significant attention since
the beginning of modern computer vision. The connection between regularization and
understanding and interpretation of images has been thoroughly studied in the context
of scale-space theories [4, 139, 149, 242].

Yet in computer vision, there are often several ways to represent some aspect of
the scene as a map. This is especially true when the relevant information is given as
a vector-, matrix- or group-valued map. For cases in which several value sets can be
used to describe the scene, we refer to this decision of representation as a choice of
parameterization. Often in these cases, the exact choice of parameterization for the
problem at hand is crucial. Its interplay with the regularization and data-dependent
terms is especially important when trying to solve inverse problems in computer vision,
as we will demonstrate.

In this thesis we demonstrate several aspects in computer vision relating to under-
standing of motion and structure where the right choice of parameterization, coupled
with axiomatic approaches for regularization provides us with well-founded methods

of solution.
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Specifically, we propose algorithmic solutions for the problems of 2D optical flow
estimation, 3D articulated motion understanding and 3D reconstruction from structured
light. In Chapter 2, based on an SSVM conference paper [185], we suggest a paraem-
terization for optical flow estimation that is based on 2D homographies between image
regions. These homographies are intimately linked to planar regions in the scene. Thus,
motion estimation in this case parallels segmentation of the scene into planar patches, as
we will show. In the case of 3D articulated motion understanding, in Chapter 3, based
on conference papers [180, 182], we demonstrate how 3D articulated motion segmen-
tation can be reformulated as regularization of a mapping from the scene to the rigid
transformations group SE(3). Chapter 4, based on a conference paper [188], further
extends this regularization into a fast framework for matrix-valued image regulariza-
tion. In 3D reconstruction from structured light, we demonstrate how reformulating the
problem as probability maximization of the estimated depth. Besides the known cam-
era and projector image inserting regularization for the depth provides us with superior
reconstruction results. This allows us to handle low exposure times and motion artifacts
in the reconstruction. These results have been published as a conference paper [183].
Chapter 6 concludes the thesis and discusses future directions of research.

We now proceed to describe the main regularization terms utilized in this thesis,
the parameterizations used for motion and structure, and the optimization techniques

utilized throughout this work.

1.1 Regularization Techniques

The topic of regularization is an important one in solving inverse problems. In our
setting of inverse problems we are looking at a map, u : X — )/, describing some aspect
of the real world — this can be the actual intensity image of the scene, a description of
the motion field between two images of the scene, a volumetric map of the diffusion
tensor in the tissue, and so forth. We denote X as the domain, and ) the range of u,

and specifically in most of the examples we will show, one of them or both will not be
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a Euclidean manifold, but rather a manifold equipped with a more general Riemannian
metric (we refer the interested reader to standard books such as [49, 70] for a survey of
differential and Riemmanian geometry). An inverse problem can be loosely defined as
minimizing a distance between Fp(u) (the application of a forward operator, describing
the measurement process) and fp, the measurements. In many problems, this distance
is the squared Euclidean distance, essentially minimizing the L, norm between Fp(u)
and fp. Other possibilities involve either other different norms of the L, family, or
different comparison measurements altogether such as more generic robust fitting terms,
measurements between point clouds, Wasserstein metrics and so forth. These fitting
terms are also known as the data terms.

Many inverse problems do not have a single solution for the instance data; these
problems are called ill-posed problems. One solution is to add to the optimization prob-
lem a term whose minimizing solutions favor some properties of the solution. This term
is known as a regularization term, and its choice greatly affects the resulting solution.
The regularization term is usually the result of our assumption on the model of reality,
allowing us to obtain a reasonable solution with respect to this model. For specific types
of problems, regularization allows us to obtain a unique solution (for example, if both
the data and the regularization terms are convex).

Problems that are not ill-posed are called well-posed. Indeed, some problems may
be well-posed, but the sensitivity of the solution to inaccuracies in the problem data may
have a significant gain factor associated with it. Such problems are ill-conditioned. In
these cases as well, more accurate and suitable regularization terms allow us to handle
stronger inaccuracies and noise in the data we sense.

We now describe several of the standard terms used in regularization, and then pro-

ceed to describe the associated optimization techniques.
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1.1.1 Regularization Functionals

Regularization approaches go back to Tikhonov [225] and earlier works. In this sub-

section we describe the main functionals discussed in this thesis.

1.1.2 Dirichlet Energy

The simplest regularization functional in used in signal processing beyond standard

Tikohnov regularization is the Dirichlet energy

/ [Vul[dX, (1.1)

where dX is a measure associated with X. This energy in itself is useful for many
signals that are assumed to be smooth. The Euler-Lagrange equation for this functional

is the heat equation
Au = 0. (1.2)

For the case in which the domain or range are non-Euclidean manifolds, the resulting
flow has a subject of intense research. For the general case, see [75]. Additionally,
evolution according to this equation can be related in signal processing to Gaussian
filtering [123]. It therefore has strong ties to the Gaussian scale-space, whose properties
have been thoroughly studied [139, 242].

Yet in most signals, the smoothness assumption is far too simplistic. In the last two
decades, numerous regularization functions have been suggested in both the discrete
and continuous setting. We now describe a few of these regularization functionals,

especially those that relate to the algorithms shown in this dissertation.

1.1.3 Total Variation

For signals that are piecewise-smooth Rudin, Osher and Fatemi (ROF) introduced [192]

the total variation (TV) measure. This regularization term penalizes the L; norm of the

10
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derivative of the signal for 1D signals.

/|um|dX (1.3)

For a multivariate scalar signal u over a domain ) € R?, the total variation func-

tional is written as

/||Vu||dQ. (1.4)

For vector-valued signal u = (uy, - - - , u, ), a straightforward extension is by integrating
the Frobenious norm of the Jacobian operator,

du;
[ 1l (gu), = 5. (1)

J

Additional important extensions to the case of color images are Di Zenzo’s gradient
extension [257], and the Beltrami cost function [209], for which several efficient com-
putational schemes have been proposed [66, 186], as part of this thesis. The Beltrami
functional expresses the area of the map between the image domain and the spatial-
chromal range, defined via the induced metric of each space.

In order to obtain a continuous approximation to the TV functional, it is customary

to use the Charbonnier regularization term
/\1/ ([[V]I7) d2, W (s%) = Vs + €2, (1.6)

where € is some small constant. Typically € is chosen so as to distinguish small errors in
the measurements from outliers, signifying the typical “small” noise level. Additional

robust fitting terms used in the context of computer vision can be found in [34].

1.1.4 Second-Order Total Variation

In order to alleviate staircasing artifacts, and to accomodate the solution of problems
involving signals that are approximately piecewise-linear, the second-order total varia-

tion,

/\|V2u\|dﬂ, (1.7)

11
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has been suggested.

While the Euler-Lagrange equation for this functional is well-defined, the higher
derivatives tend to make the solution of problems involving such terms less straightfor-
ward and specific numerical schemes are needed.

Other high-order regularizers are also available. These include, for example the
total generalized variation (TGV, [36]), and the unbiased second-order prior suggested

by Trobin et al. [228].

1.1.5 Ambrosio-Tortorelli Regularization

Ambrosio and Tortorelli [5] proved the I'-convergence of a sequence of regularization
problems approximating the Mumford-Shah functional [157]. In the Mumford-Shah
functional, the image is approximated by a piecewise-smooth model, and regularization

is given by

/ HVqudQ—l—/ (u—u0)2 dQ + H(y), (1.8)
Q\vy Q

where 7 is the discontuity set, H is the Housdorff measure associated with the domain
2, and uy is the original image.

Ambrosio and Tortorelli suggested to approximate the space by a set of subprob-
lems, and proved convergence in the sense of ['-convegence [15]. Among these are

functionals of the form

(var — 1)

| SalvulP + e Vusr? + a2
Q €

ds, (1.9)

where v 47 is the diffusivity function, serving as a phase-discontinuity indicator. Ambrosio-
Tortorelly regularization has been incorporated into many application domains, such as

image processing [19] and motion estimation [45], among others.

1.1.6 Non-local Regularizers

Bilateral Regularizers

12
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Motivated by signal smoothing in the histogram domain [253], the bilateral filter has
been suggested in several formulations [167, 208, 226, 253]. The filter itself operating

over an input image u, can be written as

[ R, 2 ug)ug(a')dQ

= 1.10
u@) [ k(z, 2 u0)d (1.10)

The standard choice of a kernel k(z, z"; ug) is a Gaussian one,
k(z,a';u) = e~ (lwo@—wo@)*/ohtllz—a'I*/oh) (1.11)

where oi and o denote the average scales associated with the range and domain of u,

2

— le=a']? + l[uo () —uo (=)
OR,OD - 2

respectively. The distance d can be shown to

/.
(‘1'7 €T uO) o 2
be the Euclidean approximation of the geodesic distance associated with the Beltrami
filter [209]. This has been used for fast Beltrami filtering by Spira et al. [210].

By freezing the role of wug, the basic functional behind the bilateral filter can be

written as

/ ke, 'y o) () — uo(a!)||? d2. (1.12)

where k is a weight function comparing the positions x, 2/, and the value at ug(x),uq(2’),
usually taken to be decreasing with the distance between x, 2, ug(x), ug(z’). It is usu-
ally assumed that ug(x),ug(2’) are close enough to have a meaningful k associated with
Ug-

Non-local Means Regularizers

An intuitive and yet very powerful extension of the bilateral filter is given by ex-

tending k to describe the similarity between the neighborhoods of x, x" and their map.
/k(N(x), N(z');u0) [|Ju(z) — uo(z")||” d2 (1.13)

The classical example for this [46] was suggested by Buades, Coll and Morel,
/e_ I (wo(@+y)—uo(«'+y))*d2 |u(z) — ug(an/)HQ ds). (1.14)

A generalization of this filter to other kernel choices is given by Goossens et al. [93].
the resulting non-local means filter has been used for texture and image completion

[76], pixel classification [63, 87], depth-image denoising [110] and other applications.

13
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1.1.7 Sparsity-based Regularizers

Sparse Dictionary Regularizers

A different family of regularizers, usually given for discretely sampled signals, is
the family of sparsity-based regularizers. In these regularizers, the representation of the
signal is assumed to be a locally sparse one. This representation is set by a dictionary
of examplar patches. The coefficients associated with this dictionary for local patches
of the signal can be the coefficients of a linear combination used to obtain the patch
(this is known as a synthesis approach), or the response of the signal to a matched set
of filters (this is known as the analysis approach [88]). We refer the interested reader to
the literature (see for example [78]) for a more complete view of this developingc topic.

Structured Sparsity Regularizers and GMMs

In a few recent papers [256, 260], the relation between local Gaussian-mixture mod-
els (GMM) and structured-sparsity approaches has been investigated. The structured
sparsity interpretation of GMM priors suggests to pick first the support set of the patch

(i.e the Gaussian component) and then decide on the coefficient values themselves.

1.2 Optimization Techniques for Variational Regularizers

Given a functional with a data and regularization terms, several methods are available
for obtaining the optimal u. Here, we describe the main optimization approaches used

in the proceeding algorithms, with an emphasis on continuous variational approaches.

1.2.1 Minimizing Flow Approaches

Explicit Minimizing Flows
A classical set of approaches for minimizing variational functionals involves ex-

pressing the minimizing flow of the functional,

_0E(v)
ou

(1.15)

U =
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where JE(S—EL“) is the first variation of the functional £ with respect to u. The resulting
partial differential equation (PDE) can now be discretized, and its steady state com-
puted. The simplest approach for this involves explicit time iterations, such as the
explicit forward-Euler scheme (we refer the reader to standard literature for discussion
of standard discretization schemes [155]). Assuming a small enough time step At, we

have

ut —utt OE(u) , , 4
— 7 AT (b 1.1
At su ) (1.16)

Semi-implicit and Implicit Schemes
In semi-implicit schemes, Equation 1.15 is linearized (based on time ¢ — 1) with
respect to u' for the right hand side terms. Specifically, we write the time evolution

equation as
= A (u 1), (1.17)

where A (+) is an operator that depends on the previous time step for linearization. For

the current time step solution is obtained by solving the system
(Id — AtA (u' 1)) u' = u', (1.18)

where the key to obtaining an overall efficient scheme is efficiently inverting the system
matrix (Id — AtA (u'™')). This inverted operator can be shown to be a contraction,
ensuring the stability of this scheme.

Semi-implicit schemes enabled the development of efficient solution methods for
nonlinear functionals in computer vision, coupled with additive [144, 238] and multi-
plicative [20] splitting.

Implicit schemes for variational regularization functinals have been suggested. Us-
ing such schemes, however, is more involved and requires equation-specific solutions

for the time-stepping equations, as in this methods A (-) is given in terms of u’.
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1.2.2 Steady-State Approaches

Another set of approaches involves using the Euler-Lagrange formula as a steady-state
equation and solving the (spatially-dependent only) PDE.

Classical approaches such as Gauss-Seidel (GS), and successive over-relaxation
(SOR) have been used extensively in computer vision. For example, in optical flow
estimation [42], with red-black GS/SOR solvers being quite effective due to the support
of the discretized diffusion operators.

Multigrid techniques have allowed further efficiency improvement under a well-
defined basis [43], and allows us to further exploit the convergence properties of the

problem.

1.2.3 Direct Optimization Approaches

Returning to optimization of the cost function, several efficient techniques have been
suggested for optimization of the variational nonlinear regularizers described above.
Specifically, based on the augmented Lagrangian technique [103, 175], differential op-
erators can be replaced with auxiliary variables during the optimization. The complete
optimization is now performed on both sets of variables, but the additional complex-
ity incurred by adding more variables is offset by the simpler optimization steps done
for each variable or sets of variables. The resulting optimization can be shown [244]
to be equivalent to split-Bregman optimization approaches in certain cases [91, 254].
Usually, the information flow between signal neighborhood is now embodied in a linear
PDE, and the auxiliary variables are updated via a per-pixel equation. This results in
numerical schemes that are highly-parallelizable, and easily achieve real-time perfor-

mance on graphics processing units (GPUs).
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1.3 Motion Manifolds

Motions in 2D and 3D have several typical parameterizations and models. One way to
view a motion field sees it as a map between a domain X and a range ). An alternative
view considers a map between the domain X and a motion parameterization space
representing the local motion model P. For example, in optical flow the domain A and
range ) are images, with the flow defined between them. P is a motion model which
locally defines an intermediate representation of the motion from & into ).

On one hand, the motion field in optical flow can be expressed either as a map
from an image into the manifold of all motion vectors, R2. On the other hand, it can
also be expressed via a map from the image domain into the manifold of all affine
transformations. Hence, both R? and Aff(R?) can serve as P in this case. Embedding
a manifold such as Aff(R?) into R® gives us a simple way of describing this model
using six parameters. The standard metric induced from the embedding onto RS gives
us a way of quantifying discontinuities in the motion model. This results in the affine
over-parameterized optical flow model [163] for the choice of P = Aff (RQ) C RS, but
other choices would have given us different over-parameterized models, equipped with
different measures of model discontinuities.

As an example of such a different choice, normalizing the image coordinates, which
is done in practice [163], changes the specific parameterization, and this is known to be
essential for affine over-parameterized optical flow to work. But this normalization step,
however, is not an arbitrary step — it merely reflects a different embedding of Aff(R?)
into R®, with a different resulting induced metric, and hence, in practice, a different

2 where a is the over-parameterized vector (see

regularization effect for the term || Va|
Chapter 2 and [163] for more details).

Thus, the parameterization space P and its metric capture the essence of over-
parameterized models of motion by relating the choice of parameterization to the regu-
larization used. In this section we discuss a few of these models, relevant to the prob-

lems we describe in the following chapters, such as 3D rigid motion segmentation and
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Figure 1.1: An illustration of over-parameterized motion spaces.

1.3.1 Three-Dimensional Rigid Motion

Models characterising rigid motions in Euclidean space have been around for quite a
while (see for example [18, 127, 137]). We now describe a few of these models — special
emphasis is given to rigid motion in the three-dimensional Euclidean space, but some
of the principles involved are much more general and apply to any finite dimension.

One theory that allows us to analyze rigid motions in a concise manner that lends
itself to differential operators and discussion of regularity is the theory of Lie-groups.
Lie-groups are topological groups with a smooth manifold structure such that the group
action G X G — G and the group inverse are differentiable maps.

Because of the group structure and the existence of an inverse element, the neighbor-
hood of each point on the manifold can be mapped onto a neighborhood of the identity
element. This vector space allows us a way of adding and subtracting neighboring group

elements, and thus allows us to define derivatives, regularity, and diffusion operators on
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the group valued data. This vector space is known as the Lie-algebra g associated with
the Lie-group G.

More generally, A Lie-algebra is a vector space endowed with a Lie-brackets op-
erator [-,-] : g x g — g, describing the local structure of the group. The Lie-algebra
associated with a Lie-group can be mapped diffeomorphically via the exponential map
onto a neighborhood of the identity operator and its tangent space.

There are many Lie-groups being investigated in various subfields of mathematics,
physics and engineering. Of these, two such important groups relate to 3D motion — the
group of all rotations in R3, SO(3), and the group of all rigid motions in R3, SE(3).
We further detail Lie-groups that pertain to this work in Chapters 3 and 4.

Another method for representing rotations in 3D are quaternions. Quaternions can
be approached in several forms which result in slightly different parameterizations. For
the relation of quaternions to Lie-groups theory we refer the reader to [213].

A relatively intuitive route taken from Euler’s rotation theorem: any displacement
of arigid body such that a point on the rigid body remains fixed, is equivalent to a single
rotation about some axis that runs through the fixed point.

Thus, one way to view quaternions is as a 4-element complex number, where the
3 imaginary elements describe the rotation axis, whereas the fourth element describes
the amount of rotation [102]. If normalized properly, a quaternion can be written as
q = cos %9 + (ux% + uyj‘ + uzl%> sin %6’, where %,j’,fc denote the components of the
complex parts of the quaternion, (u,, u,, u,) describe the direction vector, and 6 denotes
the amount of rotation applied. This quaternion can operate on a 4 vector describing a

point p = xi + yj + 2k in 3D-space using Hamilton’s product

P =apq", (1.19)
where ¢* denotes the conjugate of ¢,
% 1 2 A ~ . 1
q = 00556 — (uxz +uyj + uzk> smie. (1.20)

In order to describe free rigid motion, including translation, a product space with the
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translations space R? can be used.

Another representation, motivated by Chasles’ theorem is the screw parameteriza-
tion [18, 158]. Chasles’ theorem states that every rigid motion in 3D-space can be
described by a rotation around an axis, followed by motion along this axis. Screws
parameterization is the combination (I, A, t) where [ describe the line in 3D (4 DOF), A
describes the pitch, or ratio between rotation and translation along the axis. ¢ describes

the amount of overall motion.

1.3.2 Stereoscopic Motion

In the case of stereoscopic image pairs and the disparity fields they describe, several
parameterizations can also be used. While the flow field itself, given in Cartesian co-
ordinates is a standard choice in optical flow and registration algorithms, alternative
parameterizations are constantly being applied to the problem. Since motion between
two images of the same scene is restricted to the epipolar lines with the depth of each
point determining the amount of motion, optical flow models based on epipolar lines
[202, 207, 237] have proven to be quite accurate and robust. Yet, such algorithms do
not try to incorporate higher-level priors on the scene structure.

In the case where camera calibration is known, the plane equation of the scene sur-
face can determine a 3 x 3 homography between the two images [100]. In the normalized
case, where the intrinsic parameters matrices are the identify matrix K; = Ky = Id3ys3,
we can easily develop the expression for this homography to be H oc R — tvT, as will

be shown in Chapter 2.

1.3.3 Depth Priors

A related topic is that of priors for depth images and surfaces. In surface processing,
numerous algorithms have emerged from the field of spectral analysis [59, 69, 71, 201,
222]. Others are motivated by algorithms from image processing [169], often looking

at the surface height field with respect to a local tangent plane. Yet another family of
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algorithms [82, 135] stems from approximation theory and views the discrete surface as
a sampled version of a continuous or piecewise-continuous object. As part of this thesis,
a novel algorithm was suggested that draws upon these approaches [184]. Even in the
case of explicit range images, several priors have been suggested, with close correlation
to developments in image processing.

Chapter 5 explores the use of various priors inside the nonlinear reconstruction pro-
cess used in shape-from-structured light. The resulting sparse dictionaries and Gaussian
mixture model components favor local piecewise linear and polynomial models, simi-
lar to moving least squares estimators. Specifically in the inverse problem of structured
light reconstruction as well as the problem of structure from multiple views, these local
estimators define a motion parameterization space describing motion along the pro-
jected patterns code. A discussion relating variational methods to MLS estimators for
the case of signal and surface reconstruction is available as a book chapter we published

[205].
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Chapter 2

Over-parameterized Optical Flow

using a Stereoscopic Constraint

2.1 Introduction

We now proceed to describe a few application domains where a principled outlook
relating overparameterized regularization and careful choice of parameterization can
benefit 3D reconstruction and motion estimation. We start with optical flow estimation
in stereoscopic image pairs, as we now describe.

A fundamental type of motion estimation is optical flow. Optical flow is defined as
the motion field between consecutive frames in a video sequence. Its computation often
relies on the brightness constancy assumption [107], which states that pixel brightness
corresponding to a given scene point is constant throughout the sequence. Optical flow
computation is a notoriously ill-posed problem. Hence, additional assumptions on the
motion are made in order to regularize the problem. Early methods assumed spatial
smoothness of the optical flow [107, 145]. Parametric motion models [29, 154], and
more recently machine learning [190] were introduced in order to take into account
the specificity of naturally occurring video sequences. In parallel, the regularization
process was made much more robust [35, 42, 44, 60].

In this chapter, we focus on optical flow computation in stereoscopic image pairs,
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given a reliable estimation of the fundamental matrix. We assume two images depicting
the same scene — either these are two images taken simultaneously, or two images of
a static scene. This problem has already been addressed in [32, 207, 232, 237]. The
papers [32, 207] expressed the optical flow as a one-dimensional problem. This was
done either by working on a rectified image pair [32], or by solving for the displace-
ment along the epipolar lines [207]. A different approach [232, 237] merely penalized
deviation from the epipolar constraint. In addition, [232] proposed a joint estimation of
the stereoscopic optical flow and the fundamental matrix. Finally, in order to treat the
problem of occluded areas and object boundaries, Ben-Ari and Sochen [27] suggest to
explicitly account for regions of discontinuities.

Yet, a third body of works turned to a complete modeling of the scene flow [22, 109,
173]. While this approach is the most general, we focus in this chapter on static scenes,
for which a more specific parameterization can be found.

While the reported experimental results in the aforementioned papers are very con-
vincing, their regularization methods still rely on the traditional assumption that op-
tical flow should be piecewise smooth. Here, motivated by the over-parameterization
approach presented in [163], the optical flow is obtained by estimation of the space-
time dependent parameters of a motion model, the regularization being applied to the
model parameters. In [33], we used homogeneous coordinates to express a homogra-
phy model, which allows to select a geometrically meaningful coordinate systems for
this problem. Here we elaborate upon this model by adding an Ambrosio-Tortorelli
scheme, which gives a physically meaningful interpretation for the minima obtained in
the optimization process.

In the case of a static scene, the optical flow can be factored into a model determined
by the camera motion and an over-parameterized representation of the scene. The scene
motion is described locally as a homography satisfying the epipolar constraint and pa-
rameterized by the equation of a local planar approximation of the scene. Assuming that

the scene can be approximated by a piecewise smooth manifold, enforcing piecewise
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spatial smoothness on the homography parameters becomes an axiomatically justified

regularization criterion which favors piecewise smooth planar regions.

2.2 Background

2.2.1 The Variational Framework

In the variational framework for optical flow, brightness constancy and smoothness as-
sumptions are integrated in an energy functional. Let (u(z,y,t),v(z,y,t)) denote the
optical flow at pixel coordinates (x, y) and time ¢. Brightness constancy determines the

data term of the energy functional

Ep(u,v) = /\If (12), 2.1)

where

IL=1z+uy+uvt+1)—I(x,y,t) (2.2)

and U(s?) = v/s2 + 2 is a convex approximation of the L; norm for a small ¢, as in
Equation 1.6.
M(a,z,y,t) denotes a generic model of the optical flow at pixel (x,y) and time ¢,

where a = (a;(, y,t))ic(1,...n} is a family of functions parameterizing the model, i.e.,

) 7t
w9, 1) = M(a,z,y,t). (2.3)

v(x,y,t)

We begin with the smoothness term proposed by Nir et al. in [163],

Es(a) = /\If (iwai\l?) : (2.4)

In order to refine the discontinuities and obtain a physically meaningful regulariza-

tion, we extend the smoothness prior using the Ambrosio-Tortorelli scheme [5, 203].

Esar(a) = /szT‘I’ (Z |!Vai||2> +e(l —var)® + el Vuar|?, (2.5)
=1

where v 47 is a diffusivity function, ideally serving as an indicator of the discontinuities

set in the flow field. Choosing ¢; = é and gradually decreasing e, towards 0 can be
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used to approximate the Mumford-Shah [157] model via I'-convergence process, but
we do not pursue this direction in this chapter.

While the Ambrosio-Tortorelli scheme has been used in the context of optical flow
[6, 28, 45], in our case this seemingly arbitrary choice of regularization and segmen-
tation has a physical meaning. The regularization of the flow becomes a segmentation
process of the visible surface in the scene into planar patches, each with his own set of
plane parameters. In addition, it helps us obtain accurate edges in the resulting flow.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly
reason about the places in the flow where the nonlinear nature of the motion parameter-
ization space manifests itself. Suppose we have a piecewise-planar, static, scene, and
an ideal solution (a*, v% ;) where a* is piecewise constant, and the diffusivity function
v 1s 0 at planar region boundaries and 1 elsewhere. At such a solution, we expect
two neighboring points which belong to different regions to have a very small diffusiv-
ity value v4p connecting them, effectively nullifying the interaction between different
planes’ parameters. Furthermore the cost associated with this solution is directly at-
tributed to the discontinuity set measure in the image. The proposed ideal solution
therefore becomes a global minimizer of the functional, as determined by the measure
of discontinuities in the 2%-D sketch [149]. This is directly related to the question raised
by Trobin et al. [228] regarding the over-parameterized affine flow model and its global
minimizers.

The complete functional now becomes:
E(a) = Ep(M(a,z,y,t)) + aEs ar(a). (2.6)
In the remainder of this chapter, we will propose a motion model enforcing the epipolar
constraint and show how to minimize the proposed functional.
2.2.2 Epipolar Geometry

Let us introduce some background on epipolar geometry, so as to motivate the choice

of the motion model. A complete overview can be found in [80, 100].
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Given two views of a static scene, the optical flow is restricted by the epipolar con-
straint. Figure 2.1 shows that a pixel m in the left image is restricted to a line 1’ called
an epipolar line in the right image. All the epipolar lines in the left (resp. right) image
go through e (resp. €'), which is called the left (resp. right) epipole.

In projective geometry, image points and lines are often represented by 3D homo-

geneous coordinates

X
m=<¢A|y||[AeR 5. (2.7)
1
Image points and their corresponding epipolar lines are related by the fundamental ma-
trix F

' = Fm. (2.8)

Consider a plane 7, visible from both cameras, and the planar homography H,
which corresponds to the composition of the back-projection from the left view to a
plane () and the projection from () to the right view (see Figure 2.1). The homogra-

phy H,. gives rise to a useful decomposition of the fundamental matrix
F = [€]«H,, (2.9)

where [€/] is a matrix representation of the cross product with e’.

2.3 Estimation of the Fundamental Matrix

One of the main challenges in estimating optical flow using the epipolar geometry is to
retrieve an accurate and robust estimation of the fundamental matrix. Mainberger et. al.
[148] showed that robustness of the fundamental matrix estimation could be achieved by
using dense optical flow instead of applying RANSAC or LMedS methods to a sparse
set of matches. Hence, we use as initialization the Horn-Schunck with Charbonnier
penalty function optical flow implementation provided by Sun et al. [217], modified to

use color images. This represents a baseline nonlinear optical flow method, as in [217].
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Figure 2.1: Epipolar geometry

In addition to allowing the computation of the fundamental matrix, this initialization
also serves as a starting point for our optical flow computation algorithm.

Many methods aimed at estimating the fundamental matrix can handle large num-
bers of correspondences. Among those, we choose a robust M-estimation method based
on the symmetric epipolar distance, the implementation of which is made very efficient

by the use of the Levenberg-Marquardt algorithm, as explained in [124].

2.4 A Flow Model Based on Local Homographies

We now proceed to develop the model and motivation for the flow equations. Suppose

the camera is calibrated, with projection matrices
P@=Pw:0|@,P@+D=R=<R|Q. (2.10)

where R is a rotation matrix and t is a translation vector expressing camera motion
between the two consecutive frames at ¢t and ¢ + 1. We assume that locally, the scene is
well approximated by the plane

vix+d=0 (2.11)
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where (xT,d)" = (z,y,1,d)" denotes the 3D scene point visible at pixel x in homoge-

neous coordinates. The corresponding point of x at time ¢ + 1 is

X
x' =P, =Rx+td=(R—-tv')x (2.12)
d

in homogeneous coordinates. v designates the normal of the local planar approximation
of the scene, and —(v'x)~! is the depth of the scene at time . The planar homography
expressed in (2.12) gives a geometrically meaningful motion model parameterized by
v. From now on, consider v as a function of the pixel coordinates. Under the assump-
tion that the scene can be approximated by a piecewise smooth manifold, v must be
piecewise smooth.

We now derive the motion parameterization. In general, the camera parameters are
not known, but we can re-parameterize the planar homography using €’ and F. In the

following derivation we assume a calibrated view for simplicity’s sake. Let H(z,y,t)

denote the planar homography motion model. We have
Ho R —tv'. (2.13)

For any compatible planar homography H, (cf. [100], 13.1.1.1, we will provide a spe-

cific choice later on),

I(vo, 1) : Ho = pu(R —tvoh) (2.14)

H=Hy — pt(v —vo)™. (2.15)

As t and €’ are parallel, we can also write

—pe' 't

[le’]]?

Hence, H(z, y,t) can be parameterized by the function

H=H,+¢€ (v—vo)T. (2.16)

T
—pe’ "t
a(x,y,t) = W(V(xuy’t) _VO)7 (217)
so that
H(z,y,t) = Hy + €a(z,y,t)". (2.18)
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The parameterization a is the unknown field we want to compute in order to model and
estimate the optical flow. The piecewise smoothness of a is a direct consequence of the
piecewise smoothness of v, as testified by (2.17). More precisely, minimization of the
Ambrosio-Tortorelli regularization term favors segmentation of the visible surface into
planar patches where the data evidence permits it.

When the cameras are not calibrated, the relationship between the parameteriza-
tion a and v is still linear. In fact, the calibration matrices mainly affect the relative
weighting of the model parameters smoothness. Our experiments show that even with-
out controlling the relative smoothness of the model parameters, the optical flow can be
estimated accurately.

Note that the parameterization a can also be derived directly from the fundamental
matrix decomposition (2.9).

For Hy, we can choose the special matrix
Hy =S = [€]«F. (2.19)
Each column of S with the corresponding column of F and €’ form an orthogonal basis
of R? so that (2.9) is satisfied. S is a degenerate homography which projects points in

the left image to points of the line represented by €’ in the right image. Next, we use

the notations

1 Tl h;?t
X= 1z |> e = Yer | > HO = h2T ) (220)
x3 Ze! h3T

to signify the 3D point coordinates, the epipole’s 2D homogeneous coordinates, and the
homography matrix rows, respectively. The parameterization of H is introduced into

the expression of the optical flow

u h,"x 4+ zoaTx x 1
M(a,z,y,t) = =\ — , A= —F =
v hyTx + yoaTx y h; x + zoalx
(2.21)
x
where are the corresponding pixels in the left image.
Yy
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2.4.1 Euler-Lagrange Equations

By interchangeably fixing a;,7 = 1...n and v47, we obtain the Euler-Lagrange equa-

tions which minimize the functional.

Minimization with respect to a;.

Fixing v 47, we obtain

Vi, Va.(Ep+ avi;Es)=0. (2.22)

the variation of the data term with respect to the model parameter function a; is given

VaEp(u,v) =20 (I2) IV, L, (2.23)
Val. = Naj(wehs'x — zoh )] + Naij(yehs'x — z0ha"x)I, (2.24)

I'=IL(r+uy+ovt+1) (2.25)

T

I =I,(z+uy+v,t+1). (2.26)

Y

For the smoothness term, the Euler-Lagrange equations are

Va,Ey, = 20470 (Z ||Vai||2) + 207, div (qf (Z ||Vaj||2> Vai> (2.27)

=1 J

thus, the energy is minimized by solving the nonlinear system of equations

n T
U (I2) LV, I. — aV <va\1/’ (Z || Va| |2>> Va; —

=1

v’y div (‘I!' (Z ||Vaj||2> Vai) =0. (2.28)
J
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Minimization with respect to v 47.

Fixing a;, we obtain

20047V (Z ||Vai||2> + 261 (var — 1) — e2Avar =0 (2.29)

i=1
2.4.2 Implementation

Minimization with respect to vp is straightforward, as the equations are linear with
respect to v, therefore we will only elaborate on the minimization with respect to a;

The nonlinear Euler-Lagrange equation minimizing a;, are linearized by adopting

three embedded loops, similarly to [163]. First, the warped image gradient (I}, I7) is

frozen, and so is \. At each iteration k, we have
(Vo I.)" = z;d* (2.30)
where

d* = (M) (zohg™x — zohy Tx) (1)

_'_()\k)z(ye/hSTX - Ze’hZTX) ([;)ka
and the following approximation is made using first order Taylor expansions

3
I IF 1 dF Z zida® (2.31)
i=1
where
da® = a*! — a”, (2.32)
The system of equations (2.28) becomes

3
U ((151)?) (If + d* ijdajk) z;d" — o div (\I/’ (Z ||Vajk+1|2) Vaikﬂ) =0.

Jj=1 J

A second loop with superscript [ is added to cope with the nonlinearity of W',

3
(e (254319 ) — e (9 ) =0

j=1
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where
: 2
Nl g ko gk k,l N - k(2
(‘P )Data =V <[z +d indai > ’ (\I] )Smooth =V (Z HvaJ H ) :
i=1 j

At this point, the system of equations is linear and sparse in the spatial domain.
The solution a, as well as the diffusivity term v, are obtained through Gauss-Seidel
iterations. In the case of the Ambrosio-Tortorelli regularization term, the diffusion term

of the equation is modulated by v 4.

2.5 Experimental results

We now demonstrate motion estimation results using our algorithm, both visually and in
terms of the average angular error (AAE). No post-processing was applied to the optical
flow field obtained after energy minimization. The algorithm was tested on image pairs
from the Middlebury optical flow test set [17], as well as all images with a static scene
and publicly available ground truth optical flow from the training set. Results from the
training set are presented in Table 2.1.

The flow, parameters, and diffusivity field resulting from our method are presented
in Figure 2.3. The optical flow is shown with color encoding and a disparity map.

Results from the test set are shown in Figure 2.2. A smoothness parameter o of
400 was used in all experiments, and the Ambrosio-Tortorelli coefficients were set to
€1 = 20,65 = 5 x 107°. The proposed method produced the best results to date on
the static Yosemite and Urban scenes. The algorithm is not designed, however, for
non-static scenes, where the computed epipolar lines have no meaning. One possible
solution to this shortcoming is to return to a 2D search [237]. Such a combined approach
is left for future work.

In the Teddy and Grove test images, the initialization of our algorithm introduced
errors in significant parts of the image, which our method could not overcome. This
behavior is related to the problem of finding a global minimum for the optical flow,

which is known to have several local minima. Improving the global convergence using

33



CHAPTER 2: OVER-PARAMETERIZED OPTICAL FLOW USING A STEREOSCOPIC
CONSTRAINT

AAE STD
Grove2 241 7.16
Grove3 5.53 15.76
Urban2 2.15 9.22
Urban3 3.84 16.88
Venus 4.29 12.01
Yosemite 0.85 1.24

(a) Middlebury training set

Method AAE Method AAE

Brox et al. [42] 1.59 | Roth/Black [190] 1.43
Mémin/Pérez [154] 1.58 | Valgaerts et al. [232] 1.17
Bruhn et al. [44] 1.46 | Nir et al. [163] 1.15

Amiaz et al. [7] 1.44 | Our method 0.85

(b) Yosemite sequence

Table 2.1: AAE comparison for static scenes of the Middlebury training set and for the Yosemite sequence

discrete graph-based techniques, has been the focus of several papers (see [120, 133,
141], for example), and is beyond the scope of this work. We expect better initialization
to improve the accuracy to that of the Yosemite and Urban image pairs.

Our optical flow estimation for the Yosemite and Urban sequences gives the best
results to date, achieving an AAE of 1.25 for the Yosemite sequence test pair and 2.38
for the Urban sequence, as shown in Figure 2.2. When the fundamental matrix estimate
was improved (by estimating from the ground truth optical flow), we reduced the AAE
to 0.66 for Yosemite!

It is interesting to look at the results obtained for scenes with planar regions, such as
the Urban2 (Figure 2.3) image pair. In Urban2, the scene is composed of many planar

patches, modeled by constant patches in the model parameters. In both these scenes, as
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Figure 2.2: Average angular error values of our algorithm, compared on the middlebury test set. The
smoothness coefficient was set to @ = 400 in all experiments. Red marks the row of the suggested

algorithm.

well as others, the resulting diffusivity field clearly marks the contours of planar regions

in the image such as the buildings in Urban2 and the tree and soil ridges in Grove2.

2.6 Conclusions

In this chapter we have presented a new method for optical flow computation, based on
a local parametric model of homography. We note that we use the minimal number of
degrees of freedom while still having a model the encompasses the complete range of
2D motions spanned by stereo motion. The method is applicable to static scenes and
retrieves meaningful local motion parameters related to the scene geometry. The over-
parameterized framework allows future extensions to models involving dynamic scenes
as well.

An interesting aspect of our energy functional, which was already mentioned in
[163], is that given a carefully selected over-complete parameter field, the different pa-
rameters support each other to find a smooth piecewise constant parameter patches,
while the incorporated Ambrosio-Tortorelli scheme prevents diffusion across discon-
tinuities. Furthermore, the Ambrosio-Tortorelli scheme allows us to combine regular-
ization and segmentation, resulting in a physically meaningful regularization process,
while minimizing the dependency on the relative scaling of the coefficients.

Finally, although the performance demonstrated already goes beyond the latest pub-
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(a) Grove2 (b) Optical flow estima- (f) Urban2 (g) Optical flow estima-

tion tion

= -

(c) Parameter field (h) Parameter field

(d) Disparity estimation (e) Diffusivity function (i) Disparity estimation (j) Diffusivity function

Figure 2.3: Grove2 and Urban2 sequence results

lished results, there is still much gain to be expected from better fundamental matrix

estimation and algorithm initialization, as well as better navigating the optimization

landscape. In addition, when more than two frames are available and the camera pose

is known, augmenting the model with time-smoothness is expected to systematically

improve the results.
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Chapter 3

Group-valued Regularization for
Motion Segmentation of Articulated

Shapes

3.1 Introduction

Articulated objects segmentation is a key problem in biomechanics [3], mechanical
engineering, computer vision [13, 101, 128, 150, 198], and computer graphics [11, 115,
126, 132, 224, 247, 248]. Related problems of deformation analysis [8, 243] and motion
segmentation [9, 64] have also been studied extensively in these disciplines. Algorithms
solving these problems try to infer the articulated motion of an object, given several
instances of the object in different poses. Simultaneously, the segmentation of the object
into rigid parts takes place along with motion estimation between the corresponding
parts in the various poses.

Most motion analysis techniques make some assumptions on the object to be seg-
mented. These usually concern the number or location of rigid parts in the articulated
object. This can be in the form of a skeleton describing the topology of the shape, or
some other prior on the object structure. Such priors are usually formulated in an ad

hoc manner, but not based on the kinematic model commonly assumed for near-rigid
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objects [3, 8]. In cases where such a prior is not available for the objects in question,
or where assumptions about the data are only approximate, this can lead to errors in the
segmentation and motion estimation.

Another common assumption, especially in graphics applications, is that of known
correspondences. In computer graphics, the problem is usually referred to as dynamic
mesh segmentation. While a matching technique between poses can be combined with
existing motion segmentation tools, a more complete formulation for motion segmen-
tation should handle the correspondence problem implicitly.

Clearly, the above assumptions are often too limiting in real-world applications, and
should be avoided as part of the basic problem formulation. We would like instead to
apply the intuition often used when studying real-life near-rigid objects, about the ex-
istence of a representative rigid motion existing for each body part. We wish, however,
to avoid detecting the articulated parts in advance. Furthermore, in some object, a clear
partition into rigid parts may not exist for all of the surface. We wish to obtain reason-
able results in such a case. In other words, we would like to obtain a “soft” segmentation
of the surface, without knowing the number or location of regions in advance, an ex-
plicit analysis of the surface features, or having additional priors on the various object
parts. Also, we strive towards a formulation of motion segmentation that incorporates

an implicit handling of the correspondence problem, given a reasonable initialization.

3.1.1 Main Contribution.

In this chapter we try to remedy the shortcoming of existing approaches to articulated
motion estimation by combining the two tasks of motion estimation and segmentation
into a single functional. This scheme has been described in a recent conference paper
[182] and we now slightly expand upon it. Unlike existing methods, we propose a
principled variational approach, attempting to find a rigid transformation at each surface
point, between the instance surfaces, such that the overall transformation is described

by a relatively sparse set of such transformations, each matching a rigid part of the
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object. The functional we propose regularizes the motion between the surfaces, and is

guided by the fact that the parameters of the motion transformations
(1) should describe the motion at each point with sufficient accuracy.
(i1) should vary smoothly within the (unknown) rigid parts.

(ii1) can vary abruptly between rigid parts.

The main contribution of this chapter are in these :

A new framework: First, we propose an axiomatic variational framework for articulated
motion segmentation. While focusing on the segmentation problem in this chapter, our
framework is more general and the proposed functionals can be easily incorporated into

other applications such as motion estimation, tracking, and surface denoising.

Variational segmentation: We claim that using the right parameterization, taken from
the specific domain of rigid motion analysis, we can formulate the articulated motion
segmentation problem as a generalization of classical tools in variational computer vi-
sion. This allows for an elegant and simple solution within the proposed framework,

obtaining results competitive with domain-specific state-of-the-art tools.

A novel visualization algorithm: Third, we suggest a spatially-coherent algorithm for
spatial visualization of group valued data on manifolds, which draws from the same

variational principles.

3.1.2 Relation to Prior Work.

Several previous works have attempted motion based segmentation of surfaces. We
mention but a few of these. Kompatsiaris et al. [128] use an estimation of the rigid mo-
tion at each segment in order to segment the visible surface in a coarse-to-fine manner.
Arcila et al. [11] iteratively refine the segmentation for segments whose transforma-
tion error is too large. Wuhrer and Brunton [247] use a dual tree representation of the

surface with weights between triangles set according to the dihedral angles. Lee et al.
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[132] use a similar graph-based formulation, looking at deformation matrices around
each triangle.

The scheme we propose involves diffusing the transformations between poses along
the surface, in the spirit of the Ambrosio-Tortorelli scheme ([5], see also [19]) for
Mumford-Shah segmentation [157]. The diffusion component of our scheme is a dif-
fusion process of Lie-group elements, which has recently attracted significant attention
in other applications [72, 96, 215]. In diffusing transformations on the surface, our
work is similar to that of Litke et al. [140], although the parameterization of the mo-
tion and of the surface is different. In addition, we do not make an assumption on the
surface topology; to that end, the proposed method diffuses transformations along the
surface, rather than representing the surface in an evenly sampled 2D parametrization
plane. When dealing with real-life deformable objects that seldom admit regular global
parametrization, such an assumption could be too restrictive.

The idea of combining soft segmentation and motion estimation has been attempted
before in the case of optical flow computation (see, e.g., [6, 45]). In optical flow fields,
however, the motion field is merely expected to be piecewise smooth. For truly artic-
ulated objects one would expect piecewise-constant flow fields, when expressed in the
correct parametrization.

Finally, the functional can be extended with priors from general mesh segmentation
techniques. These are usually based on the geometry of the surface itself, and obtain
remarkable results for a variety of objects. We point the reader to [14, 56, 117, 204],
and references therein, for additional examples of mesh segmentation algorithms. We
do not, however, use an additional prior as such an addition will prevent the isolated

examination of the principles shown in this chapter.

3.2 Problem Formulation

We now proceed to define the problem we try to solve and the proposed model.
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3.2.1 Articulation Model

We denote by X a 2-manifold representing a three-dimensional shape. We assume X
to have several embeddings into R3. Each of these embeddings constitutes a pose of the
surface. In the following, we will denote by x : X — R? the embedding of X into R3,
and use synonymously the notation x and x referring to a point on the manifold and its
Euclidean embedding coordinates, for a specific pose.

In the setting of rigid motion segmentation, we assume that X represents an artic-
ulated shape, i.e., it can be decomposed into rigid parts S, ...,S,. These are trans-
formed between different poses of the objects by a rigid transformation. This trans-
formation, a rotation and a translation, is an isometry of R®. The rigid parts are con-
nected by nonrigid joints Jy, . .., Jg, such that X = (J'_ S; UU{_, Jx. Anarticulation
Y = AX is obtained by applying rigid motions T; € Iso(R?) to the rigid parts, and
non-rigid deformations Q, to the joints, such that AX = (JI_, T.S;, UUi_, QxJ.

3.2.2 Motion Segmentation

The problem of motion-based segmentation can be described as follows: given two
articulations of the shape, X and Y, extract its rigid parts. An extension to the case of
multiple shape poses is straightforward. We therefore consider in the following only
a pair of shapes for the sake of simplicity and without loss of generality. A strongly
related question attempts to determine, given these articulations, the motion parameters
linking the poses of the object.

Assuming that the correspondence between the two poses X and Y is known, given
a point z € X and its correspondent point y(z) € Y, we can find a motion g € G
such that gx =y, where G is some representation of coordinate transformations in R3.
This motion g may change, in the setting described above, for each surface point. We
therefore consider ¢ to be a function g : X — G. We will simultaneously use gx € R?
to denote the action of g(x) on the coordinates of the point z, as well as consider the

mapping given by g : X — G and its properties.
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We note that typical representations of motion in R? contain more than 3 degrees of
freedom. In this sense, they are over-parameterized [164], and thus some measure of
regularity is required in order to avoid ambiguity as well as favor a meaningful solu-
tion. On the other hand, we note that since the articulated parts of the shape move
rigidly, if we choose an appropriate motion representation (as detailed below), two
points z, 2’ € S; will undergo the same transformation, from which it follows that
9(x)],c s, = const. One possibility is to adopt a constrained minimization approach,
forcing g(X) =Y, where g(X) is a notation for the set g(x)x(x) for all x € X. This
approach, however, needs to somehow handle the set of joints, for which such a con-
straint may be meaningless. In general, restricting the feasible set of solutions by such
constraints or even constraints involving an error in the data may be harmful for the
overall result. In order to avoid this, another possible approach is to take an uncon-

strained, yet regularized, variational formulation,

min_ AEp(g) + p(g), (3.1)

9:X—G
where p denotes a smoothness term operating on the motion parameters field. This
term is expected to be small for fields g which are piecewise constant on the mani-
fold X. While an appropriate parameterization of motion g, and regularization term
p(g) are crucial, we also require a data term that will encourage consistency of the
transformation field g with the known surface poses. Specifically, we wish to favor a
transformation field where the point x is taken by its transformation g(z) to a point on
the other surface. Ep(g) is our fitting term which measures this consistency with the

data.

En(g) = /X lg(2)x — y(x)*da, (3.2)

where y(z) € R? denotes the coordinate of the point y(z) € Y corresponding to x,
g(x) is the transformation at x, and da is a measure on X. We have assumed in the
discussion so far that the correspondence between X and Y is known, which is usually

not true. We can solve for the correspondence as part of the optimization in an efficient
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manner. We will mention this issue in Section 3.4.1. We use the term corresponding
point y(z) since, as in the case of iterative closest point (ICP) algorithms [31, 57],
several approaches for pruning erroneous or ineffective matches exist [194].
Minimizing the functional with respect to g, y(z) from a reasonable initial solution
allows recovery of the articulated parts by clustering g into regions of equal value. Yet

another choice of a data term is a semi-local fitting term, is a semi-local one,

Eos(g) = /X / o o =y (3.3)
yeN (x

where N (x) denotes a small neighborhood around the point = (we took N (x) to be
the 12 nearest neighbors). This fitting term, by itself, formulates a local ICP process.
The functional (3.1) equipped with the semi-local data term can be considered as the
geometrical fitting equivalent of the combined global-local approach for optic flow es-
timation [44].

The simplest representation of motion is a linear motion model, affectively setting
G to be the group of translation, or G = R?. This results in the motion model gx =
x +t = y for some t € R3. However, such a simplistic model fails to capture the
piecewise constancy of the motion field in most cases. Instead of turning to a higher
order approximation model such as the affine over-parameterized model [163], or to
more elaborate smoothness priors [228], we look for a relatively simple model that will
capture natural, piecewise-rigid motions with a simple smoothness prior. Thus we turn

to a slightly different motion model, naturally occuring in motion research.

3.2.3 Lie-Groups

One parametrization often used in computer vision and robotics [96, 126, 156, 231]
is the representation of rigid motions by the Lie-group SF/(3) and the corresponding
Lie-algebra se(3), respectively. In general, given two coordinate frames, an element
in SE(3) describes the transformation between them. Works by Brockett [39], Park et
al. [168] and Zefran et al. [234, 235] strongly relate Lie-groups, both in their global

and differential description, to robotics and articulated motions. We give a very brief
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introduction to the subject and refer the reader to standard literature on the subject (e.g.,
[97, 158]) for more information.

In this chapter, we are specifically interested in the special orthogonal (rotation)
matrix group SO(3) and the Euclidean group SF(3) to represent rigid motions. These

can be represented in matrix forms, where SO(3) is given as

SO3) ={R € Rsy3, R"R =1}, (3.4)
and SE(3) is given by
R t
SE(3) = R € SO(3),tecR?}. (3.5)
0 1

The Lie-algebra of SO(3), so(3) consists of skew-symmetric matrices,
s0(3) = {A € Ray3, AT = —A}, (3.6)

whereas the Lie-algebra of SF(3) can be identified with the group of 4 x 4 matrices of

the form

At
se(3) = JA €50(3),t €R® 3 (3.7)
0 0

where so(3) is the set of 3 x 3 skew-symmetric matrices. For both groups, the group
action is given by matrix multiplication.

In order to obtain piecewise constant description over the surface for the relatively
simple case of articulated object, we would like the points at each object part to have
the same representative. Under the assumption of G = SFE(3), this desired property
holds. We note, however, that the standard parameterization of small rigid motions has
6 degrees of freedom, while the number of degrees of freedom required to describe
the motion of point is mere 3. Thus, this parameterization clearly constitutes an over-
parameterized motion field [163] for articulated surfaces.

We now turn to the regularization term, p(g), and note that the formulation given in

Equation 3.1 bears much resemblance to fotal variation (TV) regularization common
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in signal and image processing [192]. Total variation regularization does not, however,
favor distinct discontinuity sets. This property of TV regularization is related to the
staircasing effect. Furthermore, in the scalar case, discontinuity sets form closed curves,
which may not be the case in some surfaces with large joint areas. Instead, a model that
better suits our segmentation problem is the Mumford-Shah segmentation model [157].
This model can be implemented using an Ambrosio-Tortorelli scheme [5], which can
be easily generalized for the case of maps between general manifolds such as maps
from surfaces into motion manifolds. We further describe the regularization chosen in
Section 3.3.

We also note that due to the non-Euclidean structure of the group, special care
should be taken when parameterizing such a representation [96, 126, 156, 215], as dis-

cussed in Section 3.4.2.

3.3 Regularization of Group-Valued Functions on Surfaces

Ideally, we would like the transformation field defined on the articulated surface to
be piecewise smooth, if not piecewise constant. Therefore, a suitable regularization
of the transformation parameters is required. Since the Lie-group G as a Riemannian
manifold, it is only natural to turn to regularization functionals defined on maps between
manifolds of the form g : X — G.

A classical functional defined over such maps is the well-known Dirichlet energy

(751,

1 1
por(9) = 5 / (V9, Vg)gwyda = 5 / tr (g7'Vg)® da, (3.8)
X X

where Vg denotes the intrinsic gradient of g on X, (-,-)() is the Riemannian metric
on G at a point g(x), and da is the area element of X. This functional is the more
general form of the (gradient) Tikhonov regularization (for Euclidean spaces X and G),
and its properties are well defined for general manifolds, as studied by Eells [75].

Minimizers of the Dirichlet energy are called harmonic maps. These result from a
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diffusion process, and are often used for surface matching [236, 258].

3.3.1 Ambrosio-Tortorelli Scheme

Unfortunately, the Dirichlet energy favors smooth maps defined on X, whereas our de-
sired solution has discontinuities at the boundaries of rigid parts. We would, intuitively,
want to prevent diffusion across these discontinuity curves. This can be obtained by
adding a diffusivity function var : X — [0, 1] to the Dirichlet functional, leading to the

generalized Ambrosio-Tortorelli scheme [5] for Mumford-Shah regularization [157].

2
par(g) = /X (%vﬁT(Vg, Vg)y + €(Vvar, Voar) + %) da,  (3.9)
where € is a small positive constant. This allows us to extend our outlook in several
ways. The Mumford-Shah functional replaces the notion of a set of regions with closed
simple boundary curves with that of a general discontinuity sets. It furthermore gener-
alizes our notion of constant value regions with that of favored smoothness inside the
areas defined by these discontinuity curves. This is in order to handle objects which
deviate from articulated motion, for example in flexible regions or joints.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly
reason about places in the flow where the nonlinear nature of the data manifold man-
ifests itself. Suppose we have a solution (g*, v’ ) satisfying our piecewise-constancy
assumptions of g, and a diffusivity function with 0 at region boundaries and 1 elsewhere.
At such a solution, we expect two neighboring points which belong to different regions
to have a very small diffusivity value v, connecting them, effectively nullifying the
interaction between far-away group elements which is dependent on the mapping used
for the logarithm map at each point, and hence can be inaccurate [112, 156]. While such

a solution (¢*, v’y,) may not be a minimizer of the functional, it serves well to explain

the intuition motivating the choice of the functional.
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3.3.2 Diffusion of Lie-Group Elements

In order to efficiently compute the Euler-Lagrange equation corresponding to the gen-
eralized Ambrosio-Tortorelli functional (3.9), we transform the neighborhood of each
point into the corresponding Lie-algebra elements before applying the diffusion oper-
ator. Using Lie-algebra representation of differential operators for rigid motion has
been used before in computer vision [215], numerical PDE computations [112], path
planning and optimal control theory [126, 156].

The Euler-Lagrange equation for the generalized Dirichlet energy measuring the

map between two manifolds is given as [75]
Axg® +T5,(Ve".Vg"), ., =0, (3.10)

where «, v enumerate the local coordinates of our group manifold, se(3), and we use
Einstein’s notation according to which corresponding indices are summed over. I'3
are the Christoffel symbols of SF(3), which express the Riemannian metric’s local
derivatives. We refer the reader to [70] for an introduction to Riemannian geometry.
Finally, Ax denotes the Laplace-Beltrami operator on the surface X.

In order to avoid computation of the Christoffel symbols, we transform the point and
its neighbors using the logarithm map at that point in SE/(3). The diffusion operation
is now affected only by the structure of the surface X. After applying the diffusion
operator, we use the exponential map in order to return to the usual representation of the
transformation. While this approach may suffer at discontinuities, where the logarithm
and exponential maps are less accurate, it is at these continuities that we expect the
diffusivity function v 47 to be very small, perventing numerical instability. In practice,

as we will demonstrate, this did not a significant problem.
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3.4 Numerical Considerations

We now describe the algorithm for articulated motion estimation based on the mini-

mization of the functional

E(g,var) = AEpara(9) + par(g,var), (3.11)

where Epata(g) is the matching term defined by Equation 3.2, and par (g, var) is de-
fined in Equation 3.9. The main steps of the algorithm are outlined as Algorithm 3.1.
Throughout the algorithm we sample g(z) based on the first surface, given as a mesh
with vertices {z;},, and an element from SE(3) defined at each vertex. The trian-
gulation of the mesh is used in Subsection 3.5.1 merely as a mean of obtaining a more
consistent numerical diffusion operator, and can be avoided, for example by point-cloud
based Laplacian approximations [24]. Special care is made in the choice of coordinates

during the optimization as explained in Section 3.4.2.

3.4.1 Initial Correspondence Estimation

As in other motion segmentation and registration algorithms, some initialization of the
matching between the surfaces must be used. One approach [11] is to use nonrigid
surface matching for initialization. Another possibility, in the case of high framerate
range scanners [248], is to exploit temporal consistency by 3D tracking. Yet another
possible source for initial matches incorporates motion capture marker systems. Such
sparse initial correspondence lends itself to interpolation of the motion field, in order
to initialize a local ICP algorithm, and match the patch around each source point to the
target mesh. In Figure 3.4, we use 30 matched points for initialization. This number of
points is within the scope of current motion capture marker systems, or of algorithms
for global nonrigid surface matching such as spectral methods [114, 150, 179, 193], or
the generalized multidimensional scaling (GMDS) algorithm [40].

We expect that a better initial registration, as can be obtained e.g. using a smooth-

ness assumption, or by pruning unsuitable candidates [194], will reduce the number of

49



CHAPTER 3: GROUP-VALUED REGULARIZATION FOR MOTION SEGMENTATION OF
ARTICULATED SHAPES

markers needed.

3.4.2 Diffusion of Lie-Group Elements

Rewriting the optimization over the functional in Equation 3.11 in a fractional step
approach [249], we update the parameters w.r.t. each term of the functional in a suitable
representation. The treatment of regularized data fitting in a fractional step approach
with respect to different forces has been used before for rigid body motion [51], and
is also similar to the approach taken by Thirion’s demons algorithm [170, 223] for
registration.

Using the transformation described in Section 3.3, the update step with respect to

the regularization now becomes

5 o
g" % = grexp | —dt PAT Ll = vl — dt F (3.12)
69 dvar

where exp(A) = T + A + A?/2! + A3/3! + ... denotes the matrix exponential, g
denotes the logarithm transform of g, and dt denotes the time step. 5’;% denotes the
variation of the regularization term p4r(g) w.r.t. the Lie-algebra local representation of
the solution, describing the Euler-Lagrange descent direction. ¢g(z) and the neighboring
transformations are parameterized by a basis for matrices in se(3), after applying the

logarithm map at g(x). The descent directions are given by

o PAT

53 - UE&TAX (i) +var (Vvar, V) (3.13)
0 —1

PAT = <V§]a V9> yvar + QEAX(UAT) + M,
OvAT 2¢

where ¢; denote the components of the logarithmic representation of g. The dis-
cretization we use for A x for triangulated meshes is a cotangent one suggested by [69],
which has been shown to be convergent for relatively smooth and well-parameterized

surfaces. It is expressed as

cot oy —I— cot By
Z J L fu; — ), (3.14)
JEN1(

Z

Z
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for a given function w on the surface X, where N (i) denotes the mesh neighbors of
point ¢, and «;;, 3;; are the angles opposing the edge j in its neighboring faces. A;
denotes the area of the 1-ring around 7 in the mesh. For unstructured meshes (point-
clouds), we use the Laplacian approximation suggested by Belkin et al. [24]. After a

gradient descent step w.r.t. the diffusion term, we take a step w.r.t. the data term.

OF
9"t = Pspp (g’““/? - dt%) , (3.15)

where Pgg(s)(-) denotes a projection onto the group S£/(3) obtained by correcting the
singular values of the rotation matrix [26]. We compute the gradient w.r.t. a basis for
small rotation and translation matrices comprised of the regular basis for translation
and the skew-matrix approximation of small rotations. We then reproject the update
onto the manifold. This keeps the inaccuracies associated with the projecting manifold-
constrained data [52, 96, 112, 156] at a reasonable level, and leads to a first-order ac-
curacy method. As noted by Belta and Kumar [25] in the context of trajectory planning
and ODE:s over Lie-groups, this method is reasonably accurate. In practice the time-step
is limited in our case by the data-fitting ICP term and the explicit diffusion scheme. We
expect improved handling of these terms to allow faster implementation of the proposed
method.

Finally, we note that we may not know in advance the points y(x) which match
X in Y. The correspondence can be updated based on the current transformations in
an efficient manner similarly to the ICP algorithm. In our implementation we used
the ANN library [12] for approximate nearest-neighbor search queries. We did not
incorporate, however, any selective pruning of the matching candidates. These are often
used in order to robustify such the ICP algorithm against ill-suited matches but are

beyond the scope of this chapter.
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Algorithm 3.1 Articulated Surface Segmentation and Matching

1: Given an initial correspondence.

2: for k =1,2,..., until convergence do

3 Update ght1/2, vff&l w.r.t. the diffusion term, according to Equation 3.12.

4:  Obtain g**! according to the data term, using Equation 3.15.

5:  Update y**+!(z), the current estimated correspondence of the deformed surface.

6: end for

3.4.3 Visualizing Lie-Group Clustering on Surfaces

Finally, we need to mention the approach taken to visualize the transformations as the
latter belong to a six-dimensional non-Euclidean manifold. Motivated by the widespread
use of vector quantization in such visualizations, we use a clustering algorithm with
spatial regularization. Instead of minimizing the Lloyd-Max quantization [113] cost

function, we minimize the function

EVIS(gZ-,R,-):Z/ Hg—g,-|\2da+/a Pon(s)ds, (3.16)
—~ Jr, R

where OR; denotes the set of boundaries between partition regions { R;}¥,, g; are the
group representatives for each region, and v% 1 (s) denotes the diffusivity term along the
region boundary. The representation of members in SF(3) is done via its embedding
into R'2, with some weight given to spatial location, by looking at the product space
R? x SE(3) C R'¥. Several (about 50) initializations are performed, as is often cus-
tomary in clustering, with the lowest cost hypothesis kept. The visualization is detailed
as Algorithm 3.2

While this visualization algorithm coupled with a good initialization at each point
can be considered as a segmentation algorithm in its own right, it is less general as it
assumes a strict separation between the parts. One possible question that can be raise
concerned the meaning behind vector quantization of points belonging to a manifold
through its embedding into Euclidean space. In our case, since we are dealing with

relatively well-clustered points (most of the points in a part move according to a single
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Algorithm 3.2 Spatially-consistent clustering algorithm

1: for 5 =1,2,..., for a certain number of attempts do
2: Use k-means on the spatial-feature space embedding, R? x SE(3) C R'?, to get an initial
clustering.

3:  Use the clusters in order to optimize a spatially-regularized vector quantization measure,

C= min/ Hg—gi||2da—|—/ v4p(s)ds,
9i,0R; J x AR,

where OR; denotes the set of boundaries between clustered regions, g; are the transfor-
mation representatives for each region, and viT(s) denotes the diffusivity term along the
region boundary.

4:  If Cis lower than the lowest C found so far, keep the hypothesis.

5: end for

6: return current best hypothesis.

transformation in SFE(3)), the distances on the manifold are not large and are therefore
well-approximated by Euclidean ones. We further note, however, that the diffusion
process lowered the score obtained in Equation 3.16 in the experiments we conducted,
indicating a consistency between the two algorithms in objects with well-defined rigid

parts.

3.5 Results

‘We now show the results of our method, in terms of the obtained transformations clus-
ters and the Ambrosio-Tortorelli diffusivity function. We first demonstrate results on
standard datasets of triangulated meshes. We then demonstrate results on point cloud

data.
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3.5.1 Triangulated Meshes

In Figure 3.1 we show the segmentation obtained by matching two human body poses
taken from the TOSCA dataset [41]. We visualize the transformations obtained using
the clustering algorithm described in subsection 3.4.3. We initialized the transforma-
tions on the surface by matching the neighborhood of each surface point to the other
poses using the true initial correspondence. The results of our method seem plausible,
except for the missing identification of the right leg, which is due to the fact that its
motion is limited between the two poses.

Figure 3.1 also demonstrates the results of comparing four poses of the same sur-
face, this time with the patch-based data term described by (3.3). In our experiments
the patch-based term gave a cleaner estimation of the motion, as is observed in the dif-
fusivity function. We therefore demonstrate the results of minimizing the functional
incorporating this data term. We also show the diffusivity function, which hints at the
location of boundaries between parts, and thus justifies the assumption underlying Al-
gorithm 3.2.

In Figure 3.2,3.3 we show the results of our algorithm on a set of 6 poses of a horse
and camel surfaces taken from [216]. In this figure we compare our results to those
of Wuhrer and Brunton [247], obtained on a similar set of poses with 10 frames. The
results of our method seem to be quite comparable to those obtained by Wuhrer and
Brunton, despite the fact that we use only 6 poses. We also note that both the diffusion
scheme and the visualization algorithm gave a meaningful result for the tail part, which
is not rigid and does not have a piecewise-rigid motion model.

In Figure 3.4 we demonstrate our algorithm, with an initialization of 30 simu-
lated motion capture marker points, where the displacement is known. The relatively
monotonous motion range available in the dynamic mesh sequence leads to a less com-
plete, but still quite meaningful, segmentation of the horse, except for its head.

We also note the relatively low number of poses required for segmentation — in both

Figure 3.2 and Figure 3.4 we obtain good results despite the fact that we use only a few
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poses, six and eight respectively.

Finally, in Figure 3.4 we demonstrate initialization of our method based on a sparse
point set, with 30 known correspondence points. The points are arbitrarily placed using
farthest point sampling [92, 106]. This demonstrates a possibility of initializing the
algorithm using motion capture markers, coupled with a 3D reconstruction pipeline,
for object part analysis. While the large-motion examples shown in this chapter are
synthetic, this example shows that the algorithm can be initialized with data obtained in

a realistic setup.

Figure 3.1: Segmenting a human figure. Top row: the set of poses used. Bottom row, left to right: the
transformations obtained from the two left most poses, the transformations obtained from all four poses

using Equation 3.3 as a data term, and the Ambrosio-Tortorelli diffusivity function based on four poses.

3.5.2 Point-Clouds

We now show a few results of our algorithm. We demonstrate segmentation of real
point-clouds obtained from laser scanners and Microsoft Kinect depth sensors. We first
describe the visualization technique used. In Figures 3.5-3.7 we use vector quantization
(VQ, [142, 152]), in terms of the embedding SE(3) C R'?, with multiple initializations

in order to visualize the resulting transformations. In the examples shown, 40 initial-
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Figure 3.2: Segmenting a horse dynamic surface motion based on six different poses. Top row: the poses
used. Bottom row, left to right: a visualization of the transformations of the surface obtained by our

method, and the segmentation results obtained by [247], and the diffusivity function v 4.

izations of vector quantization are used, at which point a minimal quantization cost is
practically achieved and new hypotheses do not feature lower costs.

While vector quantization can be used in itself to provide segmentation of motion,
using it over the raw estimated transformation creates various artifacts due to the noisy
initial estimation and the inaccuracy of using the embedding-space (Euclidean) metric
to reason about matrix-manifold distances. These are seen in the examples, where our
piece-wise smooth regularization solution manages to fix these artifacts.

In addition, we show the Ambrosio-Tortorelli diffusivity field, where several of the
main boundaries between parts can be seen.

In Figure 3.5 we demonstrate results from the SCAPE dataset [10]. The results are
based on the algorithm with initialization using 200 initial matches, and use the first 5
frames of the dataset.

In Figures 3.6,3.7 we demonstrate results from a Kinect sensor. The transformation
maps were initialized using frame-to-frame 3D tracking. Figure 3.6 demonstrates re-
sults on arbitrarily segmented part of the upper arm, with initialization based on local,

patch-based, ICP between frames. For this experiment, 4 frames were taken. Figure 3.7
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Figure 3.3: Segmenting a camel dynamic surface motion based on six different poses. Top row: the
poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained by

our method and the diffusivity function v 4.

demonstrates results on a human hand doing a waving motion, with initialization based
on the coherent point drift algorithm [159], with 6 frames taken for the segmentation.
These results show the applicability of the proposed framework also for analysis of

depth video from noisy data sources in an automated manner.

3.6 Conclusion

In this chapter we present a new method for motion-based segmentation of articulated
objects, in a variational framework with axiomatic motivation. The method is based on
minimizing a generalized Ambrosio-Tortorelli functional regularizing a map from the
surface onto the Lie-group S F(3) — extending the generalized Dirichlet functional. We

demonstrate the method’s effectiveness, and compare it with state-of-the-art articulated
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Figure 3.4: Segmenting a horse dynamic surface motion with a given sparse initial correspondences. Top
row: the eight random poses used. Bottom row, left to right: the set of points used for initializing the

transformations, and a visualization of the transformations obtained, and the diffusivity function v a7.

motion segmentation algorithms, showing it to be competitive with domain-specific
algorithms. The variational formulation of the problem allows us to easily tailor the
functional to specific problems where it can be combined with domain-specific terms.
In future work we intend to adapt the proposed algorithm to depth videos, which will
allow more robust detection of motion estimates, and a more complete detection of the

overall set of degrees of freedom. Another promising direction is to explore global

Figure 3.5: Visualization of the detected transformations before and after smoothing, using 6 frames from
the SCAPE dataset. Colors show the vector quantization results on the transformations embedded into

RlQ
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Figure 3.6: Top row: Visualization of the detected transformations before and after regularization, based
on a point cloud from a Kinect sensor at 70cm, using local ICP for initialization. Colors show the vector
quantization results on the transformations embedded into R'2. Left: visualization of the initial solution
based on local-ICP between frames. Right: the result after optimization. Bottom row: the first input

frame from the front/side. Note the fragmented surface

optimization methods as well as to use the proposed framework in other applications

such as surfaces denoising in order to handle noisy data.
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Figure 3.7: Top row: Visualization of the detected transformations before and after regularization, based
on a point cloud from a Kinect sensor at 70cm. Colors show the vector quantization results on the
transformations embedded into R'2, greyscale shows the depth in regions that were not subject to the
algorithm. Left: VQ visualization of the initial state obtained by the CPD algorithm. Right: visualization
of the resulting state after optimization. Note the merged sections of the ring and middle finger, as well
as additional artifacts vector quantization before the regularization. Bottom row: Left: Two surface
reconstructions of the point cloud obtained from the Kinect. Note the relatively high noise level in the

surface reconstructions. Right: The diffusivity function v 4.
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Chapter 4

Fast Regularization of Matrix-Valued

Images

4.1 Introduction

Matrix-manifolds such as Lie-groups, and Matrix-valued images have become an inte-
gral part of computer vision and image processing. Matrix-manifolds and groups have
been used for tracking [178, 231], robotics [52, 168, 234], motion analysis [84, 182],
image processing and computer vision [47, 172, 177, 182, 241], as well as medi-
cal imaging [23, 171]. Efficient regularization of matrix-valued images is therefore
highly important in the fields of for image analysis and computer vision. This in-
cludes applications such as direction diffusion [121, 220, 239] and scene motion analy-
sis [138] in computer vision, as well as diffusion tensor MRI (DT-MRI) regularization
[30, 72,95, 211, 229] in medical imaging.

We present an augmented Lagrangian method for efficient regularization of matrix-
valued images, or maps. We assume the matrix-manifold to have an efficient projection
operator onto it from some embedding into a Euclidean space, and that the distortion
associated with this mapping is not too large in term of the metric accompanying these
spaces.

Examples for such matrix-manifolds of interest include the special-orthogonal, special-
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Euclidean Lie-groups and the symmetric positive-definite matrices. We show that the
augmented Lagrangian technique allows us to separate the optimization process into a
regularization update step of a map onto an embedding-space, and a per-pixel projec-
tion step. An efficient regularization step is shown for the rotal-variation (TV, [192])
regularization, and a second-order regularization penalizing the Hessian norm. Both
the regularization step and the projection steps are simple to compute, fast and eas-
ily parallelizable using consumer graphic processing units (GPUs), achieving real-time
processing rates. The resulting framework unifies algorithms using in several appli-
cation domains into one framework, since they differ only in the choice of projection
operator. While such an optimization problem could have been approached by general
saddle-point solvers such as [55], the domain of our problem is not convex, requiring
such algorithms to be revisited in order to prove their convergence.

In order to obtain fast update steps we add two auxiliary fields, with appropriate
constraints. One field approximates the gradient of the image and simplifies the total-
variation cost function minimization, as done, for example, in [53, 90, 166, 219]. An-
other field approximates the image, but is forced during its update to stay on matrix
manifold, turning the group constraint into a simple projection operator. This results
in a unified framework for processing of SO(n), SE(n) and SPD(n) images, as we
describe in Section 4.3. This framework was initially presented in a recent conference
paper [189] and we now expand upon it, with additional explanations and a partial
convergence proof. In addition, we relate in this section the proposed algorithms to
split-Bregman iterations and describe their convergence properties. In Section 4.4 we
demonstrate a few results of our method, for regularization of 3D motion analysis, med-

ical image analysis, and direction diffusion. Section 4.6 concludes the chapter.

4.2 A Short Introduction to Lie-Groups and Matrix Manifolds

We now shortly describe the matrix manifolds we deal with in our algorithm. Their

structure allows us to define priors on matrix-valued data in computer vision and has
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been the subject of intense research efforts, especially involving statistics of matrix-
valued data [171], and regularization of matrix-valued images [229], as well as describ-
ing the dynamics of spatial processes involving Lie-group data [138]. Lie-groups are
algebraic groups endowed with a differentiable manifold structure and an appropriate
group action. We briefly describe the matrix manifolds our algorithm deals with, and
refer the reader to the literature for an introduction to Lie-groups [97].

The rotations group SO(n) - The group SO(n) describes all rotation matrices of

the n-dimensional Euclidean space,
SO(n) = {R € Ry, R"R = I,det(R) = 1} . 4.1

The special-Euclidean group SE(n) - This group represents rigid transformations
of the n-dimensional Euclidean space. This group can be thought of as the product man-
ifold of the rotations manifold SO(n) and the manifold R” representing all translations

of the Euclidean space. In matrix form this group is written as

SE(n) = Rt ,Re SO(n),t € R" 3. 4.2)

0 1
The symmetric positive definite set SPD(n) - Another matrix manifold that has
an efficient projection operator is the cone of symmetric positive definite matrices. This
matrix manifold has been studied extensively in control theory (see [83] for example),
as well as in the context of diffusion tensor images [171], where the matrices are used to

describe the diffusion coefficients along each direction. By definition, this set is given

in matrix form as

SPD(n) = {A € Ryxn, A = 0}. 4.3)

4.3 An Augmented Lagrangian Regularization Algorithm for Matrix-

valued Images

We now proceed to describe a fast regularization algorithm for images with matrix-

valued data, referred to as Algorithm 4.1. The standard regularization problem of Lie-
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groups maps is formulated in terms of the Lie-algebra,

argmin/ |u™ V| + Alu — uol|*dz, 4.4)
ueg
where || - || is the Frobenius norm, u represents an element in an embedding of the

Lie-group G into Euclidean space. We use the notation Vu to denote the Jacobian
of wu, described as a column-stacked vector. We note that we use the same notation
to represent the Lie-group element, its matrix representation, and the embedding into
Euclidean space, as specified in each case we explore.

The term ||u~'Vul| can be thought of as a regularization term placed on elements
of the Lie algebra about each pixel. This formulation parallels the time derivatives
in construction of Lie-group integrators [52], and defines smoothness in the tangent
space of the Lie-group. Smoothness expressed in the regularization term ||u~'Vul|
is in sense of the geometry of the Lie-group, via the Lie-algebra, but this may not
generalize to other matrix groups. Furthermore, its minimization is inefficient as it
requires computing the logarithm and exponential maps at each pixel update. In order
to obtain a fast regularization scheme that applies for all matrix groups, we look instead

at the regularity of an embedding of the Lie-group into Euclidean space,

argmin/ Vull + Mu — uo||*d, 4.5)
ueg
where || Vu|| denotes (by abuse of notation) the Frobenius norm of the Jacobian of the
map from the domain (R? or R?) into the embedding space. This allows us to consider
also matrix groups that are not Lie-groups, such as symmetric positive-definite matrices
and Stiefel matrices, as part of the same framework. In our formulation, elements of
SO(n) can be embedded into R™,m = n?, and elements of SFE(n) can similarly be
embedded into R™ m = n(n + 1). The elements of SPD(n) can be embedded into
R™ m=n(n+1)/2.
The rationale behind the different regularization term ||Vul| stems from the fact

that SO(n) and SE(n) are isometries of Euclidean space, but such a regularization is
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possible whenever the data consists of nonsingular matrices. This regularization term
has also been used for SPD matrices [233]. We refer the reader to our technical report
[187] for a more in-depth discussion of this important point. Next, instead of restricting
u to G, we add an auxiliary variable, v, at each point, such that u = v, and restrict v to G,
where the equality constraint is enforced via augmented Lagrangian terms [103, 175].

The suggested augmented Lagrangian optimization now reads

min  max L(u, v; ) = (4.6)

vEGUER™

dz.

min max
vEGUER™

/ IVl + Alu = uol[*+
sllu = vl + tr(u" (u —v))
Given a fixed Lagrange multiplier x4, the minimization w.r.t. wu,v can be split into
alternating minimization steps with respect to u and v, both of which lend themselves
to an efficient and parallel optimization. Specifically, we can further reformulate the
regularization of u in the same way as Wu and Tai [245], by introducing an auxiliary

variable p

TN e 22X L (1,0, 5 4, pr2) = 4.7
vEG uER™ peR™MN #X ( , U, D3 4 Mg) @7

Pl + Allw = uoll*+
2| Vu — p||? + tr(1d (Vu — p))

where 115 is the Lagrange multiplier associated with the constraint p = Vu, and r5 is

the related penalty coefficient.
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4.3.1 Minimization w.r.t. v

The advantage of adding the auxiliary variable v is that minimization w.r.t v becomes a
simple projection problem per pixel,

argmin CHU —ul|? + tr(p" (v —v))
vEG 2

— argmin - Jlo— (% 40|
—argm1n2Hv <T+U>H (4.8)

veEG
= Proj (H + u) ,
g T
where Projg denotes a projection operator onto the specific matrix-group G. The nu-

merical update step for SO(n), SE(n) and SPD(n) will be explicitly given later on.

4.3.2 Minimization w.r.t. u

The update step w.r.t « in Equation 4.6 is a vectorial TV denoising problem

argmin/HVuH + Mu — @ (ug, v, p, 7)||* dez, (4.9)
ueR™

(2 up+rv+p)

with & = @

. This problem can be solved via fast minimization techniques for
TV regularization of vectorial images, such as [38, 74, 89]. In our case, we regularize
the image using the algorithm [219], as we now describe. In order to obtain fast opti-
mization of the problem with respect to u, we add an auxiliary variable p, along with a

constraint that p = Vu. Again, the constraint is enforced in an augmented Lagrangian

manner. The optimal u now becomes a saddle point of the optimization problem

MMlu—a Ug, U, by T 74 P
min max/ H (o, v, ) Il dzx. (4.10)
werm 7 s (= Vu)+ Zp— Vul]?
p € R?™
We solve for u using the Euler-Lagrange equation,
2\ — @) + (div pig 4 7o divp) + Au = 0, (4.11)
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for example, in the Fourier domain, or by Gauss-Seidel iterations. We have chosen
Gauss-Seidel iterations since complete minimization of the functional is not required at
each substep.

The auxiliary field p is updated by rewriting the minimization w.r.t. p as

. T
awgin [ 1l + iy + Zllp — VP, @12
p € R?*™

with the closed-form solution obtained by shrinkage [219]

1 1
p = — max (1—H,0> w, w=roVu— . (4.13)
w

T2
It is easy to see that the solution should lie on the segment connecting 0 and w, see
Figure 4.1. Hence the solution comes from minimizing a relatively 1D problem. See
[219] for more details, where the level-lines of the two terms of the functional involving

p are shown.

Gl @l

AN /|

Regularization Term Coupling Term Combined Terms

Figure 4.1: Level-lines of the two cost function terms involving p. Left to right: the regularization term,

the coupling term, an overlay of both these terms together.

Hence, the main part of the proposed algorithm is to iteratively update v, u, and p
respectively. Also, according to the optimality conditions, the Lagrange multipliers p

and - should be updated by taking
pt = (0F =), (4.14)
s = ps 41y (pF — Vi) |

An algorithmic description is summarized as Algorithm 4.1.
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Algorithm 4.1 Fast TV regularization of matrix-valued data

I: for Kk =1,2,..., until convergence do
2. Update u*(x), according to Equations (4.11).
3. Update p¥(x), according to Equations (4.13).

4 Update v*(z), by projection onto the matrix group,
e  For SO(n) matrices, according to Equation (4.19).
e  For SE(n) matrices, according to Equation (4.28).
e  For SPD(n) matrices, according to Equation (4.29).

5:  Update p*(x), u%(x), according to Equation (4.14).

6: end for

4.3.3 Split-Bregman method for matrix-valued regularization

An additional interpretation of augmented-Lagrangian total variation regularization has
been suggested in [219], relating it to split-Bregman techniques, and specifically, the
method suggested in [130]. In fact, for the set of unit vectors, G = S™, the projection
operator for v would be the same as the one used in [130]. In split-Bregman iterations
[91], in each iteration a Bregman distance [37] is minimized.

Looking at the function
E(p,u,0) = [ o]+ llu = wlf @15
and vector sequence
dbree = (di, dy, dy) = — (div ps + p*, pb, —p*) | (4.16)
we use the Bregman distance

D?bnre ((u,q,v), (u*,pF,0%)) = (4.17)

/ ol + e = woll = 1P = [[u* = wol|” = (s s (. P, 0))
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Re-examining our inner update step in algorithm 4.1, we can reformulate our algorithm
(between updates of the Lagrange multipliers) in the form of a split-Bregman iterations
(uF T pF M) = (4.18)
DR (0, p,v), (ub, pb, o))
argmin =

0 [llp = VulP+ 5 S =P

Il + llw — uo||® + (div p + p*, w)

argmin =
wre S (ufp) + (s ) + Zlp = VP + §lu — ol
el e = ol + (e p — V)
argmin .
P +(pF u =) + Flp — Vaul* + §llu — o]

We note that we take into account the nature of v while minimizing the Bregman
distance only. In this sense, and in the choice of vector d¥ .y the algorithm differs
from the split-Bregman method. This is not surprising as our domain is not necessarily
convex, and the convergence properties of the split-Bregman iteration cannot automat-
ically hold for nonconvex domains. Partial convergence proofs for the algorithm can
be obtained in the context of the augmented-Lagrangian formulation, with some small

modification, as mentioned in the following section for nonconvex matrix manifolds.

4.3.4 Regularization of maps onto SO(n)

In the case of G = SO(n), Although the embedding of SO(n) in Euclidean space is not
a convex set, the projection onto the matrix manifold is easily achieved by means of the
singular value decomposition [86]. Let USVT = (‘—: + uk) be the SVD decomposition

of £ + u*, we update v by

v*" ™ = Proj <H - uk) = U(2)VT(z), (4.19)
SO(n) \T

UsV” = (Z4ut),
r
Other possibilities include using the Euler-Rodrigues formula, quaternions, or the polar

decomposition [131]. We note that the nonconvex domain SO(n) makes the analysis

of global convergence for this scheme quite elaborate.
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Convergence proof for the Inner Iterations

Despite the non-convex domain, and non-continuous projection operator, the inner
iterations (update of w,v,p) of a modified variant of the algorithm, in the case of
G = SO(n) (and G = SE(n)) can be easily made convergent in a weak sense us-
ing the method inspired by the work of Attouch et al. [16], as described in our technical
report [187]. In this limited setup, we hold the Lagrange multipliers u, uo fixed, and
update p, u, v, minimizing them as described above. Adapting our notation to that of

Attouch et al. [16], we rewrite
r
flu,p) = llpll + p3 (p — V) + §2||p—VU|I2, (4.20)
g('U) = Z.Q (U) )
r
Qu,p,v) = 1" (uw=v) + 5w~ o],

L(u,v,p) = f(u,p) + Q(u,p,v) + g(v),

where @, f, g would fill similar roles as in [16], and i, (v) is the indicator function for
the group g. We note that care needs to be taken when adapting the proofs from [16],
as in our case the minimization step of v is confined to a subset of the Euclidean space
which is not an affine subspace, and hence many of the proofs utilizing the subgradient
w.r.t v need to be significantly revised. We can still, however, prove convergence of the

residuals towards zero in the following manner. We modify our update steps to be

1
u” = argmin L(u, p* ', vF 1) + %Hu — 2, 4.21)
K : ko k-1 1 k=12
v" = argmin L(u", p" ", v) + %Hv — 0", (4.22)
p* = argmin L(u", p, v%), (4.23)

p

where 0 is a (finite and positive) constant coefficient. We begin by noting according to

Equation 4.23 that
L (u*,p*, %) < L (uF,p" " 0") . (4.24)
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Using Equation 4.22 we get
1
L (uk,pk_l, Uk) + %Hvk o Uk:—1||2 <L (uk,pk_l, ,Uk—l) )
Finally, using Equation 4.21 we get

1 - kel e
Huk_uk 1”2 SL(uk l,pk 17vk 1)7

L (Uk,pk_l, Uk—l) + %

resulting in the inequality

1 1
L (b, ¥, 0%) sl — o P

28 %”Uk o vk71HQ S L (ukfl,pkflﬂjkfl) 7

or alternatively
|u? — uP7H|? + [Jof — o2 < 20 (L (uk_l,pk_l, vk_l) — L (uk,pk,vk)) . (4.25)

Since the sequence of L (u*, p¥, v*) is non-increasing, and is bounded from below (be-
cause of the quadratic structure of L with respect to u, v, p) for a given set of multipliers,

we know that
20 (L (uk’l,pkfl, vk’l) — L (uk,pk, vk)) — 0, (4.26)

and therefore
[uf — |7+ o — R 2 = 0. (4.27)

Thus, we can show that the residual decreases towards 0, and give some assurance
as to the convergent behavior of the algorithm. A complete convergence analysis is not
straightforward, as mentioned in [130]. Empirical results seem to demonstrate strong
convergence properties in a variety of applications and scenarios, for a wide variety of
0 values. Convergence plots for a range of ¢ values is shown in Figure 4.2. As can be
seen, there is a slight advantage in terms of convergence speed for high 6 values and
weak coupling, but in general, the method works well for a large variety of 6 values.

Moreover, the case where only partial updates of u, v, p are performed is more elabo-
rate and its analysis is left as future work. We note that for the case of total-variation reg-
ularization, properties of the split-Bregman iterations with partial accuracy have been

analyzed by Yin and Osher [254].
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Figure 4.2: Residual plots for a variety of 6 values, for the optimization problem given in Figure 4.3

4.3.5 Regularization of maps onto SFE(n)

In order to regularize images with values in SE(n), we use the embedding of SE(n)
into R*(™*1) as our main optimization variable, u, per pixel.
The projection step w.r.t. v applies only for the n? elements of v describing the
rotation matrix, leaving the translation component of S E(n) unconstrained.
Specifically, let v = (vg, v;), Vg € R”Q, v; € R™ denotes the rotation and translation
parts of the current solution, with a similar partition for the Lagrange multipliers p =
(R, pt)- Updating v in line 4 of Algorithm 4.1 assumes the form
ot = Brog (2 ) o = (2 4 ut) @29
So(m) N T r

V"t = Proj(v") = (v, of .
SE(n)
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4.3.6 Regularization of maps onto SPD(n)

The technique described above can be used also for regularizing symmetric positive-
definite matrices. Here, the intuitive choice of projecting the eigenvalues of the matrices
onto the positive half-space is shown to be optimal [105]. Many papers dealing with the
analysis of DT-MRI rely on the eigenvalue decomposition of the tensor as well, i.e. for
tractography, anisotropy measurements, and so forth.

For G = SPD(n), the minimization problem w.r.t. v in step 3 of Algorithm 4.1 can
be solved by projection of eigenvalues. Let U diag (A) U be the eigenvalue decompo-
sition of the matrix £ + uF. v is updated according to

v = Proj (v*) = U(z) diag <5\> U”(z), (4.29)
SPD(n)

Udiag (M) UT = <M + uk> : <5\>Z = max ((\)

r

0),

7

where the matrix U is a unitary one, representing the eigenvectors of the matrix, and

the eigenvalues <5\> _are the positive projection of the eigenvalues (A),. Optimization
i

w.r.t. u is done as in the previous cases, as described in Algorithm 4.1.

Furthermore, the optimization w.r.t. u,v is now over the domain R™ x SPD(n),
and the cost function is convex, resulting in a convex optimization problem. The convex
domain of optimization allows us to formulate a convergence proof for the algorithm
similar to the proof by Tseng [230]. We refer the interested reader to our technical report

[187]. An example of using the proposed method for DT-MRI denoising is shown in

Section 4.4.

Global Convergence for SPD(n) Regularization

For SPD(n) regularization we basically do a coordinate descent on a convex domain
[230] and therefore can show global convergence of our method. At each step of the

inner iteration, we do a full minimization with respect to the selected variables block w,
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v and p. Using the notation provided by [230], we can rewrite our functional as

‘Fu,uz(uv U,p) - fO(U,U,p) + fl(u) + f2(U) + f3(p)a (430)

where

1. fo is a convex, smooth, function.
r 2 T2 2
folu,v,p) = Gllv —ull® + (1,0 —w) + Fllp = Vul" + (p2. p = V)

2. f1, f2 and f3 are convex, lower-semiconinuous, continuous in their effective do-

main,

fi(u) = |lu — uol? 4.31)
fo(v) =0 (4.32)
f3(p) = lIpll- (4.33)

By [230, Proposition 1], it can be shown that the alternating minimization will con-
verge to a minimizer of 7, ,,(u, v, p). Along the same proof in [246], it can be proved
the whole algorithm converges. For completeness we repeat the proof here. The fol-
lowing characterization for the minimizers of functional F (u, v, p; i, uu2) will be used.

Assume that (u*, v*, p*) is one of the minimizers, and for arbitrary (u/, v', p’) we have,

AJu* —ugl]? = ||’ — wol|® + r2(p* — Vu*, —(Vu* — Vu'))
+r(u* —vut =)+ (pf vt —u) + (ps, —(Vu* = V') <0 (4.34)
—r(u* —ov*v* =) — (u* 0" =) <0 (4.35)

[Pl = [Pl + r2(p” = V&, p* = p) + (u3,p" —p') <0 (4.36)
(see [77],p.38 Proposition 2.2)

Theorem 4.3.1. The sequence (u®, v* p*; u*, uk) generated by Algorithm 4.1 converges

to the saddle-point (u*,v*, p*; u*, p3) of the functional F(u, v, p; 14, j12)
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Proof. Letu* = u* — uF 0% = v* — v* pF = p* — pF, i¥ = p* — p¥, and @ = py — pb

Since (u*, v*, p*; u*, p3) is the saddle point of F(u, v, p; i, pi2), we have
Fu™, v, p'sp, p3) < F(u', o', pls it p3), Yu, v, p (4.37)

In particular when u' = u* (4.34) still holds

A|u* — uol]* — )\||uk — ugl|? + ro(p* — Vu*, =V (u* — uk))

Hr(ut —v* ut —ub) 4 (1wt —uF) + (i, -V (et =) <0 (4.38)

On the other hand, since the (u*,v*, p*; ¥, %) is the minimizer of F(u, v, p; u*, u%),

u® will also satisfy (4.34) and after substituting u' = u* we obtain

Al = uol|* = Au™ = upl|* + r2(p* = V¥, =V (u" — u"))

k k k

r(uf —oF b —u) 4 (e

— ")+ (b, —V(u* —u)) <0. (4.39)
Adding the two inequalities yields

ro(p" — V¥, —=Va*) + r(@* — %, a") + (5", a") + (1", -Va*) <0 (4.40)
Similarly, w.r.t v*, v¥ using the same argument to (4.35) we have

—r(u* — vt vt —oF) — (uF, v — o) <0 (4.41)

—r(u® —oF 0 — %) — (uF 0" — %) <0 (4.42)
adding two inequalities yields
—r(a" — % o) — (pF,0") <0 (4.43)

w.r.t p*, p*, the same argument is applied to (4.36)

Ip*|| = [Ip¥| + r2(p* — YV, p* — p*) + (i3, p* — p*) <0 (4.44)
15N = 1p* | + 7o (p™ — Vb, p* — p*) + (b, p* — p*) <0 (4.45)

thus
ra(p* — Va*, p*) + (1", p*) <0 (4.46)
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Adding (4.40), (4.43) and (4.46) we have
ro||p" — VaF|]? + r|| @t — 07| + (@", pF — Vah) + (pF,a" —o*) <0 4.47)
By the way of updating multipliers, also note that u* = v* and p* = Vu* we obtain

prt =it @t - o) (4.48)

st = b+ ro(pt — V) (4.49)
therefore by (4.47) we have

rall A+l P = el A )
= 2rry (i, a" — O%) + 2rro(h, P — Vb)) + rPro||at — oF|)2 + 3 ||pt — Vak |

< —rirglfat — | —rrd|pt - V| < 0 (*30)

This actually implies z* and p% are bounded, and

lim |[p* — Vu*|| =0 4.51)
k—o0
lim [|u” —o*|| =0 (4.52)
k—oo

With this in mind, it is not hard to show that (u*, v*, p*; u*, 113) converge to the saddle-

point of the functional ]

4.3.7 A Higher-Order Prior for Group-Valued Images

We note that the scheme we describe is susceptible to the staircasing effect, since it
minimizes a total variation regularization of the map w. Several higher-order priors
can be incorporated into our scheme, that avoid this effect. One such possible higher-
order term generalizes the scheme presented by Wu and Tai [245], by replacing the per-

element gradient operator with a Hessian operator. The resulting saddle-point problem
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becomes
3 - 2
pll + A|lu — a (ug, v, , 7
- ax/ Dl + Al (o, v, 1, 7) | i, “4.53)
weRrRm +uz (p — Hu) + 2 |p — Hul]?
p e RY™,
veG
where H denotes the per-element Hessian operator,
(H(w));, = (D wi, DYy wi, Dy fug, D) (4.54)

where we use, for example D_" to describe the second order derivative obtained by
first applying the forward and then the backward first order derivative. Minimizing this
functional with respect to p is done by shrinkage, as described in [245]. Solving with
respect to u given p is done by solving the resulting optimality system of equations

[245],
N (u) + roH* (H(u)) = H*(112) + roH* (p) + 2)a, (4.55)
where H*(-) denotes the adjoint operator for the operator H (-),

H*(p) = D}, p' + D, p*+ D, p*+ D, p', (4.56)

z vy

where p’ denotes the ith element of the per-pixel vector p for each element in u, using
scalar notations in order to avoid further complicating the notation. We refer the reader
to [245] for the complete discussion and definition of these operators, and remark that
in our case, Gauss-Seidel iteration were used instead of a Fourier-domain solver.

We show an example using the appropriately modified scheme, for the case of G =

SO(2) in Figures 4.3,4.4

4.4 Numerical Results

As discussed above, the proposed algorithmic framework is considerably general and
suitable for various applications. We show several examples from different application

domains to demonstrate our algorithm
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4.4.1 Directions Regularization

Analysis of principal directions in an image or video is an important aspect of mod-
ern computer vision, in fields such as video surveillance [162, and references therein],
vehicle control [73], crowd behaviour analysis [153], and other applications[172].

The input in this problem is a set of normalized / unnormalized direction vectors
located throughout the image domain, either in a dense or sparse set of locations. The
goal is to obtained a smoothed version of the underlying direction field. Since SO(2)
is isomorphic to S*, the suggested regularization scheme can be used for regularizing
directions, such as principal motion directions in a video sequence. A reasonable choice
for a data term that does not depend on the vector lengths would try to align the rotated
first coordinate axis with the motion directions in the neighborhood,

Epyp(U) = Z <U1,1 (vj), + ULz (Uj)y> ;
(25,y5)EN (i)

where (mj, s, (V5), (vj)y) represent a sampled motion particle [153] in the video se-
quence (location and velocity), and U; ; represent elements of the solution u at each
point.

In Figure 4.3 we demonstrate two sparsely sampled, noisy, motion fields, and a
dense reconstruction of the main direction of motion at each point. The data for the
direction estimation was corrupted by adding component-wise Gaussian noise. In the
first image, the motion field is comprised of 4 regions with a different motion direction
at each region. The second image contains a sparse sampling of an expansion motion
field of the form ¥(x, y) = %, where c denotes the center of the image. Such an
expansion field is often observed by forward-moving vehicles. Note that despite the fact
that a vanishing point of the flow is clearly not smooth in terms of the motion directions,
the estimation of the motion field remains reasonable, due to the robust nature of total-
variation regularization.

Another classical example of direction diffusion is in denoising of directions in fin-

gerprint images. An example for direction diffusion on a fingerprint image taken from

79



CHAPTER 4: FAST REGULARIZATION OF MATRIX-VALUED IMAGES

the Fingerprint Verification Competition datasets [1] can be seen in Figure 4.4. Adding
a noise of o = 0.05 to the image and estimating directions based on the structure ten-
sor, we smoothed the direction field and compared it to the field obtained from the
original image. We used our method with A = 3, and the modified method based on
Equation 4.53 with A = 10, as well as the method suggested by Sagiv et al. [195] with
B = 100,T = 425. The resulting MSE values of the tensor field are 0.0317, 0.0270
and 0.0324, respectively, compared to an initial noisy field with and MSE of 0.0449.
The results demonstrate the effectiveness of our method for direction diffusion, even in

cases where the staircasing effect may cause unwanted artifacts.

4.4.2 SE(n) Regularization

An example of SE/(3) valued images can be obtained by doing local matches between
two range scans obtained from a Kinect device. For each small surface patch from the
depth image we use an iterative closest point algorithm [31, 57] to match the surface
from the previous frame. This obtains for us a field over SFE(3) over the image plane

for every time frame. The method is described as Algorithm 4.2

Algorithm 4.2 Regularized 3D rigid motion estimation

1: for each frame ¢, and the scanned 3D surface at time ¢, S; do

2:  for each pixel x; € S; do

3: Crop a small patch around x;, P, = S; N B, (x;)

4: Estimate the rigid motion R;, t; that minimizes the Lo error between P; and S;_1, by
running the iterative closest point algorithm.

5: Set up(x;) = (R, t;)

6: end for

7. Perform regularization of ug using Algorithm 4.1.

8: end for

We note that this measurement process is highly contaminated by non-Gaussian

noise. Despite this high level of noise we can use our algorithm to smooth this SE(3)
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image, obtaining a scale-space of SFE/(3) images, as shown in Figure 4.5. It can be seen
that for a careful choice of the regularization parameter, total variation in the group
elements is seen to significantly reduce rigid motion estimation errors. Visualization is
accomplished by projecting the embedded matrix onto 3 different representative vectors
in R'2,

In order to demonstrate the efficiency of this method and its parallelizable nature, we
implement it using the CUDA framework, and measure the computational time required
in order to obtain practical levels of convergence, at least 3 orders of magnitude. The
computation times are shown in Table 4.1, for various image sizes and iterations. Most
of the examples shown are with only 1 inner iteration since this has given us the fastest
convergence, without artifacts in the final result. In the GPU implementation the polar
decomposition was chosen for its simplicity and efficiency. In practice, one Gauss-
Seidel iteration sufficed to update u. Using 15 outer iterations, practical convergence
is achieved in 49 milliseconds on an NVIDIA GTX-580 card for QVGA-sized images,
demonstrating the efficiency of our algorithm and its potential for real-time applica-
tions. This is especially important for applications such as gesture recognition where
fast computation is crucial. We note that we do not use here the information between
more than two frames, as is often done in optical flow. Furthermore, using nonrigid
deformation rather than ICP in order to compute wu leads to significantly better results
using the same regularization scheme, as we demonstrated [181], including segmenta-
tion of articulated motion. Such discussion of the initialization method is beyond the
scope of this work.

We now demonstrate the results of our algorithm using a more accurate initial mo-
tion estimation technique.

In order to estimate the non-rigid motion occuring between two subsequent time-
frames of a depth video, we first apply a simple non-rigid registration process, similar
to the approach suggested by Li et al. [136], followed by the estimation of a locally-

rigid motion model, as described in the supplementary material. In general, any motion
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Outer iterations | 15 15 25 50 100

GS iterations 1 3 1 1 1
320 x 240 49 63 81 160 321
640 x 480 196 | 250 319 648 1295

1920 x 1080 1745 | 2100 | 2960 | 5732 | 11560

Table 4.1: Processing times (ms) for various sizes of images, with various iteration counts.

estimation method can be used.

Since the overall motion field can involve both piecewise rigid and non-rigid motion
components, and because of the noisy scan results often obtained from commodity
depth scanners, the estimated instantaneous motion is quite noisy, as can be seen in
Figure 4.7. The motion field should be post-processed so as to obtain locally-rigid
interpretation.

In Figure 4.6, we demonstrate results based on a synthetic hand model undergoing
motion. We used the non-rigid registration model to track the surface over several
frames so as to obtain a sufficiently large motion. While the detected motion is not
completely piecewise-rigid due to skinning artifacts, occlusions, etc, the fingers are
detected quite well. Using a standard mean-shift algorithm on the log-coordinates of the
rotation matrices, we obtain segmentation of the fingers and the phalanges that undergo
motion.

In Figure 4.7, we demonstrate TV regularization of SFE(3) for several frame pairs
in a depth sequence by a Kinect sensor. Visualization is done using log-coordinates of
the rotation matrix. The resulting estimated rigid motion allows segmentation of body
parts, or finger phalanges in the (synthetically rendered) hand. In Figure 4.8 we use the
mean-shift clustering algorithm [62] on the SF/(3) images’ projection onto the small
rotations standard linearization basis in order to segment the main moving parts. De-
spite the simple choice of the segmentation algorithm, that does not take into account

the geometry of the surface and linearizes the Lie-group in the simplest possible man-
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ner, the segmentation of the moving parts is clear. It is expected that utilizing geometric
prior on the regions size will prevent artifacts such as oversegmentation. In the exam-
ples shown here, QVGA resolution (320 x 240) was used. The estimation of motion
coefficients takes in Matlab about 5 seconds on an Intel i3 CPU. The regularization is
on the order of a tenth of a second to compute on GPU. Preliminary results support this

efficiency claim.

4.4.3 DT-MRI Regularization

In Figure 4.10 we demonstrate a smoothing of DT-MRI data from [146], based on
the scheme suggested in Section 4.3.6. We show an axial view of the brain, glyph-
based visualization using Slicer3D [2], with anisotropy-based color coding. In this
visualization, the color of the glyphs marks isotropic (red) to anisotropic (blue/violet)
tensors. The relative size of the ellipsoids denotes the amount of diffusion (trace of the
tensor), and the directions of the ellipsoids’ principal axes align with the eigenvectors
of the tensor at each point.

The noise added is an additive Gaussian noise in each of the tensor elements with
o = 0.1. Note that while different noise models are often assumed for diffusion-
weighted images, at high noise levels the Gaussian model is a reasonable approxima-
tion. Regularization with A = 30 is able to restore a significant amount of the white
matter structure. At such levels of noise, the TV-regularized data bias towards isotropic
tensors (known as the swell effect [68]) is less significant. The RMS of the tensor rep-
resentation was 0.0406 in the corrupted image and 0.0248 in the regularized image.
An additional application of our method is to perform regularized reconstruction of
DT-MRI signals from diffusion-weighted images (DWI). This is done by replacing the
quadratic fidelity term with a fitting term based on the Stejskal-Tanner equation [212].
Demonstrating this application is shown in our technical report [187], as discussion of

such reconstruction terms is beyond the scope of this chapter.
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4.5 Regularized DTI Reconstruction

There are several possibilities of using the proposed regularization scheme for DT-MRI
reconstruction from diffusion-weighted measurements. Instead of adding a fidelity term
as in Equation (4.5), we add a term for fitting the Stejskal-Tanner equations [212], based
on a set of measurements describing the diffusion in specific directions, and reconstruct

the full diffusion tensor at each voxel. The fitting term can be written as

Si
> ||big! ugi —log (gﬂ)

i
where 0; and g; are the b-values and gradient vectors, u is the diffusion tensor recon-

2

Y

structed at each voxel, and g—é define the relative signal ratio for each direction at each

voxel. The complete minimization problem reads

argmin / Z big] ug; — log (%)
, 0
) (2

veSPD(n

2
”
+ A|Vul| + §Hv — ul]* + (u, v — u)d.

U
(4.57)

While the memory requirements seem less favorable for fast optimization, looking
closely at the quadratic penalty data term, we see it can be expressed by looking at a

fitting term for the Stejskal-Tanner equations ,

S
> ||bigl ugi — log 5

i
where A is a constant matrix over the whole volume,

2
=ulAu+blu+c, (4.58)
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and b is the vector

S; T
b:Zbilog (S—O)<2g% 491> 49193 295 49293 2g§> ) (4.60)

and c is the scalar image

c= Z (log (%))2 (4.61)

)

We note that, unlike the denoising case, in the reconstruction case it is the data term
that couples together the elements of the tensor together. Care must be taken so as to
handle this coupled data term.

Reconstruction with the new data term can be computed using several techniques.

e Freezing all elements of the tensor but one, we obtain from the Euler-Lagrange
equations pertaining to Equation 4.57 an update rule for the image, to be com-
puted in the Fourier domain, or via Gauss-Seidel iterations. While the coupling
between the tensor elements (expressed via the non-diagonal matrix A) prevents
us from treating each tensor element separately, the optimization w.r.t. each of the

elements converges quite rapidly.

e Another possibility is to take a block Gauss-Seidel approach, and optimize each

tensor separately, going over all the voxels one-by-one.

e Yet another possibility is to further decouple the TV and data term, using separate

variables and constraining them using an augmented Lagrangian approach.

Of the above techniques, we have tried the first one. The reconstruction obtained
is the spatially-regularized version of the linear-least-squares (LLS) method. One can
incorporate a weighted least-squares (WLS, [196]), or nonlinear-least-squares (NLS)
[125] data term instead. Combining such data terms and exploring the interaction be-
tween the regularization and nonlinear terms is beyond the scope of this work.

In Figures 4.11,4.12 we demonstrate reconstruction of the DT-MRI tensors, again

based data from Lundervold et al. [146], using a set of 30 directional measurements.
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The measure ratios log <§—0> were added a Gaussian additive noise of standard deviation
100. The reconstructed image obtained by regularized reconstruction with A = 1 x 1073

had an MSE of 2.1 x 1074, compared to 8.9 x 10~% without regularization.

4.6 Conclusions

We propose in this chapter a general framework for matrix-valued image regulariza-
tion. Using the augmented Lagrangian technique, we separate the optimization prob-
lem into a TV-regularization step and a projection step, both of which can be solved
in an easy-to-implement and parallel way. We also demonstrate how to reformulate
the optimization in terms of split-Bregman iterations, and relate it to existing works on
split-Bregman iterations. Furthermore, we show the efficiency and effectiveness of the
resulting scheme through several examples whose data taken from SO(2), SE(3), and
SPD(3) respectively. Our algorithms allow real-time regularization for tasks in image
analysis and computer vision.

In an extension work we intend to explore other applications for matrix-valued im-
age regularization as well as generalize our method to other modalities and data of maps.
Additional research paths incorporates higher level priors, replacing locally-acting pri-

ors with patch-based and global shape priors.
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Figure 4.3: TV regularization of SO(n) data. Left-to-right, top-to-bottom: a noisy, TV-denoised, and
higher-order regularized (minimizing Equation 4.53) version of a piecewise constant SO(2) image, fol-
lowed by a expansion field direction image. Different colors mark different orientations of the ini-
tial/estimated dense field, black arrows signify the measured motion vectors, and blue arrows demonstrate

the estimated field
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Figure 4.4: TV regularization of SO(2) data based on fingerprint direction estimation. Top two rows,left-
to-right: The fingerprint image with added Gaussian noise of ¢ = 0.05, the detected direction angles
displayed as arrows, the detected directions after regularization with using a higher-order regularization
term shown in Equation 4.53 with A = 6, the regularization result by Sochen et al. [195]. Bottom two
rows: color legend for the directionality images, initial estimated field, result of TV regularization with

A = 3, higher-order regularization with A\ = 6.
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Figure 4.5: Regularization of SE(3) images obtained from local ICP matching of the surface patch
between consecutive Kinect depth frames. Left-to-right: diffusion scale-space obtained by different
values of \: 1.5,1.2,0.7,0.2,0.1,0.05, the foreground segmentation based on the depth, and an intensity

image of the scene. Top-to-bottom: different frames from the depth motion sequence.

Figure 4.6: TV regularization based of an S E3-valued image placed on a rendered depth surface. Left-
To-Right, Top-To-Bottom: An overlay of the two consecutive time-frames used to obtain motion estima-

tion, the estimated and regularized SFE(3) images, and a resulting segmentation using mean-shift.
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Figure 4.7: TV regularization of an S E3-valued image given on a scanned depth surface. . Each row
represents results on two different frames from a depth sequence. Left-To-Right, for each frame: An
overlay of the two consecutive time-frames used to obtain motion estimation, the estimated .S E(3) mea-
surement, and regularized image. Raw depth data is used to estimate the motion. The regularized SF(3)
image hints at joint locations for parts that were moving at the time the depth frames were taken. Note
in the last example, using a slightly stronger regularization, a nonrigid object (a shirt) is still separated

clearly from the arms.
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Figure 4.8: Segmentation based on mean-shift clustering of the SE(3) image. Left-to-right: The motion
between the two frames, the segmentation obtained using the raw estimated SF(3), and the segmentation

obtained using the regularized result, showing a segmentation of the moving limb parts.

Figure 4.9: A scale-space obtained by changing the fidelity coefficient through the values A =

5,2.5,1.5,0.8.
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Figure 4.10: TV denoising of images with diffusion tensor data, visualized by 3D tensor ellipsoid glyphs
colored by fractional anisotropy. Left-to-right: the original image, an image with added component-wise

Gaussian noise of ¢ = 0.1, and the denoised image with A = 30.
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Figure 4.11: TV-regularized reconstruction of images with diffusion tensor data. Left-to-right: the origi-
nal image, an image with added component-wise Gaussian noise, and the denoised image. Noise was of

standard deviation 100, A = 1 x 1073.

Figure 4.12: TV-regularized reconstruction of diffusion tensor data. Left-to-right: the original recon-
struction without noise, the noisy least-squares fitting solution (used as initialization), and the regularized
reconstruction result. Top-to-bottom: a visualization of the principal directions, the fractional anisotropy,

and the mean diffusivity. The noise added to the field ratio logarithm was of strength 100, A = 1 x 1073,

92



CHAPTER 4: FAST REGULARIZATION OF MATRIX-VALUED IMAGES

93



Chapter 5

Sparse Priors for Structured-Light

Reconstruction

5.1 Introduction

With ever more prevalent sources for 3D data, 3D acquisition and processing is an
increasingly important part of scene analysis. Active illumination range scanners are
used for scene understanding [104, 119, 143], robotics [94, 151, 176], object modeling
[48, 81], indoor scene mapping [160], and human computer interaction [206], among
other tasks.

Structured-light systems usually consist of a calibrated camera-projector pair, where
coded light pattern sequences emitted by the projector are acquired by the camera,
allowing robust triangulation and depth reconstruction. Time-multiplexed structured-
light systems trade-off spatial for temporal resolution. They allow us to obtain dense
and accurate reconstruction at low cost, with relatively simple hardware and without
too many limiting assumptions on the scene. Other alternatives for structured-light at-
tempt to trade-off resolution for coding robustness by incorporating decoding schemes
for larger neighborhoods which add a certain assumption of regularity. For a review of
existing structured-light techniques see, for example, [197].

In order to improve reconstruction robustness, many of the techniques used to re-
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construct 3D depth via structured-light incorporate ad-hoc assumptions on the scene
structure and the 3D imaging process. These include, for instance, smoothness of the
acquired surface [129, 259], or temporal objects behavior [98, 129, 259]. This regular-
ity, however, is usually based on channel decoding error approaches (see for example
[50, 108]), and does not relate to the geometry of the scene or the image formation
model. As such, its optimality is often limited due to the inaccurate reconstruction error
model.

Yet, modeling these assumptions in a more complete way is crucial when the cap-
tured illumination patterns are of low SNR, for example due to long scanning range and
short camera exposure times. In the case of dynamic scenes, where some of the captured
images are subject to abrupt intensity changes due to motion of depth discontinuities or
albedo boundaries, failing to model the imaging process in a realistic manner may cause
more reconstruction artifacts.

The probabilistic model we present here relates the time-multiplexed structured-
light to methods for spatio-temporal stereo reconstruction [67, 218]. In our case, how-
ever, we are estimating the expected camera luminous intensity, rather than assuming
brightness constancy.

Here, we obtain improved reconstruction results from structured-light scanners [174,
197], in face of challenging illumination conditions and motion artifacts, by providing
strong priors for the imaging model and surface shape. Instead of using strong shape
priors for range image correction, the approach we suggest incorporates shape and illu-
mination priors into the reconstruction itself, giving us a principled approach of combin-
ing powerful surface priors and probabilistic understanding of the acquisition process.
We use patch-based range image priors, similar to those successfully utilized for im-
ages, depth images, and surface processing [46, 79, 99, 134, 200, 227, 255, 256]. We
demonstrate the priors obtained from range images to be quite intuitive and meaningful.

This chapter builds upon a previous conference paper [183], discussing more com-

pletely the reconstruction model and demonstrating additional priors. Furthermore, we
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add more examples in order to test the behaviour of the algorithm in real-life low SNR
conditions, and add an additional structured-light patterns scheme.

Specifically, in Section 5.2 we develop our reconstruction model. In Section 5.3 we
describe the resulting reconstruction algorithm. We demonstrate our results and several
aspects of the model’s behavior on real images in Section 5.4. Section 5.5 concludes

the chapter and discusses future venues of research.

5.2 Regularized Structured-Light Model

In shape from structured-light, we reconstruct the geometric structure of the scene based
on active illumination. We illuminate the scene with projected patterns /p = {Il(f) N
where NV is the number of patterns, and capture a sequence of images I = {I(Ci) N
with a camera. Let us denote the optical centers of the camera and projector by points
C and P respectively. The overall setup is shown in Figure 5.1. In our formulation,
we denote the estimated range image as z(x). x € R? is the (two-dimensional) camera
image coordinates vector.

In this work we assume a Lambertian surface model for objects, and a projector
emitting directional light in a temporal sequence of patterns. The main source of image
noise is assumed to be the sensor/imaging process. Although other sources of deviations
from the model exist (for example object motion), in many cases they can be overcome
as we will show. Since structured-light systems decode a set of patterns and need all
of the patterns to be decoded correctly, we can assume relatively low noise levels — the
photon count per image sensor pixel is high enough so that the image noise model is
approximately Gaussian, yet the signal is weak enough so that correctly decoding the
coded light patterns poses a challenge. This is the typical scenario in real structured-
light systems with temporal multiplexed code, aimed for example at capturing dynamic
scenes, and thus requiring short exposure intervals.

Assuming a global illumination component and a projector illumination component,

96



CHAPTER 5: SPARSE PRIORS FOR STRUCTURED-LIGHT RECONSTRUCTION

Figure 5.1: An example of a structured-light system setup.

we can model every pixel’s intensity at each frame ¢ as

[P (x) = a(x)I}) (IL(x)) + b(x) +n' (x), (5.1)

n® (x) ~ N (0,07) .

a(x) and b(x) are pixel-wise coefficients that depend on the global illumination of the
scene, the surface properties, object albedo, projector properties, and so forth. II,(x)
denotes the depth-dependent intensity transformation from pixel x to a corresponding
pixel on the projector image. It is obtained by backprojecting the camera ray to depth
z and projecting the point into the projector optical center. n(¥) (x) is the pixel noise,

assumed to be additive white Gaussian noise, independent and identically distributed
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(1.1.d.) 1in space and time. The above model assumes a linear camera gain model. In
practice, this approximate model works well enough so as to obtain good reconstruction
results. Incorporating camera gain nonlinearity is deferred as future work since it is not
necessary for this model.

We wish to formulate and maximize a probability function of the depth given the
known camera images and projected textures. In reconstruction we are looking for the

depth value z(x) that maximizes the probability

z = argmaxmian (z,a,b|1p, o)

. P(z,a,b,1p,1¢)
— arginax rranbn Pp.1o)

. P(IP7107a7b|z)P(z)
— argglax naubn P p.1o)

(5.2)

= argmaxmin P (Ip, I¢,a,b|z) P (z)

Py ab

= argmin min (—logP (Ip, I¢,a,blz) — logP (2)),

z a,
where we have applied Bayes’ rule, and switched to log-probability domain. In order
to obtain an efficient algorithm for computing and optimizing photoconsistency in the
structured-light case, we note that we can incorporate the computation of the maximum-
likelihood expressions for a, b into a plane-sweep operation [61] when seeking the opti-
mum value of z. In the framework of probabilistic inference, this is known as max-sum

elimination. Minimizing the negative log-probability over a and b, we have

min min [—log (P (Ip, I¢,a,b|2))] = (5.3)

z a,b

The optimal values of a and b for this least-squares fitting problem are given in

analytical form by solving the normal equations using /,/p at points x, I, (x), respec-
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tively,

a _ upp  Hp Hep 7 (5.4)

b pp N pe
e = I (IL(x)), po =Y 18 (%),
pep = Y 18 (x) I (I (x)),
per =3 (18 (11.00)) "

Inserting the optimal a, b as a function of z and noting the conditional independence
(given z) of neighboring pixel values I (x), Ip (I1,(x)) provides us with a functional

to minimize with respect to z(x), similar to [221],

argmin/migl(—log(P (Ip,Ic,a,b|2)))dx + v (2) =

argmin/ psr (z; 1o, Ip,x)dz + ¢ (2) . (5.5)

The expression pgy, (2; Ic, Ip,x) denotes a penalty for the photoconsistency assump-

tion. In standard structured-light techniques, this term is often optimized per pixel in
several steps, including binarization of the code letters, decoding of the code, and depth
reconstruction. These separate steps, however (for any specific code) are sub-optimal,
even if efficient to compute. In order to achieve robustness to noise and computa-
tional efficiency, these approaches treat binarization or code-word identification errors
as general channel decoding errors, using robust codes which have a firm theoretical
background, but which do not really model the channel characteristics for this specific
problem. These characteristics should result from the imaging model and geometric
relations, and should not be ignored.

The term 1) (z) denotes our choice for approximating the negative log-probability
prior for the surface shape, — log P(z). There are several possible choices of surface
shape priors. These can incorporate either smoothness assumptions and more elabo-
rate geometric priors, assumptions on local shape of patches on surfaces, or reasoning

on natural depth image statistics [252]. In Section 5.2.1 we describe several possible
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regularization priors for depth images.

Incorporating Illumination and Reflectance Characteristics An additional im-
provement to the model can be made if we take into account the regularity of scene
characteristics such as object albedo, illumination and normals. These assumptions
have been utilized in the context of shape-from-single-image reconstruction [21], but
in our case a simpler model suffices. We augment the photoconsistency assumption by

adding a prior for the choice of a, b,

(a1 (1L (60) + 560~ 18 09) " (a(ae) — po)?

min | min Z + Ha —&—(b(X)_'ub)Q (5.6)
2| ab |4 o? o2 of ’

where i, 11, are taken from a locally computed average. o,, 0} are constants set
manually, since estimating second-order moments from a small neighborhood of a noisy
signal can be quite sensitive. This allows us to compute a, b even if only a few noisy
frames are available, as is often the case with multiple color structured-light systems,

as shown for example in Figure 5.5.

5.2.1 Regularization Terms for Depth Images

We now describe a few possible regularization terms for the depth image, representing
various tradeoffs between model robustness and computational efficiency.
Total-Variation Regularization The minimum area [58] and total-variation [192]
(TV) priors, and related smoothness measures have been suggested in several forms for
regularization of range images [161] and surface reconstruction [118, 122, 214]. TV

regularization for structured-light can be expressed as

z

argmin/ng (2510, Ip,x) + ¢||Vz||dx, (5.7)

where ||V z|| is the total variation of the range image, for some coefficient ¢. This form

of regularization is strongly related to MRF-based structured-light [221]. A related
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prior is the second order total variation,
argmin / psi (z: 1o, Ip,x) + & Hz | dz, (5.8)

where H denotes the matrix of second order derivatives of z, H(2) = (2zz, V22uy, Zyy)-
This prior can be computed quite efficiently and lends itself to parallel computation
[244]. Furthermore, it is well suited to the often-made approximation of the scene as a
piecewise-linear surface.

Patch-based L, Prior for Structured-Light Another possibility for modeling range
images involves assuming a local model for each patch of the surface. Regularizing
the surface then expresses itself via the parameters of this model. This includes mod-
elling via polynomials or similar functions, leading to the moving-least-squares [135]
approach, or expressing the patch via a functional basis with sparse coefficients, leading
to sparsity-based regularization. Priors for depth images based on patch-estimators are
described, for example, in [111, 147, 200, 227].

In our case, we assume that the depth image can be locally viewed as a sparse
combination of basis functions. We note by U (+) our prior for surface patches. This

leads to a patch-based regularizer of the reconstruction,

z

argmin/pSL (z; I, Ip,x) dx—i—ElZz;(sz), (5.9)
x J

where P,z denotes extraction of a small neighborhood 7 from the surface z. For exam-

ple, for an L;-sparse representation prior, Equation 5.5 becomes

argmin/ pst (z; 1o, Ip,x) + (5.10)

1 (Z [Pz — Doy |* + /\|@j||1) 7

J

where D denotes a dictionary for depth image patches, P; denotes a matrix extracting
block j from the image in column-stacked notation, and «; denotes the representation

coefficients of patch P;z in that dictionary.
Gaussian Mixtures Prior for Structured-Light Since depth images are expected

locally to be very sparse, another approach of modeling them is by a Gaussian-mixture
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patch model, which in a sense first selects the support set of atoms from a structured-
sparsity dictionary where each Gaussian component defines a support set, and then es-
timates its coefficients. In this approach, data patches are assumed to be generated from
a sparse Gaussian-Mixture model in patch-space, similar to the approach suggested by
Yu et al. [256], and Zoran and Weiss [260]. The relation of this image model to sparsity
has been thoroughly discussed in [256]. In our case, Gaussians are pre-learned from
a set of depth images, although an adaptive approach, learning the component distri-
butions from the processed image itself is also possible. Unlike the case of natural
images, such a learning process would have to account for the bias of the depth image
patches, and the nature of the noise in the initial reconstruction results, as described in
Subsection 5.3.1. As the reconstruction errors are far from the standard additive noise
model, learning under such an outliers noise is not trivial and is left for future research.
The components of the Gaussian components form natural features of the range images,
adapted to edges and corners. This is not surprising, and has often been demonstrated
in sparsity-related literature. The components of the patch distribution obtained by a
Gaussian mixture model (GMM) are given in Figure 5.3. The optimization problem

can be written as

argmin/PSL (Z;IC7IP7X)+ (5.11)

2,005,k
Z&HE‘Z = U fil*+
J
AE TS (7)o (Y [551)
where fj’-C denotes the coefficients used to represent patch j in terms of Gaussian com-
ponent k;. ¥ denotes the covariance matrix of component %, IV is the number of pixel
in each patch, and U; define the principal directions of the Gaussian component used
for patch j. As is often the case in patch-based priors, the patches’ mean is subtracted
before coefficients estimation, and added before the synthesis of the new patch.
Change in the Dictionary Coefficients under Surface Transformations
The use of the sparse model for depth images revives the discussion of invariance of-
ten held in visual images reconstruction. The standard invariant properties often sought

in visual image processing are those of scale, translation, and rotation. These degrees

of freedom are not accounted for in the standard models for sparsity-based image pro-
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cessing. It is, however, instructive to look at standard geometric primitives and reason
about their transformation. Occlusion edges and corners are handled in depth images
in the same way as in visual images — translational and in-plane rotational invariances
are handled by multiple dictionary atoms. The robustness of the model to out-of-plane
rotationals is partially obtained by changing the coefficients of the atoms, but in gen-
eral, it is obtained in the same way, by multiplicity of the atoms in the dictionary - the
standard sparse model is not invariant to rotations of the object and a rotated object will

result in different atoms at each patch.

5.3 Alternating Minimization Algorithm for Regularized Structured-

Light

We now describe the specific algorithm used to solved structured-light reconstruction
with a sparsity-based prior, as shown in Equation 5.10. A complete algorithmic descrip-
tion is given as Algorithm 5.1.

We assume the coded light pattern can be initially reconstructed by minimizing per-
pixel the decoding error function ps,(x, I¢, Ip; z). While this reconstruction is usually
obtained by binarization and decoding of the time-multiplexed code, we view it as a
photoconsistency term between the structured-light patterns and the resulting camera
image intensities [165], when estimating the illumination conditions. Note that this
function depends only on the depth value and camera intensities per pixel. In order
to obtain the regularized solution we suggest to use an alternating minimization. By
adding a set of auxiliary variables, we decouple the problems of regularization and
structured-light decoding. This is done by minimizing the functional in Equation 5.5,
which is of a half-quadratic form [85]. Minimization with respect to the regularization
term given z results in a denoising problem. For patch-based priors, the resulting ap-
proach is similar to the one shown in [116]. We now detail each of the minimization

steps.
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Solving for » The update of z depends on the structured-light patterns, and may
not even be continuous. We note that for all of the regularization terms presented in
subsection 5.2.1, the term coupling the regularization to the photoconsistnecy term is
quadratic in z;(x), the patch-dependent representation of z(x) in patch i. Therefore we
can rewrite the term for each pixel x in z as the sum of a photoconsistency measure and
a sum of squared distances from Z(x), an averaged version of z(x) in all of the patches

containing this pixel, with an aggregate weight w(x), for every x

2" = argmin pgr(2) + Gwl|z — 2| (5.12)

A solution can be obtained by sweeping the set of possible z values, similar to stereo al-
gorithms [61]. Doing this plane-sweep is highly suitable for parallel implementation on
graphics processing units (GPUs) [251]. Note that plane-sweeps are discrete by nature,
as are the coded patterns in many cases. This does not constitute a further disadvan-
tage as they are of approximately the same resolution. In order to obtain convergence,
however, and in order to allow sub-pixel precision, we minimize a linearly-interpolated
photoconsistency, along with the quadratic distance in the second term of Equation 5.12.
The depth estimated at each pixel is set according to the minimum of the interpolated
cost function, allowing us to incoporate sub-pixel precision into the plane-sweeping
operator, as can be seen in the results section. Achieving sub-pixel resolution is im-
portant both in terms of accuracy and in terms of the visual artifacts that accompany
discrete-pixel reconstruction, as seen for example in Figure 5.4, where the staircasing
effect in the noise of the median-filtered reconstruction is typical of discrete-patterns
structured-light systems.

Solving an L, regularization Given a patch estimate F;z, an update of its represen-
tation becomes a standard sparse approximation problem. Specifically, if we take our
sparse prior to be of an L, regularity type, we can update «; using iterative shrinkage

[54],

ot =Sy (of —2tD" (Dal} — P;z)) (5.13)

104



CHAPTER 5: SPARSE PRIORS FOR STRUCTURED-LIGHT RECONSTRUCTION

where t is a gradient descent step, chosen to be small enough, and Sy, (-) denotes the

soft shrinkage operator,

0, ly| < At
SxW) =94 y—\t, y>M (5.14)

y+ A, oy < =Mt

While faster iterative methods exist for I,; minimization (see [250] for a few ex-
amples), because of the alternating minimization nature of our scheme, more complex
steps may not lead to faster convergence. We therefore chose to use the original iterative
shrinkage scheme. We note that the dictionary in our case is pretrained from a set of
depth images. The exact training procedure is defined in Subsection 5.3.1.

Solving a GMM regularization prior In this case, the choice of Gaussian compo-
nent and its coefficients are given by going over the Gaussian components, computing
the corresponding linear estimator, and the resulting log-probability term. Given that
patch P;z belongs to Gaussian mixture component £ with basis U}, and covariance ma-

trix X, the linear estimator for the coefficients f; is given by

5= (UL U+ A5 ) T (G UT) Pz, (5.15)

J

The component % for each patch is chosen so that the minimum regularized error is

achieved over all components,

&Pz — U fF+ (5.16)

argmin
k NS () + Blog (x [27)

where the GMM coefficients ff are computed according to Equation 5.15. We refer
the reader to Yu et al. [256] for further elaboration on the method, and comment that
the Gaussian mixture component are pretrained on a dataset of images, as defined in

Subsection 5.3.2.

5.3.1 Learning a Depth Dictionary

In order to learn a surface model from range images, several properties of the data must

be taken into account. Since reconstruction errors are of an outlier nature, algorithms
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Algorithm 5.1 Alternating Minimization Sparse Structured-Light

1: Compute initial reconstruction z by plane-sweeping, according to Equation 5.6.
2: for k =1,2,..., until convergence do

3:  Update auxiliary variable for regularization:
e Update ¥ by TV denoising, or second order TV denoising, according to [244], or
e Update a? (x) for all j, according to Equation (5.13), for L; regularization, or

e Update f;k by GMM component selection and linear estimation according to Equa-

tion 5.15,5.16, for GMM regularization.

5:  Update z*(x), according to Equation (5.12).

6: end for

such as KSVD [79] that assume an additive white Gaussian noise model. Such algo-
rithms require some form of pre-processing and outlier removal in order to train on data
with outliers. Furthermore, since many of the patches in range scans are of smooth sur-
faces, and since the KSVD algorithm is initialization-dependent, care must be taken to
provide a diversified initial dictionary. We focus the algorithm on the less-frequent edge
patches by clustering the data first using the mean-shift algorithm [62]. The resulting
dictionary obtained from a set of 50 range scans is shown in Figure 5.2. We note that
the examples used for testing are not part of this dataset. Thus we avoid overfitting for
a specific subject. While the training data is from a specific class of human faces, the
learned primitives are quite general, as can be seen in Figure 5.2. We leave the effect of

different dictionary and training data choices for future research.

5.3.2 Learning a Gaussian-Mixture Model for Depth Images

For the GMM prior we have used 200 Gaussian components, learned from the same
dataset as the sparse dictionary prior, and using the same type of pruning for flat and

outlier-containing patches. Learning the GMM component was done in a standard way

106



CHAPTER 5: SPARSE PRIORS FOR STRUCTURED-LIGHT RECONSTRUCTION

Figure 5.2: Example atoms from a dictionary of 300 words obtained from a set of 50 range scans.

(see [256] for more details). The components of the patch distribution obtained by a

Gaussian mixture model are given in Figure 5.3.

5.4 Results

We now proceed to demonstrate the results of the proposed scheme. We first note that
merely by using a sweeping approach instead of the usual decoding approach, we can
improve the reconstruction. This is not surprising since the channel noise model used in
the standard gray-code reconstruction was inaccurate to begin with. This improvement
is obtained even without an additional regularization term, as shown in Figure 5.5. In
this figure, in order to measure the amount of reconstruction outliers, we measure the
deviation of the current depth beyond the (0.4, 0.6) quantiles of the local neighborhood
depth for a small (9 x 9) region. As can be seen in the zoomed images, there are signifi-
cantly more outliers in the decoding-based reconstruction at areas with low illumination
intensity such as the sides of the object, where the incident angle is large.

The importance of using a better per-pixel model can be clearly observed around the
eyes of a reconstructed face, which is often a problematic area in 3D reconstruction due
to the low reflection coefficient of the pupil. This is demonstrated in Figure 5.4, where

reconstructing and then post-processing the depth image does not provide reasonable

107



CHAPTER 5: SPARSE PRIORS FOR STRUCTURED-LIGHT RECONSTRUCTION

= aads = WWE WY LR
PPl e - D=l Hesesy MY VLTS
Tl i’y = FRAdss NP WL LT
LA Tl W T e P LT M UL
PR e | ¥ OE RS S=cEs BN
-t 3 = Eieieb¥. Wi AelV T
TUUT T et D PR ot BLASael Seoswed b IV B SR
FALD Xt OO T Bohede TEVERE. Dagtrmm RURED FUPTO0 AW
A P L LMERL] = —omed BT b waennt SHESSE FIAZETE B DNVEY
I 20 MaadTe” & OO0TT Seldcalet Fra, HRE UM FLS/BAE M EARE
FATEDY 4 S[R3y SRl e i Sy F PSR RN
oS et PR s " TS AT LS
N R, —rdesledd S-1 = IR0 =
A o o I B

o B ol Tl = P

Pl | - 1 AT - b
ettt IR GRS ACIN Al s
W anr T Gdis SN = PASISNREE b S ERaED
——— e it T RS L T B
T A N e TAdE 3 el
T e, eSS RO L Wb T
SR W s Earts L] = R
B, - EEETES o O BEFY ) ™
TR Dbk b e I Lfem) S (S
MR SRS el BTN TR

Figure 5.3: An example of 200 Gaussian mixture components obtained from a set of 50 range scans.
Each 6-columns group of columns represents the principle directions of Gaussian components. Each row
represents a Gaussian component, with the leftmost columns representing the more variable directions in

the mixture.

reconstruction of the eyes region. Similarly, the sides of the face which are poorly
illuminated by the projector suffer from reconstruction artifacts as well.

The main structured-light patterns scheme we experimented with is a standard structured-
light setup similar to [199], with 10 striped black and white patterns, along with an all-
ones and all-zeros pattern. The camera images are sampled at a resolution of 320 x 240,
and projector patterns are shot using a 1024 x 768 DLP projector. In order to simu-
late low-SNR conditions, we have added Gaussian noise to the camera images before
reconstruction. Results are shown in Figure 5.6,5.7 for the case of structured-light im-
ages with intensity Gaussian noise of standard deviations 5 and 10.

In order to quantitatively validate our method, we take as ground truth an almost-
noiseless range image of the head statue, and measure range errors compare to it. We
compare both L; and robustified L, truncated at 10 millimeters. The error measure-
ments are performed over a manually segmented mask of the 3D object in the image
domain. The results of this comparison are given in Table 5.1. For all of the images,

the dictionary trained for patched-based priors was of patch size 8 x 8. As can be seen,
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Figure 5.4: An example reconstruction of the eye region of a person. Left-to-right: the intensity im-
age based on the structured-light setup of [191], the result obtained by plane-sweeping according to
Equation 5.6 with no post-processing, the result after median filtering, and the result of regularized re-

construction using Equation 5.8.

the error of the median filtered result is smaller than those of sparse denoising with
robust fitting term, or that of TV regularized reconstruction. This is due to the fact that
TV regularization is too weak to overcome errors in the data term, and denoising with
an L, term is still somewhat sensitive to the strong outliers found in structured-light
reconstructed depth images.

We compare our results to several approaches. A common way of removing recon-
struction artifacts is by median filtering, as was done in [191]. We compared to median
post-processing, taken with the smallest filter size that removed range outliers from the
face, in order to avoid oversmoothing. Yet another approach treats the problem as a
denoising problem with a strong prior and impulse noise assumption. An example of
this type of method would be to take the same depth prior we use, but solve a denoising

problem with an L fidelity term
argmin/ 2= zolldx +3 S0 (Pre), (5.17)
z x j
where z; is the reconstruction results without a prior. This approach would be similar,
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Figure 5.5: Top row, left-to-right: One of the texture images, the result obtained by the method of [191],
and an outlier map (red pixels signify gross errors in the reconstruction), the result obtained by plane-
sweeping according to Equation 5.6, and an outlier map. Bottom row: two zoomed-in areas of low SNR,
marked as boxes in the texture intensity image. In these areas of weak illumination, plane-sweeping

results in fewer outliers compared to a standard decoding approach for structured-light.

in a sense, to the depth image denoising suggested in [227]. This approach is marked in
Table 5.1 under the Sparse Denoise column. In addition, it would be interesting to try a
weaker prior for reconstruction such as TV regularization as suggested in Section 5.3.
This approach is shown in the table as column 7V. For all of the methods, parame-
ters were chosen so as to obtain optimal robust Lo results, while preventing remaining
depth outliers. The table demonstrates the effectiveness of the proposed algorithm.
While the computational cost of our algorithm is quite high with current Matlab code,
the algorithm is highly parallelizable and one future line of work involves fast parallel
implementation of this algorithm.

In Figure 5.8 we demonstrate the results of our algorithm on artifacts caused by head
motion in the vertical direction. Even though the assumption of constant a(x), b(x)
breaks down, the algorithm overcomes many of the errors caused by a decoding-based
reconstruction followed by outlier removal. The size of the median filter is chosen to
be the smallest size that filters the motion artifacts over the eyes and mouth regions, a
7 x T filter in this case. We note that at this filter size, the mouth and nose areas merge,

while artifacts remain on the eyelids.
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Figure 5.6: First row, left-to-right: An example textured pattern, reconstruction results, reconstruction
with median filtering, reconstruction with sparse prior, where camera images were added Gaussian noise
with standard deviation of 5, with close-up on the right eye region and the nose and mouth region. Second
row, left-to-right: ground-truth reconstruction obtained from noiseless reconstruction, same sequence of
results, where camera images were added Gaussian noise with standard deviation of 10. In order to view

the range images, color and/or online viewing is suggested.

5.4.1 Color Structured-Light Example

Another example patterns scheme we used involves a color pattern projector, similar to
[191]. In this setup, a single grayscale camera is used, operating at a resolution of 480 x
360, at 180 frames-per-second. The exposure time is 5.56ms, due to synchronization
between the projector and camera (see [191] for more details). A DLP projector emits
color patterns sequentially in each cycle, and 12 patterns are used, 4 at each channel. In
such a patterns set, since only 4 patterns are available per color channel, estimation of

a, b is sensitive to image noise.
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Noise Raw Median TV Sparse Sparse Raw Median TV Sparse Sparse
Level Denoising Reconst. Denoising Reconst.
L error Lo error Lo error Lo error Lo error L1 error L error L error L error L error

25 1.4608 0.8411 0.8744 0.8680 0.8191 0.5996 0.4255 0.4240 0.4298 0.3379
5 2.6443 1.1033 1.1508 1.1768 0.9584 1.2013 0.5696 0.5689 0.6356 0.4135
7.5 3.9080 1.5315 1.715 1.8136 1.3489 2.1032 0.7384 0.7164 0.9489 0.5603
10 4.9841 1.9399 2.3866 2.758 1.7490 3.0949 0.9840 1.216 1.288 0.7571

Table 5.1: Error measurement at various noise levels, for structured-light reconstruction, and noise re-
duction by median post-processing, reconstruction with TV prior, reconstruction followed by sparse de-
noising, and reconstruction using a sparse prior as shown in Algorithm 5.1. Errors are shown as robust

Ls (truncated at 10mm) and L, errors, in millimeters, over the region of the scanned object.

It is quite important in this setup to have a prior for a, b as part of the model. Incor-
porating such a prior as shown in Equation 5.6 contributed greatly to the reconstruction
performance. The result of the reconstruction is shown in Figures 5.4,5.9. The noise
levels in these examples are not very high, but these examples are important because
they demonstrate a real structured-light scenario, with real sensor short exposure arti-
facts. The frame-rate of the camera, about 15Hz, is still relatively low. It is therefore
important to stress that in faster scanners short exposure time (and the resulting arti-
facts) is likely to play an even more significant role.

In Figure 5.9 we demonstrate the results using the Gaussian mixture model prior
shown in Figure 5.3. This result demonstrates the generality of the proposed framework
using a different regularization term. The Gaussian mixture components we used are

shown in Figure 5.3.

5.5 Conclusions

In the chapter we presented a novel model for regularized structured-light reconstruc-
tion. Incorporating a sparse surface prior into a physically-motivated probabilistic out-
look on structured-light decoding, we demonstrate accurate results in scenarios where
the usual approach for decoding structured-light tends to fail.

The results obtained merit the coupling of a strong surface prior with a probabilis-
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tic model for structured-light reconstruction, and motivate further exploration of the
benefits of the proposed method as well as investigating the use of this approach for
different types of depth scanners. Even in the case of no regularization, incorporating a
realistic illumination model into the reconstruction cost function leads to a more robust
reconstruction of each range pixel. An additional line of work involves implementing
the current algorithm in an efficient manner, exploiting the high level of parallelism
available in each phase. Other relevant venues of research include online learning of
the surface model, and the incoproration of a more complete illumination model into

the reconstruction.
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Figure 5.7: First row, left-to-right: 3D raw reconstruction results, reconstruction with median post-
processing and with a sparse prior for the case of ¢ = 5 noise. Second row, left-to-right: (3D raw
reconstruction omitted since it was too noisy), reconstruction with median post-processing and with a
sparse prior for the case of ¢ = 10 noise. In order to view the range images, color and/or online viewing

is suggested.
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Figure 5.8: Left-to-right: An example with artifacts caused by vertical head motion, a median-filtered
result, the result of the proposed method. Note the merging of the mouth and nose area in the median

filter, and the remaining artifacts around the left eye and nose area.

115



CHAPTER 5: SPARSE PRIORS FOR STRUCTURED-LIGHT RECONSTRUCTION

Figure 5.9: Reconstructed surface based on the structured-light setup of [191], with GMM prior. Top,
Left-to-right: one of the camera images in all 3 channels, raw reconstruction front view, median-filtered

initial solution, regularized reconstruction with GMM prior. Bottom: reconstruction, side view.
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Chapter 6

Discussion and Conclusions

In this work we discussed an extension to the over-parameterized framework for the
case of non-linear parameterization models and various regularization terms. The re-
sulting flexibility of the framework provides for various new applications for this frame-
work, while still using axiomatically developed regularization terms and well-founded

parameterization models.

6.1 The Generality of the Proposed Approach

We demonstrated several cases where a well-informed choice of parameterization for
motion and depth allows us to solve key problems in structure and motion estimation.
The resulting framework demostrate the power of a careful choice of parameterization,
coupled with regularization of the model parameters.

In the case of 2D stereo motion, a new method for optical flow computation was
presented, which hinges on a guiding principle that optic flow regularization should
have a strong theoretical foundation related to the scene geometry, while having as
few parameters as possible. The method is applicable to static scenes and retrieves
meaningful local motion parameters related to the scene geometry. At each pixel, the
parameters provide an estimation of the plane tangent to the scene manifold, up to a

fixed shift and scale. To that extent, they can be seen as a higher level output than
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optical flow in the computer vision hierarchy.

In 3D articulated motion segmentation, we have demonstrated a clear axiomatic
development of a segmentation functional for this case, based on the Mumford-Shah
framework. The highly-related TV regularization term can be generalized in our case
into fast regularization schemes for various types of matrix-valued images. This results
in various applications, both in smoothing and denoising, as well as more general in-
verse problems. Using the augmented-Lagrangian technique, we split the optimization
problem into highly-parallelizable and efficient to solve subproblems. This results in
an algorithm that achieves real-time speed for a nonlinear inverse problem with several
possible applications.

In the case of 3D reconstruction, we demonstrate how the structured-light recon-
struction problem can be rewritten as stereo motion estimation based on a probabilistic
model. This probabilistic model described the geometry and illumination model for the
object and the scanner system. This outlook connects this problem to the discussion
of motion parameterization and allows us to incorporate high-level priors on the scene
geometry and plausible shapes to be reconstructed — despite the nonlinearity of the in-
verse problem. We have examined several such priors, and shown them to allow great
improvement in the reconstruction robustness, while expressing a quite intuitive model
of the local 3D structure.

These examples highlight the interplay of parameterization and regularization in
motion and structure estimation problems, and demonstrate the possible future benefits
of such approaches. The generality of the proposed framework suggests new ways
to extend the over-parameterized approach well beyond linear estimation models, and

places the emphasis on the choice of parameters and nonlinear regularization terms.

6.2 Optimization Techniques

The optimization techniques demonstrated in the algorithms presented are local meth-

ods, acting on nonconvex functionals. Hence, they achieve a local minimum, which
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may not be always optimal, as noted before in the case of over-parameterized optical
flow. We expect global optimization techniques being developed to provide us with
better results in the future.

Another question regarding the optimization of the solution involves the the question
of whether the global minimum for a more elaborate model is the correct one. This
question has been previously raise by Wedel et al. [237], and it is an important one.
There are two prominent ways to tackle this question while handling overparameterized
models. One approach is by verifying the properties of the solution under a well defined
problem instance. We have done this in Chapter 2, where the optimal solution is shown
to be a global minimizer under conditions relating to the scene geometry. Another
approach is by choosing the optimization steps in ways that lead to a descent step, but
incorporate additional knowledge on the problem instance. Since we have focused on
axiomatic approaches for formulating and solving the problems described, we found
these techniques to be less aligned with the focus of this thesis, but they remain a valid
and important research direction.

Indeed, much work is required if novel parameterizations and over-parameterizations
are to be fully utilized. The resulting cost functions have many local minima, and
generic global minimization algorithms cannot solve them in reasonable time. We ex-
pect specially tailored global optimization techniques with domain-specific update steps

to help reduce the computational complexity of the search.

Finally, in the way of more advanced models, we believe more natural parame-
terization can be proposed for addtional, more elaborate, problems. Such problems
may include higher-order tensors, and stereoscopic models that include motion between
the frames, helping strengthen the connection between low-level vision and high-level
scene understanding.

We expect the methods and models presented in this thesis to allow solutions of these

problems and more, extending the basis of axiomatic over-parameterized approaches
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and help bridging these approaches to more data-driven parameterizations, resulting
in significant benefits to various fields of computer vision, machine intelligence, and

computer science.
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