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Abstract

One of the most important aspects of solving a problem is that of choosing an appropri-

ate parameterization. This trivial observation can be seen in many forms in image pro-

cessing and computer vision. Global parametrizations include the Hough and Fourier

transforms, whereas local parameterizations include sparsity-based patch models and

over-parameterized approaches. This research explores important cases in motion anal-

ysis and 3D reconstruction where a careful choice of the parameterization matters. It

leads, in these cases, to simple and yet generic formulations that can be efficiently im-

plemented.

The first part of the work related to 2D stereovision, where we suggest to use the

plane equation and planar homographies as a basis for an over-parameterized optical

flow estimation. The algorithm achieves state of the art results in term of accuracy in

optical flow computation. The regularization term has a physically meaningful inter-

pretation bridging the gap between optical flow computation and scene understanding.

The second part of the the dissertation relates to 3D motion understanding, where

we reformulate articulated motion as edge-preserving smoothing of Lie-group-valued

images of two types. By choosing carefully the parameterization and regularization

terms, the resulting algorithms obtain results comparable to those of domain specific

tools, on 3D range data. One of these algorithms can be implemented at real-time speeds

due to a novel formulation. Furthermore, it applies also to other inverse problems such

as diffusion tensor imaging reconstruction, and direction diffusion.

In the third and final part of the dissertation, we show how structured light recon-
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ABSTRACT

struction can be formulated as probability maximization with respect to the scene geom-

etry, given the camera and projector images. This allows us to incorporate sparse priors

for the surface into the non-linear reconstruction process itself. These priors, resulting

from the data, have a natural and intuitive interpretation, and in themselves parameter-

ize epipolar motion between the camera and projector. Furthermore, they help us obtain

3D reconstruction that is robust to low sensor exposure and motion artifacts.
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Chapter 1

Introduction

The choice of a natural measure of regularity is important in many areas of engineering

such as signal processing and numerical analysis, and has been part of computer vision

and control theory since its early days (see for example [65, 225, 240]). Regularization

of images and multidimensional signals has been also given significant attention since

the beginning of modern computer vision. The connection between regularization and

understanding and interpretation of images has been thoroughly studied in the context

of scale-space theories [4, 139, 149, 242].

Yet in computer vision, there are often several ways to represent some aspect of

the scene as a map. This is especially true when the relevant information is given as

a vector-, matrix- or group-valued map. For cases in which several value sets can be

used to describe the scene, we refer to this decision of representation as a choice of

parameterization. Often in these cases, the exact choice of parameterization for the

problem at hand is crucial. Its interplay with the regularization and data-dependent

terms is especially important when trying to solve inverse problems in computer vision,

as we will demonstrate.

In this thesis we demonstrate several aspects in computer vision relating to under-

standing of motion and structure where the right choice of parameterization, coupled

with axiomatic approaches for regularization provides us with well-founded methods

of solution.
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CHAPTER 1: INTRODUCTION

Specifically, we propose algorithmic solutions for the problems of 2D optical flow

estimation, 3D articulated motion understanding and 3D reconstruction from structured

light. In Chapter 2, based on an SSVM conference paper [185], we suggest a paraem-

terization for optical flow estimation that is based on 2D homographies between image

regions. These homographies are intimately linked to planar regions in the scene. Thus,

motion estimation in this case parallels segmentation of the scene into planar patches, as

we will show. In the case of 3D articulated motion understanding, in Chapter 3, based

on conference papers [180, 182], we demonstrate how 3D articulated motion segmen-

tation can be reformulated as regularization of a mapping from the scene to the rigid

transformations group SE(3). Chapter 4, based on a conference paper [188], further

extends this regularization into a fast framework for matrix-valued image regulariza-

tion. In 3D reconstruction from structured light, we demonstrate how reformulating the

problem as probability maximization of the estimated depth. Besides the known cam-

era and projector image inserting regularization for the depth provides us with superior

reconstruction results. This allows us to handle low exposure times and motion artifacts

in the reconstruction. These results have been published as a conference paper [183].

Chapter 6 concludes the thesis and discusses future directions of research.

We now proceed to describe the main regularization terms utilized in this thesis,

the parameterizations used for motion and structure, and the optimization techniques

utilized throughout this work.

1.1 Regularization Techniques

The topic of regularization is an important one in solving inverse problems. In our

setting of inverse problems we are looking at a map, u : X → Y , describing some aspect

of the real world – this can be the actual intensity image of the scene, a description of

the motion field between two images of the scene, a volumetric map of the diffusion

tensor in the tissue, and so forth. We denote X as the domain, and Y the range of u,

and specifically in most of the examples we will show, one of them or both will not be

8



CHAPTER 1: INTRODUCTION

a Euclidean manifold, but rather a manifold equipped with a more general Riemannian

metric (we refer the interested reader to standard books such as [49, 70] for a survey of

differential and Riemmanian geometry). An inverse problem can be loosely defined as

minimizing a distance between FD(u) (the application of a forward operator, describing

the measurement process) and fD, the measurements. In many problems, this distance

is the squared Euclidean distance, essentially minimizing the L2 norm between FD(u)

and fD. Other possibilities involve either other different norms of the Lp family, or

different comparison measurements altogether such as more generic robust fitting terms,

measurements between point clouds, Wasserstein metrics and so forth. These fitting

terms are also known as the data terms.

Many inverse problems do not have a single solution for the instance data; these

problems are called ill-posed problems. One solution is to add to the optimization prob-

lem a term whose minimizing solutions favor some properties of the solution. This term

is known as a regularization term, and its choice greatly affects the resulting solution.

The regularization term is usually the result of our assumption on the model of reality,

allowing us to obtain a reasonable solution with respect to this model. For specific types

of problems, regularization allows us to obtain a unique solution (for example, if both

the data and the regularization terms are convex).

Problems that are not ill-posed are called well-posed. Indeed, some problems may

be well-posed, but the sensitivity of the solution to inaccuracies in the problem data may

have a significant gain factor associated with it. Such problems are ill-conditioned. In

these cases as well, more accurate and suitable regularization terms allow us to handle

stronger inaccuracies and noise in the data we sense.

We now describe several of the standard terms used in regularization, and then pro-

ceed to describe the associated optimization techniques.

9



CHAPTER 1: INTRODUCTION

1.1.1 Regularization Functionals

Regularization approaches go back to Tikhonov [225] and earlier works. In this sub-

section we describe the main functionals discussed in this thesis.

1.1.2 Dirichlet Energy

The simplest regularization functional in used in signal processing beyond standard

Tikohnov regularization is the Dirichlet energy∫
‖∇u‖2dX , (1.1)

where dX is a measure associated with X . This energy in itself is useful for many

signals that are assumed to be smooth. The Euler-Lagrange equation for this functional

is the heat equation

∆u = 0. (1.2)

For the case in which the domain or range are non-Euclidean manifolds, the resulting

flow has a subject of intense research. For the general case, see [75]. Additionally,

evolution according to this equation can be related in signal processing to Gaussian

filtering [123]. It therefore has strong ties to the Gaussian scale-space, whose properties

have been thoroughly studied [139, 242].

Yet in most signals, the smoothness assumption is far too simplistic. In the last two

decades, numerous regularization functions have been suggested in both the discrete

and continuous setting. We now describe a few of these regularization functionals,

especially those that relate to the algorithms shown in this dissertation.

1.1.3 Total Variation

For signals that are piecewise-smooth Rudin, Osher and Fatemi (ROF) introduced [192]

the total variation (TV) measure. This regularization term penalizes the L1 norm of the

10



CHAPTER 1: INTRODUCTION

derivative of the signal for 1D signals.∫
|ux|dX (1.3)

For a multivariate scalar signal u over a domain Ω ∈ Rd, the total variation func-

tional is written as ∫
‖∇u‖dΩ. (1.4)

For vector-valued signal u = (u1, · · · , un), a straightforward extension is by integrating

the Frobenious norm of the Jacobian operator,∫
‖Ju‖dΩ, (Ju)ij =

∂ui
∂xj

. (1.5)

Additional important extensions to the case of color images are Di Zenzo’s gradient

extension [257], and the Beltrami cost function [209], for which several efficient com-

putational schemes have been proposed [66, 186], as part of this thesis. The Beltrami

functional expresses the area of the map between the image domain and the spatial-

chromal range, defined via the induced metric of each space.

In order to obtain a continuous approximation to the TV functional, it is customary

to use the Charbonnier regularization term∫
Ψ
(
‖∇‖2

)
dΩ, Ψ

(
s2
)
=

√
s2 + ε2, (1.6)

where ε is some small constant. Typically ε is chosen so as to distinguish small errors in

the measurements from outliers, signifying the typical “small” noise level. Additional

robust fitting terms used in the context of computer vision can be found in [34].

1.1.4 Second-Order Total Variation

In order to alleviate staircasing artifacts, and to accomodate the solution of problems

involving signals that are approximately piecewise-linear, the second-order total varia-

tion, ∫
‖∇2u‖dΩ, (1.7)
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has been suggested.

While the Euler-Lagrange equation for this functional is well-defined, the higher

derivatives tend to make the solution of problems involving such terms less straightfor-

ward and specific numerical schemes are needed.

Other high-order regularizers are also available. These include, for example the

total generalized variation (TGV, [36]), and the unbiased second-order prior suggested

by Trobin et al. [228].

1.1.5 Ambrosio-Tortorelli Regularization

Ambrosio and Tortorelli [5] proved the Γ-convergence of a sequence of regularization

problems approximating the Mumford-Shah functional [157]. In the Mumford-Shah

functional, the image is approximated by a piecewise-smooth model, and regularization

is given by ∫
Ω\γ

‖∇u‖2dΩ +

∫
Ω

(u− u0)
2 dΩ +H(γ), (1.8)

where γ is the discontuity set, H is the Housdorff measure associated with the domain

Ω, and u0 is the original image.

Ambrosio and Tortorelli suggested to approximate the space by a set of subprob-

lems, and proved convergence in the sense of Γ-convegence [15]. Among these are

functionals of the form∫
Ω

v2AT‖∇u‖2 + ε‖∇vAT‖2 + α2 (vAT − 1)2

4ε
dΩ, (1.9)

where vAT is the diffusivity function, serving as a phase-discontinuity indicator. Ambrosio-

Tortorelly regularization has been incorporated into many application domains, such as

image processing [19] and motion estimation [45], among others.

1.1.6 Non-local Regularizers

Bilateral Regularizers

12
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Motivated by signal smoothing in the histogram domain [253], the bilateral filter has

been suggested in several formulations [167, 208, 226, 253]. The filter itself operating

over an input image u0 can be written as

u(x) =

∫
k(x, x′; u0)u0(x

′)dΩ∫
k(x, x′; u0)dΩ

. (1.10)

The standard choice of a kernel k(x, x′;u0) is a Gaussian one,

k(x, x′;u) = e−(‖u0(x)−u0(x′)‖2/σ2
R+‖x−x′‖2/σ2

D), (1.11)

where σR and σD denote the average scales associated with the range and domain of u,

respectively. The distance d2σR,σD
(x, x′; u0) =

‖x−x′‖2
σ2
D

+ ‖u0(x)−u0(x′)‖2
σ2
R

can be shown to

be the Euclidean approximation of the geodesic distance associated with the Beltrami

filter [209]. This has been used for fast Beltrami filtering by Spira et al. [210].

By freezing the role of u0, the basic functional behind the bilateral filter can be

written as ∫
k(x, x′;u0) ‖u(x)− u0(x

′)‖2 dΩ, (1.12)

where k is a weight function comparing the positions x, x′, and the value at u0(x),u0(x′),

usually taken to be decreasing with the distance between x, x′, u0(x), u0(x′). It is usu-

ally assumed that u0(x),u0(x′) are close enough to have a meaningful k associated with

u0.

Non-local Means Regularizers

An intuitive and yet very powerful extension of the bilateral filter is given by ex-

tending k to describe the similarity between the neighborhoods of x, x′ and their map.∫
k(N(x), N(x′);u0) ‖u(x)− u0(x

′)‖2 dΩ (1.13)

The classical example for this [46] was suggested by Buades, Coll and Morel,∫
e−

∫
N (u0(x+y)−u0(x′+y))2dΩ ‖u(x)− u0(x

′)‖2 dΩ. (1.14)

A generalization of this filter to other kernel choices is given by Goossens et al. [93].

the resulting non-local means filter has been used for texture and image completion

[76], pixel classification [63, 87], depth-image denoising [110] and other applications.
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1.1.7 Sparsity-based Regularizers

Sparse Dictionary Regularizers

A different family of regularizers, usually given for discretely sampled signals, is

the family of sparsity-based regularizers. In these regularizers, the representation of the

signal is assumed to be a locally sparse one. This representation is set by a dictionary

of examplar patches. The coefficients associated with this dictionary for local patches

of the signal can be the coefficients of a linear combination used to obtain the patch

(this is known as a synthesis approach), or the response of the signal to a matched set

of filters (this is known as the analysis approach [88]). We refer the interested reader to

the literature (see for example [78]) for a more complete view of this developingc topic.

Structured Sparsity Regularizers and GMMs

In a few recent papers [256, 260], the relation between local Gaussian-mixture mod-

els (GMM) and structured-sparsity approaches has been investigated. The structured

sparsity interpretation of GMM priors suggests to pick first the support set of the patch

(i.e the Gaussian component) and then decide on the coefficient values themselves.

1.2 Optimization Techniques for Variational Regularizers

Given a functional with a data and regularization terms, several methods are available

for obtaining the optimal u. Here, we describe the main optimization approaches used

in the proceeding algorithms, with an emphasis on continuous variational approaches.

1.2.1 Minimizing Flow Approaches

Explicit Minimizing Flows

A classical set of approaches for minimizing variational functionals involves ex-

pressing the minimizing flow of the functional,

ut = −δE(u)
δu

, (1.15)
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where δE(u)
δu

is the first variation of the functional E with respect to u. The resulting

partial differential equation (PDE) can now be discretized, and its steady state com-

puted. The simplest approach for this involves explicit time iterations, such as the

explicit forward-Euler scheme (we refer the reader to standard literature for discussion

of standard discretization schemes [155]). Assuming a small enough time step ∆t, we

have

ut − ut−1

∆t
= −δE(u)

δu

(
ut−1

)
, (1.16)

Semi-implicit and Implicit Schemes

In semi-implicit schemes, Equation 1.15 is linearized (based on time t − 1) with

respect to ut for the right hand side terms. Specifically, we write the time evolution

equation as

ut − ut−1

∆t
= A

(
ut−1

)
ut, (1.17)

where A (·) is an operator that depends on the previous time step for linearization. For

the current time step solution is obtained by solving the system

(
Id−∆tA

(
ut−1

))
ut = ut−1, (1.18)

where the key to obtaining an overall efficient scheme is efficiently inverting the system

matrix (Id−∆tA (ut−1)). This inverted operator can be shown to be a contraction,

ensuring the stability of this scheme.

Semi-implicit schemes enabled the development of efficient solution methods for

nonlinear functionals in computer vision, coupled with additive [144, 238] and multi-

plicative [20] splitting.

Implicit schemes for variational regularization functinals have been suggested. Us-

ing such schemes, however, is more involved and requires equation-specific solutions

for the time-stepping equations, as in this methods A (·) is given in terms of ut.
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1.2.2 Steady-State Approaches

Another set of approaches involves using the Euler-Lagrange formula as a steady-state

equation and solving the (spatially-dependent only) PDE.

Classical approaches such as Gauss-Seidel (GS), and successive over-relaxation

(SOR) have been used extensively in computer vision. For example, in optical flow

estimation [42], with red-black GS/SOR solvers being quite effective due to the support

of the discretized diffusion operators.

Multigrid techniques have allowed further efficiency improvement under a well-

defined basis [43], and allows us to further exploit the convergence properties of the

problem.

1.2.3 Direct Optimization Approaches

Returning to optimization of the cost function, several efficient techniques have been

suggested for optimization of the variational nonlinear regularizers described above.

Specifically, based on the augmented Lagrangian technique [103, 175], differential op-

erators can be replaced with auxiliary variables during the optimization. The complete

optimization is now performed on both sets of variables, but the additional complex-

ity incurred by adding more variables is offset by the simpler optimization steps done

for each variable or sets of variables. The resulting optimization can be shown [244]

to be equivalent to split-Bregman optimization approaches in certain cases [91, 254].

Usually, the information flow between signal neighborhood is now embodied in a linear

PDE, and the auxiliary variables are updated via a per-pixel equation. This results in

numerical schemes that are highly-parallelizable, and easily achieve real-time perfor-

mance on graphics processing units (GPUs).
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1.3 Motion Manifolds

Motions in 2D and 3D have several typical parameterizations and models. One way to

view a motion field sees it as a map between a domain X and a range Y . An alternative

view considers a map between the domain X and a motion parameterization space

representing the local motion model P . For example, in optical flow the domain X and

range Y are images, with the flow defined between them. P is a motion model which

locally defines an intermediate representation of the motion from X into Y .

On one hand, the motion field in optical flow can be expressed either as a map

from an image into the manifold of all motion vectors, R2. On the other hand, it can

also be expressed via a map from the image domain into the manifold of all affine

transformations. Hence, both R2 and Aff(R2) can serve as P in this case. Embedding

a manifold such as Aff(R2) into R6 gives us a simple way of describing this model

using six parameters. The standard metric induced from the embedding onto R6 gives

us a way of quantifying discontinuities in the motion model. This results in the affine

over-parameterized optical flow model [163] for the choice of P = Aff(R2) ⊆ R6, but

other choices would have given us different over-parameterized models, equipped with

different measures of model discontinuities.

As an example of such a different choice, normalizing the image coordinates, which

is done in practice [163], changes the specific parameterization, and this is known to be

essential for affine over-parameterized optical flow to work. But this normalization step,

however, is not an arbitrary step – it merely reflects a different embedding of Aff(R2)

into R6, with a different resulting induced metric, and hence, in practice, a different

regularization effect for the term ‖∇a‖2, where a is the over-parameterized vector (see

Chapter 2 and [163] for more details).

Thus, the parameterization space P and its metric capture the essence of over-

parameterized models of motion by relating the choice of parameterization to the regu-

larization used. In this section we discuss a few of these models, relevant to the prob-

lems we describe in the following chapters, such as 3D rigid motion segmentation and
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disparity estimation in stereoscopic image pairs.

Figure 1.1: An illustration of over-parameterized motion spaces.

1.3.1 Three-Dimensional Rigid Motion

Models characterising rigid motions in Euclidean space have been around for quite a

while (see for example [18, 127, 137]). We now describe a few of these models – special

emphasis is given to rigid motion in the three-dimensional Euclidean space, but some

of the principles involved are much more general and apply to any finite dimension.

One theory that allows us to analyze rigid motions in a concise manner that lends

itself to differential operators and discussion of regularity is the theory of Lie-groups.

Lie-groups are topological groups with a smooth manifold structure such that the group

action G×G 7→ G and the group inverse are differentiable maps.

Because of the group structure and the existence of an inverse element, the neighbor-

hood of each point on the manifold can be mapped onto a neighborhood of the identity

element. This vector space allows us a way of adding and subtracting neighboring group

elements, and thus allows us to define derivatives, regularity, and diffusion operators on
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the group valued data. This vector space is known as the Lie-algebra g associated with

the Lie-group G.

More generally, A Lie-algebra is a vector space endowed with a Lie-brackets op-

erator [·, ·] : g × g → g, describing the local structure of the group. The Lie-algebra

associated with a Lie-group can be mapped diffeomorphically via the exponential map

onto a neighborhood of the identity operator and its tangent space.

There are many Lie-groups being investigated in various subfields of mathematics,

physics and engineering. Of these, two such important groups relate to 3D motion – the

group of all rotations in R3, SO(3), and the group of all rigid motions in R3, SE(3).

We further detail Lie-groups that pertain to this work in Chapters 3 and 4.

Another method for representing rotations in 3D are quaternions. Quaternions can

be approached in several forms which result in slightly different parameterizations. For

the relation of quaternions to Lie-groups theory we refer the reader to [213].

A relatively intuitive route taken from Euler’s rotation theorem: any displacement

of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single

rotation about some axis that runs through the fixed point.

Thus, one way to view quaternions is as a 4-element complex number, where the

3 imaginary elements describe the rotation axis, whereas the fourth element describes

the amount of rotation [102]. If normalized properly, a quaternion can be written as

q = cos 1
2
θ +

(
uxî+ uy ĵ + uzk̂

)
sin 1

2
θ, where î, ĵ, k̂ denote the components of the

complex parts of the quaternion, (ux, uy, uz) describe the direction vector, and θ denotes

the amount of rotation applied. This quaternion can operate on a 4 vector describing a

point p = xî+ yĵ + zk̂ in 3D-space using Hamilton’s product

p′ = qpq∗, (1.19)

where q∗ denotes the conjugate of q,

q∗ = cos
1

2
θ −

(
uxî+ uy ĵ + uzk̂

)
sin

1

2
θ. (1.20)

In order to describe free rigid motion, including translation, a product space with the
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translations space R3 can be used.

Another representation, motivated by Chasles’ theorem is the screw parameteriza-

tion [18, 158]. Chasles’ theorem states that every rigid motion in 3D-space can be

described by a rotation around an axis, followed by motion along this axis. Screws

parameterization is the combination (l, λ, t) where l describe the line in 3D (4 DOF), λ

describes the pitch, or ratio between rotation and translation along the axis. t describes

the amount of overall motion.

1.3.2 Stereoscopic Motion

In the case of stereoscopic image pairs and the disparity fields they describe, several

parameterizations can also be used. While the flow field itself, given in Cartesian co-

ordinates is a standard choice in optical flow and registration algorithms, alternative

parameterizations are constantly being applied to the problem. Since motion between

two images of the same scene is restricted to the epipolar lines with the depth of each

point determining the amount of motion, optical flow models based on epipolar lines

[202, 207, 237] have proven to be quite accurate and robust. Yet, such algorithms do

not try to incorporate higher-level priors on the scene structure.

In the case where camera calibration is known, the plane equation of the scene sur-

face can determine a 3×3 homography between the two images [100]. In the normalized

case, where the intrinsic parameters matrices are the identify matrix K1 = K2 = Id3×3,

we can easily develop the expression for this homography to be H ∝ R − tvT, as will

be shown in Chapter 2.

1.3.3 Depth Priors

A related topic is that of priors for depth images and surfaces. In surface processing,

numerous algorithms have emerged from the field of spectral analysis [59, 69, 71, 201,

222]. Others are motivated by algorithms from image processing [169], often looking

at the surface height field with respect to a local tangent plane. Yet another family of
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algorithms [82, 135] stems from approximation theory and views the discrete surface as

a sampled version of a continuous or piecewise-continuous object. As part of this thesis,

a novel algorithm was suggested that draws upon these approaches [184]. Even in the

case of explicit range images, several priors have been suggested, with close correlation

to developments in image processing.

Chapter 5 explores the use of various priors inside the nonlinear reconstruction pro-

cess used in shape-from-structured light. The resulting sparse dictionaries and Gaussian

mixture model components favor local piecewise linear and polynomial models, simi-

lar to moving least squares estimators. Specifically in the inverse problem of structured

light reconstruction as well as the problem of structure from multiple views, these local

estimators define a motion parameterization space describing motion along the pro-

jected patterns code. A discussion relating variational methods to MLS estimators for

the case of signal and surface reconstruction is available as a book chapter we published

[205].
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Chapter 2

Over-parameterized Optical Flow

using a Stereoscopic Constraint

2.1 Introduction

We now proceed to describe a few application domains where a principled outlook

relating overparameterized regularization and careful choice of parameterization can

benefit 3D reconstruction and motion estimation. We start with optical flow estimation

in stereoscopic image pairs, as we now describe.

A fundamental type of motion estimation is optical flow. Optical flow is defined as

the motion field between consecutive frames in a video sequence. Its computation often

relies on the brightness constancy assumption [107], which states that pixel brightness

corresponding to a given scene point is constant throughout the sequence. Optical flow

computation is a notoriously ill-posed problem. Hence, additional assumptions on the

motion are made in order to regularize the problem. Early methods assumed spatial

smoothness of the optical flow [107, 145]. Parametric motion models [29, 154], and

more recently machine learning [190] were introduced in order to take into account

the specificity of naturally occurring video sequences. In parallel, the regularization

process was made much more robust [35, 42, 44, 60].

In this chapter, we focus on optical flow computation in stereoscopic image pairs,
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given a reliable estimation of the fundamental matrix. We assume two images depicting

the same scene – either these are two images taken simultaneously, or two images of

a static scene. This problem has already been addressed in [32, 207, 232, 237]. The

papers [32, 207] expressed the optical flow as a one-dimensional problem. This was

done either by working on a rectified image pair [32], or by solving for the displace-

ment along the epipolar lines [207]. A different approach [232, 237] merely penalized

deviation from the epipolar constraint. In addition, [232] proposed a joint estimation of

the stereoscopic optical flow and the fundamental matrix. Finally, in order to treat the

problem of occluded areas and object boundaries, Ben-Ari and Sochen [27] suggest to

explicitly account for regions of discontinuities.

Yet, a third body of works turned to a complete modeling of the scene flow [22, 109,

173]. While this approach is the most general, we focus in this chapter on static scenes,

for which a more specific parameterization can be found.

While the reported experimental results in the aforementioned papers are very con-

vincing, their regularization methods still rely on the traditional assumption that op-

tical flow should be piecewise smooth. Here, motivated by the over-parameterization

approach presented in [163], the optical flow is obtained by estimation of the space-

time dependent parameters of a motion model, the regularization being applied to the

model parameters. In [33], we used homogeneous coordinates to express a homogra-

phy model, which allows to select a geometrically meaningful coordinate systems for

this problem. Here we elaborate upon this model by adding an Ambrosio-Tortorelli

scheme, which gives a physically meaningful interpretation for the minima obtained in

the optimization process.

In the case of a static scene, the optical flow can be factored into a model determined

by the camera motion and an over-parameterized representation of the scene. The scene

motion is described locally as a homography satisfying the epipolar constraint and pa-

rameterized by the equation of a local planar approximation of the scene. Assuming that

the scene can be approximated by a piecewise smooth manifold, enforcing piecewise
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spatial smoothness on the homography parameters becomes an axiomatically justified

regularization criterion which favors piecewise smooth planar regions.

2.2 Background

2.2.1 The Variational Framework

In the variational framework for optical flow, brightness constancy and smoothness as-

sumptions are integrated in an energy functional. Let (u(x, y, t), v(x, y, t)) denote the

optical flow at pixel coordinates (x, y) and time t. Brightness constancy determines the

data term of the energy functional

ED(u, v) =

∫
Ψ
(
I2z
)
, (2.1)

where

Iz = I(x+ u, y + v, t+ 1)− I(x, y, t) (2.2)

and Ψ(s2) =
√
s2 + ε2 is a convex approximation of the L1 norm for a small ε, as in

Equation 1.6.

M(a, x, y, t) denotes a generic model of the optical flow at pixel (x, y) and time t,

where a = (ai(x, y, t))i∈{1,...,n} is a family of functions parameterizing the model, i.e.,u(x, y, t)
v(x, y, t)

 = M(a, x, y, t). (2.3)

We begin with the smoothness term proposed by Nir et al. in [163],

ES(a) =

∫
Ψ

(
n∑

i=1

||∇ai||2
)
. (2.4)

In order to refine the discontinuities and obtain a physically meaningful regulariza-

tion, we extend the smoothness prior using the Ambrosio-Tortorelli scheme [5, 203].

ES,AT (a) =

∫
v2ATΨ

(
n∑

i=1

||∇ai||2
)

+ ε1(1− vAT )
2 + ε2‖∇vAT‖2, (2.5)

where vAT is a diffusivity function, ideally serving as an indicator of the discontinuities

set in the flow field. Choosing ε1 = 1
ε2

and gradually decreasing ε2 towards 0 can be
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used to approximate the Mumford-Shah [157] model via Γ-convergence process, but

we do not pursue this direction in this chapter.

While the Ambrosio-Tortorelli scheme has been used in the context of optical flow

[6, 28, 45], in our case this seemingly arbitrary choice of regularization and segmen-

tation has a physical meaning. The regularization of the flow becomes a segmentation

process of the visible surface in the scene into planar patches, each with his own set of

plane parameters. In addition, it helps us obtain accurate edges in the resulting flow.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly

reason about the places in the flow where the nonlinear nature of the motion parameter-

ization space manifests itself. Suppose we have a piecewise-planar, static, scene, and

an ideal solution (a∗, v∗AT ) where a∗ is piecewise constant, and the diffusivity function

v∗AT is 0 at planar region boundaries and 1 elsewhere. At such a solution, we expect

two neighboring points which belong to different regions to have a very small diffusiv-

ity value vAT connecting them, effectively nullifying the interaction between different

planes’ parameters. Furthermore the cost associated with this solution is directly at-

tributed to the discontinuity set measure in the image. The proposed ideal solution

therefore becomes a global minimizer of the functional, as determined by the measure

of discontinuities in the 21
2
-D sketch [149]. This is directly related to the question raised

by Trobin et al. [228] regarding the over-parameterized affine flow model and its global

minimizers.

The complete functional now becomes:

E(a) = ED(M(a, x, y, t)) + αES,AT (a). (2.6)

In the remainder of this chapter, we will propose a motion model enforcing the epipolar

constraint and show how to minimize the proposed functional.

2.2.2 Epipolar Geometry

Let us introduce some background on epipolar geometry, so as to motivate the choice

of the motion model. A complete overview can be found in [80, 100].
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Given two views of a static scene, the optical flow is restricted by the epipolar con-

straint. Figure 2.1 shows that a pixel m in the left image is restricted to a line l′ called

an epipolar line in the right image. All the epipolar lines in the left (resp. right) image

go through e (resp. e′), which is called the left (resp. right) epipole.

In projective geometry, image points and lines are often represented by 3D homo-

geneous coordinates

m =

λ

x

y

1

 |λ ∈ R?

 . (2.7)

Image points and their corresponding epipolar lines are related by the fundamental ma-

trix F

l′ = Fm. (2.8)

Consider a plane π, visible from both cameras, and the planar homography Hπ

which corresponds to the composition of the back-projection from the left view to a

plane (π) and the projection from (π) to the right view (see Figure 2.1). The homogra-

phy Hπ gives rise to a useful decomposition of the fundamental matrix

F = [e′]×Hπ, (2.9)

where [e′]× is a matrix representation of the cross product with e′.

2.3 Estimation of the Fundamental Matrix

One of the main challenges in estimating optical flow using the epipolar geometry is to

retrieve an accurate and robust estimation of the fundamental matrix. Mainberger et. al.

[148] showed that robustness of the fundamental matrix estimation could be achieved by

using dense optical flow instead of applying RANSAC or LMedS methods to a sparse

set of matches. Hence, we use as initialization the Horn-Schunck with Charbonnier

penalty function optical flow implementation provided by Sun et al. [217], modified to

use color images. This represents a baseline nonlinear optical flow method, as in [217].
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Figure 2.1: Epipolar geometry

In addition to allowing the computation of the fundamental matrix, this initialization

also serves as a starting point for our optical flow computation algorithm.

Many methods aimed at estimating the fundamental matrix can handle large num-

bers of correspondences. Among those, we choose a robust M-estimation method based

on the symmetric epipolar distance, the implementation of which is made very efficient

by the use of the Levenberg-Marquardt algorithm, as explained in [124].

2.4 A Flow Model Based on Local Homographies

We now proceed to develop the model and motivation for the flow equations. Suppose

the camera is calibrated, with projection matrices

P(t) = P0 =
(
I |0

)
, P(t+ 1) = P1 =

(
R |t

)
. (2.10)

where R is a rotation matrix and t is a translation vector expressing camera motion

between the two consecutive frames at t and t+ 1. We assume that locally, the scene is

well approximated by the plane

vTx+ d = 0 (2.11)
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where (xT, d)T = (x, y, 1, d)T denotes the 3D scene point visible at pixel x in homoge-

neous coordinates. The corresponding point of x at time t+ 1 is

x′ = P1

x

d

 = Rx+ td = (R− tvT)x (2.12)

in homogeneous coordinates. v designates the normal of the local planar approximation

of the scene, and −(vTx)−1 is the depth of the scene at time t. The planar homography

expressed in (2.12) gives a geometrically meaningful motion model parameterized by

v. From now on, consider v as a function of the pixel coordinates. Under the assump-

tion that the scene can be approximated by a piecewise smooth manifold, v must be

piecewise smooth.

We now derive the motion parameterization. In general, the camera parameters are

not known, but we can re-parameterize the planar homography using e′ and F . In the

following derivation we assume a calibrated view for simplicity’s sake. Let H(x, y, t)

denote the planar homography motion model. We have

H ∝ R− tvT. (2.13)

For any compatible planar homography H0 (cf. [100], 13.1.1.1, we will provide a spe-

cific choice later on),

∃(v0, µ) : H0 = µ(R− tv0
T) (2.14)

H = H0 − µt(v − v0)
T. (2.15)

As t and e′ are parallel, we can also write

H = H0 + e′
−µe′Tt
||e′||2

(v − v0)
T. (2.16)

Hence, H(x, y, t) can be parameterized by the function

a(x, y, t) =
−µe′Tt
||e′||2

(v(x, y, t)− v0), (2.17)

so that

H(x, y, t) = H0 + e′a(x, y, t)T. (2.18)
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The parameterization a is the unknown field we want to compute in order to model and

estimate the optical flow. The piecewise smoothness of a is a direct consequence of the

piecewise smoothness of v, as testified by (2.17). More precisely, minimization of the

Ambrosio-Tortorelli regularization term favors segmentation of the visible surface into

planar patches where the data evidence permits it.

When the cameras are not calibrated, the relationship between the parameteriza-

tion a and v is still linear. In fact, the calibration matrices mainly affect the relative

weighting of the model parameters smoothness. Our experiments show that even with-

out controlling the relative smoothness of the model parameters, the optical flow can be

estimated accurately.

Note that the parameterization a can also be derived directly from the fundamental

matrix decomposition (2.9).

For H0, we can choose the special matrix

H0 = S = [e′]×F . (2.19)

Each column of S with the corresponding column of F and e′ form an orthogonal basis

of R3 so that (2.9) is satisfied. S is a degenerate homography which projects points in

the left image to points of the line represented by e′ in the right image. Next, we use

the notations

x =


x1

x2

x3

 , e′ =


xe′

ye′

ze′

 , H0 =


h1

T

h2
T

h3
T

 , (2.20)

to signify the 3D point coordinates, the epipole’s 2D homogeneous coordinates, and the

homography matrix rows, respectively. The parameterization of H is introduced into

the expression of the optical flow

M(a, x, y, t) =

u
v

 = λ

h1
Tx+ xe′a

Tx

h2
Tx+ ye′a

Tx

−

x
y

 , λ =
1

h3
Tx+ ze′aTx

.

(2.21)

where

x
y

 are the corresponding pixels in the left image.
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2.4.1 Euler-Lagrange Equations

By interchangeably fixing ai, i = 1...n and vAT , we obtain the Euler-Lagrange equa-

tions which minimize the functional.

Minimization with respect to ai.

Fixing vAT , we obtain

∀i, ∇ai(ED + αv2ATES) = 0. (2.22)

the variation of the data term with respect to the model parameter function ai is given

by

∇aiED(u, v) = 2Ψ′ (I2z ) Iz∇aiIz, (2.23)

where

∇aiIz = λ2xi(xe′h3
Tx − ze′h1

Tx)I+x + λ2xi(ye′h3
Tx − ze′h2

Tx)I+y , (2.24)

and

I+x = Ix(x+ u, y + v, t+ 1) (2.25)

I+y = Iy(x+ u, y + v, t+ 1). (2.26)

For the smoothness term, the Euler-Lagrange equations are

∇aiEs = 2vATΨ

(
n∑

i=1

||∇ai||2
)

+ 2v2AT div

(
Ψ′

(∑
j

||∇aj||2
)
∇ai

)
(2.27)

thus, the energy is minimized by solving the nonlinear system of equations

Ψ′ (I2z ) Iz∇aiIz − α∇

(
v2ATΨ

′

(
n∑

i=1

||∇ai||2
))T

∇ai −

αv2AT div

(
Ψ′

(∑
j

||∇aj||2
)
∇ai

)
= 0. (2.28)
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Minimization with respect to vAT .

Fixing ai, we obtain

2αvATΨ

(
n∑

i=1

||∇ai||2
)

+ 2ε1(vAT − 1)− ε2∆vAT = 0 (2.29)

2.4.2 Implementation

Minimization with respect to vAT is straightforward, as the equations are linear with

respect to vAT , therefore we will only elaborate on the minimization with respect to ai

The nonlinear Euler-Lagrange equation minimizing ai, are linearized by adopting

three embedded loops, similarly to [163]. First, the warped image gradient (I+x , I
+
y ) is

frozen, and so is λ. At each iteration k, we have

(∇aiIz)
k = xid

k (2.30)

where

dk = (λk)2(xe′h3
Tx− ze′h1

Tx)(I+x )
k

+(λk)2(ye′h3
Tx− ze′h2

Tx)(I+y )
k,

and the following approximation is made using first order Taylor expansions

Ik+1
z ≈ Ikz + dk

3∑
i=1

xidai
k (2.31)

where

dak = ak+1 − ak. (2.32)

The system of equations (2.28) becomes

Ψ′ ((Ik+1
z )2

)Ikz + dk
3∑

j=1

xjdaj
k

xid
k − α div

Ψ′

∑
j

||∇aj
k+1||2

∇ai
k+1

 = 0.

A second loop with superscript l is added to cope with the nonlinearity of Ψ′.

(Ψ′)k,lData

(
Ikz + dk

3∑
j=1

xjdaj
k,l+1

)
xid

k − α div
(
(Ψ′)k,lSmooth∇ai

k,l+1
)
= 0
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where

(Ψ′)k,lData = Ψ′

(Ikz + dk
3∑

i=1

xidai
k,l

)2
 , (Ψ′)k,lSmooth = Ψ′

(∑
j

||∇aj
k,l||2

)
.

At this point, the system of equations is linear and sparse in the spatial domain.

The solution a, as well as the diffusivity term vAT are obtained through Gauss-Seidel

iterations. In the case of the Ambrosio-Tortorelli regularization term, the diffusion term

of the equation is modulated by vAT .

2.5 Experimental results

We now demonstrate motion estimation results using our algorithm, both visually and in

terms of the average angular error (AAE). No post-processing was applied to the optical

flow field obtained after energy minimization. The algorithm was tested on image pairs

from the Middlebury optical flow test set [17], as well as all images with a static scene

and publicly available ground truth optical flow from the training set. Results from the

training set are presented in Table 2.1.

The flow, parameters, and diffusivity field resulting from our method are presented

in Figure 2.3. The optical flow is shown with color encoding and a disparity map.

Results from the test set are shown in Figure 2.2. A smoothness parameter α of

400 was used in all experiments, and the Ambrosio-Tortorelli coefficients were set to

ε1 = 20, ε2 = 5 × 10−5. The proposed method produced the best results to date on

the static Yosemite and Urban scenes. The algorithm is not designed, however, for

non-static scenes, where the computed epipolar lines have no meaning. One possible

solution to this shortcoming is to return to a 2D search [237]. Such a combined approach

is left for future work.

In the Teddy and Grove test images, the initialization of our algorithm introduced

errors in significant parts of the image, which our method could not overcome. This

behavior is related to the problem of finding a global minimum for the optical flow,

which is known to have several local minima. Improving the global convergence using
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AAE STD

Grove2 2.41 7.16

Grove3 5.53 15.76

Urban2 2.15 9.22

Urban3 3.84 16.88

Venus 4.29 12.01

Yosemite 0.85 1.24

(a) Middlebury training set

Method AAE Method AAE

Brox et al. [42] 1.59 Roth/Black [190] 1.43

Mémin/Pérez [154] 1.58 Valgaerts et al. [232] 1.17

Bruhn et al. [44] 1.46 Nir et al. [163] 1.15

Amiaz et al. [7] 1.44 Our method 0.85

(b) Yosemite sequence

Table 2.1: AAE comparison for static scenes of the Middlebury training set and for the Yosemite sequence

discrete graph-based techniques, has been the focus of several papers (see [120, 133,

141], for example), and is beyond the scope of this work. We expect better initialization

to improve the accuracy to that of the Yosemite and Urban image pairs.

Our optical flow estimation for the Yosemite and Urban sequences gives the best

results to date, achieving an AAE of 1.25 for the Yosemite sequence test pair and 2.38

for the Urban sequence, as shown in Figure 2.2. When the fundamental matrix estimate

was improved (by estimating from the ground truth optical flow), we reduced the AAE

to 0.66 for Yosemite!

It is interesting to look at the results obtained for scenes with planar regions, such as

the Urban2 (Figure 2.3) image pair. In Urban2, the scene is composed of many planar

patches, modeled by constant patches in the model parameters. In both these scenes, as
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Figure 2.2: Average angular error values of our algorithm, compared on the middlebury test set. The

smoothness coefficient was set to α = 400 in all experiments. Red marks the row of the suggested

algorithm.

well as others, the resulting diffusivity field clearly marks the contours of planar regions

in the image such as the buildings in Urban2 and the tree and soil ridges in Grove2.

2.6 Conclusions

In this chapter we have presented a new method for optical flow computation, based on

a local parametric model of homography. We note that we use the minimal number of

degrees of freedom while still having a model the encompasses the complete range of

2D motions spanned by stereo motion. The method is applicable to static scenes and

retrieves meaningful local motion parameters related to the scene geometry. The over-

parameterized framework allows future extensions to models involving dynamic scenes

as well.

An interesting aspect of our energy functional, which was already mentioned in

[163], is that given a carefully selected over-complete parameter field, the different pa-

rameters support each other to find a smooth piecewise constant parameter patches,

while the incorporated Ambrosio-Tortorelli scheme prevents diffusion across discon-

tinuities. Furthermore, the Ambrosio-Tortorelli scheme allows us to combine regular-

ization and segmentation, resulting in a physically meaningful regularization process,

while minimizing the dependency on the relative scaling of the coefficients.

Finally, although the performance demonstrated already goes beyond the latest pub-
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(a) Grove2 (b) Optical flow estima-

tion

(c) Parameter field

(d) Disparity estimation (e) Diffusivity function

(f) Urban2 (g) Optical flow estima-

tion

(h) Parameter field

(i) Disparity estimation (j) Diffusivity function

Figure 2.3: Grove2 and Urban2 sequence results

lished results, there is still much gain to be expected from better fundamental matrix

estimation and algorithm initialization, as well as better navigating the optimization

landscape. In addition, when more than two frames are available and the camera pose

is known, augmenting the model with time-smoothness is expected to systematically

improve the results.
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Chapter 3

Group-valued Regularization for

Motion Segmentation of Articulated

Shapes

3.1 Introduction

Articulated objects segmentation is a key problem in biomechanics [3], mechanical

engineering, computer vision [13, 101, 128, 150, 198], and computer graphics [11, 115,

126, 132, 224, 247, 248]. Related problems of deformation analysis [8, 243] and motion

segmentation [9, 64] have also been studied extensively in these disciplines. Algorithms

solving these problems try to infer the articulated motion of an object, given several

instances of the object in different poses. Simultaneously, the segmentation of the object

into rigid parts takes place along with motion estimation between the corresponding

parts in the various poses.

Most motion analysis techniques make some assumptions on the object to be seg-

mented. These usually concern the number or location of rigid parts in the articulated

object. This can be in the form of a skeleton describing the topology of the shape, or

some other prior on the object structure. Such priors are usually formulated in an ad

hoc manner, but not based on the kinematic model commonly assumed for near-rigid
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objects [3, 8]. In cases where such a prior is not available for the objects in question,

or where assumptions about the data are only approximate, this can lead to errors in the

segmentation and motion estimation.

Another common assumption, especially in graphics applications, is that of known

correspondences. In computer graphics, the problem is usually referred to as dynamic

mesh segmentation. While a matching technique between poses can be combined with

existing motion segmentation tools, a more complete formulation for motion segmen-

tation should handle the correspondence problem implicitly.

Clearly, the above assumptions are often too limiting in real-world applications, and

should be avoided as part of the basic problem formulation. We would like instead to

apply the intuition often used when studying real-life near-rigid objects, about the ex-

istence of a representative rigid motion existing for each body part. We wish, however,

to avoid detecting the articulated parts in advance. Furthermore, in some object, a clear

partition into rigid parts may not exist for all of the surface. We wish to obtain reason-

able results in such a case. In other words, we would like to obtain a “soft” segmentation

of the surface, without knowing the number or location of regions in advance, an ex-

plicit analysis of the surface features, or having additional priors on the various object

parts. Also, we strive towards a formulation of motion segmentation that incorporates

an implicit handling of the correspondence problem, given a reasonable initialization.

3.1.1 Main Contribution.

In this chapter we try to remedy the shortcoming of existing approaches to articulated

motion estimation by combining the two tasks of motion estimation and segmentation

into a single functional. This scheme has been described in a recent conference paper

[182] and we now slightly expand upon it. Unlike existing methods, we propose a

principled variational approach, attempting to find a rigid transformation at each surface

point, between the instance surfaces, such that the overall transformation is described

by a relatively sparse set of such transformations, each matching a rigid part of the
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object. The functional we propose regularizes the motion between the surfaces, and is

guided by the fact that the parameters of the motion transformations

(i) should describe the motion at each point with sufficient accuracy.

(ii) should vary smoothly within the (unknown) rigid parts.

(iii) can vary abruptly between rigid parts.

The main contribution of this chapter are in these :

A new framework: First, we propose an axiomatic variational framework for articulated

motion segmentation. While focusing on the segmentation problem in this chapter, our

framework is more general and the proposed functionals can be easily incorporated into

other applications such as motion estimation, tracking, and surface denoising.

Variational segmentation: We claim that using the right parameterization, taken from

the specific domain of rigid motion analysis, we can formulate the articulated motion

segmentation problem as a generalization of classical tools in variational computer vi-

sion. This allows for an elegant and simple solution within the proposed framework,

obtaining results competitive with domain-specific state-of-the-art tools.

A novel visualization algorithm: Third, we suggest a spatially-coherent algorithm for

spatial visualization of group valued data on manifolds, which draws from the same

variational principles.

3.1.2 Relation to Prior Work.

Several previous works have attempted motion based segmentation of surfaces. We

mention but a few of these. Kompatsiaris et al. [128] use an estimation of the rigid mo-

tion at each segment in order to segment the visible surface in a coarse-to-fine manner.

Arcila et al. [11] iteratively refine the segmentation for segments whose transforma-

tion error is too large. Wuhrer and Brunton [247] use a dual tree representation of the

surface with weights between triangles set according to the dihedral angles. Lee et al.
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[132] use a similar graph-based formulation, looking at deformation matrices around

each triangle.

The scheme we propose involves diffusing the transformations between poses along

the surface, in the spirit of the Ambrosio-Tortorelli scheme ([5], see also [19]) for

Mumford-Shah segmentation [157]. The diffusion component of our scheme is a dif-

fusion process of Lie-group elements, which has recently attracted significant attention

in other applications [72, 96, 215]. In diffusing transformations on the surface, our

work is similar to that of Litke et al. [140], although the parameterization of the mo-

tion and of the surface is different. In addition, we do not make an assumption on the

surface topology; to that end, the proposed method diffuses transformations along the

surface, rather than representing the surface in an evenly sampled 2D parametrization

plane. When dealing with real-life deformable objects that seldom admit regular global

parametrization, such an assumption could be too restrictive.

The idea of combining soft segmentation and motion estimation has been attempted

before in the case of optical flow computation (see, e.g., [6, 45]). In optical flow fields,

however, the motion field is merely expected to be piecewise smooth. For truly artic-

ulated objects one would expect piecewise-constant flow fields, when expressed in the

correct parametrization.

Finally, the functional can be extended with priors from general mesh segmentation

techniques. These are usually based on the geometry of the surface itself, and obtain

remarkable results for a variety of objects. We point the reader to [14, 56, 117, 204],

and references therein, for additional examples of mesh segmentation algorithms. We

do not, however, use an additional prior as such an addition will prevent the isolated

examination of the principles shown in this chapter.

3.2 Problem Formulation

We now proceed to define the problem we try to solve and the proposed model.
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3.2.1 Articulation Model

We denote by X a 2-manifold representing a three-dimensional shape. We assume X

to have several embeddings into R3. Each of these embeddings constitutes a pose of the

surface. In the following, we will denote by x : X → R3 the embedding of X into R3,

and use synonymously the notation x and x referring to a point on the manifold and its

Euclidean embedding coordinates, for a specific pose.

In the setting of rigid motion segmentation, we assume that X represents an artic-

ulated shape, i.e., it can be decomposed into rigid parts S1, . . . , Sp. These are trans-

formed between different poses of the objects by a rigid transformation. This trans-

formation, a rotation and a translation, is an isometry of R3. The rigid parts are con-

nected by nonrigid joints J1, . . . , Jq, such that X =
⋃p

i=1 Si∪
⋃q

k=1 Jk. An articulation

Y = AX is obtained by applying rigid motions Ti ∈ Iso(R3) to the rigid parts, and

non-rigid deformations Qk to the joints, such that AX =
⋃p

i=1 TiSi ∪
⋃q

k=1 QkJk.

3.2.2 Motion Segmentation

The problem of motion-based segmentation can be described as follows: given two

articulations of the shape, X and Y , extract its rigid parts. An extension to the case of

multiple shape poses is straightforward. We therefore consider in the following only

a pair of shapes for the sake of simplicity and without loss of generality. A strongly

related question attempts to determine, given these articulations, the motion parameters

linking the poses of the object.

Assuming that the correspondence between the two poses X and Y is known, given

a point x ∈ X and its correspondent point y(x) ∈ Y , we can find a motion g ∈ G

such that gx = y, where G is some representation of coordinate transformations in R3.

This motion g may change, in the setting described above, for each surface point. We

therefore consider g to be a function g : X → G. We will simultaneously use gx ∈ R3

to denote the action of g(x) on the coordinates of the point x, as well as consider the

mapping given by g : X → G and its properties.
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We note that typical representations of motion in R3 contain more than 3 degrees of

freedom. In this sense, they are over-parameterized [164], and thus some measure of

regularity is required in order to avoid ambiguity as well as favor a meaningful solu-

tion. On the other hand, we note that since the articulated parts of the shape move

rigidly, if we choose an appropriate motion representation (as detailed below), two

points x, x′ ∈ Si will undergo the same transformation, from which it follows that

g(x)|x∈Si
= const. One possibility is to adopt a constrained minimization approach,

forcing g(X) = Y , where g(X) is a notation for the set g(x)x(x) for all x ∈ X . This

approach, however, needs to somehow handle the set of joints, for which such a con-

straint may be meaningless. In general, restricting the feasible set of solutions by such

constraints or even constraints involving an error in the data may be harmful for the

overall result. In order to avoid this, another possible approach is to take an uncon-

strained, yet regularized, variational formulation,

min
g:X→G

λED(g) + ρ(g), (3.1)

where ρ denotes a smoothness term operating on the motion parameters field. This

term is expected to be small for fields g which are piecewise constant on the mani-

fold X . While an appropriate parameterization of motion g, and regularization term

ρ(g) are crucial, we also require a data term that will encourage consistency of the

transformation field g with the known surface poses. Specifically, we wish to favor a

transformation field where the point x is taken by its transformation g(x) to a point on

the other surface. ED(g) is our fitting term which measures this consistency with the

data.

ED(g) =

∫
X

‖g(x)x− y(x)‖2da, (3.2)

where y(x) ∈ R3 denotes the coordinate of the point y(x) ∈ Y corresponding to x,

g(x) is the transformation at x, and da is a measure on X . We have assumed in the

discussion so far that the correspondence between X and Y is known, which is usually

not true. We can solve for the correspondence as part of the optimization in an efficient
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manner. We will mention this issue in Section 3.4.1. We use the term corresponding

point y(x) since, as in the case of iterative closest point (ICP) algorithms [31, 57],

several approaches for pruning erroneous or ineffective matches exist [194].

Minimizing the functional with respect to g, y(x) from a reasonable initial solution

allows recovery of the articulated parts by clustering g into regions of equal value. Yet

another choice of a data term is a semi-local fitting term, is a semi-local one,

ED,SL(g) =

∫
X

∫
y∈N (x)

‖g(x)x′ − y(x′)‖2da′da, (3.3)

where N (x) denotes a small neighborhood around the point x (we took N (x) to be

the 12 nearest neighbors). This fitting term, by itself, formulates a local ICP process.

The functional (3.1) equipped with the semi-local data term can be considered as the

geometrical fitting equivalent of the combined global-local approach for optic flow es-

timation [44].

The simplest representation of motion is a linear motion model, affectively setting

G to be the group of translation, or G = R3. This results in the motion model gx =

x + t = y for some t ∈ R3. However, such a simplistic model fails to capture the

piecewise constancy of the motion field in most cases. Instead of turning to a higher

order approximation model such as the affine over-parameterized model [163], or to

more elaborate smoothness priors [228], we look for a relatively simple model that will

capture natural, piecewise-rigid motions with a simple smoothness prior. Thus we turn

to a slightly different motion model, naturally occuring in motion research.

3.2.3 Lie-Groups

One parametrization often used in computer vision and robotics [96, 126, 156, 231]

is the representation of rigid motions by the Lie-group SE(3) and the corresponding

Lie-algebra se(3), respectively. In general, given two coordinate frames, an element

in SE(3) describes the transformation between them. Works by Brockett [39], Park et

al. [168] and Zefran et al. [234, 235] strongly relate Lie-groups, both in their global

and differential description, to robotics and articulated motions. We give a very brief
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introduction to the subject and refer the reader to standard literature on the subject (e.g.,

[97, 158]) for more information.

In this chapter, we are specifically interested in the special orthogonal (rotation)

matrix group SO(3) and the Euclidean group SE(3) to represent rigid motions. These

can be represented in matrix forms, where SO(3) is given as

SO(3) =
{
R ∈ R3×3,R

TR = I
}
, (3.4)

and SE(3) is given by

SE(3) =


R t

0 1

 ,R ∈ SO(3), t ∈ R3

 . (3.5)

The Lie-algebra of SO(3), so(3) consists of skew-symmetric matrices,

so(3) =
{
A ∈ R3×3,A

T = −A
}
, (3.6)

whereas the Lie-algebra of SE(3) can be identified with the group of 4× 4 matrices of

the form

se(3) =


A t

0 0

 ,A ∈ so(3), t ∈ R3

 , (3.7)

where so(3) is the set of 3 × 3 skew-symmetric matrices. For both groups, the group

action is given by matrix multiplication.

In order to obtain piecewise constant description over the surface for the relatively

simple case of articulated object, we would like the points at each object part to have

the same representative. Under the assumption of G = SE(3), this desired property

holds. We note, however, that the standard parameterization of small rigid motions has

6 degrees of freedom, while the number of degrees of freedom required to describe

the motion of point is mere 3. Thus, this parameterization clearly constitutes an over-

parameterized motion field [163] for articulated surfaces.

We now turn to the regularization term, ρ(g), and note that the formulation given in

Equation 3.1 bears much resemblance to total variation (TV) regularization common
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in signal and image processing [192]. Total variation regularization does not, however,

favor distinct discontinuity sets. This property of TV regularization is related to the

staircasing effect. Furthermore, in the scalar case, discontinuity sets form closed curves,

which may not be the case in some surfaces with large joint areas. Instead, a model that

better suits our segmentation problem is the Mumford-Shah segmentation model [157].

This model can be implemented using an Ambrosio-Tortorelli scheme [5], which can

be easily generalized for the case of maps between general manifolds such as maps

from surfaces into motion manifolds. We further describe the regularization chosen in

Section 3.3.

We also note that due to the non-Euclidean structure of the group, special care

should be taken when parameterizing such a representation [96, 126, 156, 215], as dis-

cussed in Section 3.4.2.

3.3 Regularization of Group-Valued Functions on Surfaces

Ideally, we would like the transformation field defined on the articulated surface to

be piecewise smooth, if not piecewise constant. Therefore, a suitable regularization

of the transformation parameters is required. Since the Lie-group G as a Riemannian

manifold, it is only natural to turn to regularization functionals defined on maps between

manifolds of the form g : X → G.

A classical functional defined over such maps is the well-known Dirichlet energy

[75],

ρDIR(g) =
1

2

∫
X

〈∇g,∇g〉g(x)da =
1

2

∫
X

tr
(
g−1∇g

)2
da, (3.8)

where ∇g denotes the intrinsic gradient of g on X , 〈·, ·〉g(x) is the Riemannian metric

on G at a point g(x), and da is the area element of X . This functional is the more

general form of the (gradient) Tikhonov regularization (for Euclidean spaces X and G),

and its properties are well defined for general manifolds, as studied by Eells [75].

Minimizers of the Dirichlet energy are called harmonic maps. These result from a
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diffusion process, and are often used for surface matching [236, 258].

3.3.1 Ambrosio-Tortorelli Scheme

Unfortunately, the Dirichlet energy favors smooth maps defined on X , whereas our de-

sired solution has discontinuities at the boundaries of rigid parts. We would, intuitively,

want to prevent diffusion across these discontinuity curves. This can be obtained by

adding a diffusivity function vAT : X → [0, 1] to the Dirichlet functional, leading to the

generalized Ambrosio-Tortorelli scheme [5] for Mumford-Shah regularization [157].

ρAT(g) =

∫
X

(
1

2
v2AT 〈∇g,∇g〉g + ε〈∇vAT ,∇vAT 〉+

(1− vAT )
2

4ε

)
da, (3.9)

where ε is a small positive constant. This allows us to extend our outlook in several

ways. The Mumford-Shah functional replaces the notion of a set of regions with closed

simple boundary curves with that of a general discontinuity sets. It furthermore gener-

alizes our notion of constant value regions with that of favored smoothness inside the

areas defined by these discontinuity curves. This is in order to handle objects which

deviate from articulated motion, for example in flexible regions or joints.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly

reason about places in the flow where the nonlinear nature of the data manifold man-

ifests itself. Suppose we have a solution (g∗, v∗AT ) satisfying our piecewise-constancy

assumptions of g, and a diffusivity function with 0 at region boundaries and 1 elsewhere.

At such a solution, we expect two neighboring points which belong to different regions

to have a very small diffusivity value vAT connecting them, effectively nullifying the

interaction between far-away group elements which is dependent on the mapping used

for the logarithm map at each point, and hence can be inaccurate [112, 156]. While such

a solution (g∗, v∗AT ) may not be a minimizer of the functional, it serves well to explain

the intuition motivating the choice of the functional.
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3.3.2 Diffusion of Lie-Group Elements

In order to efficiently compute the Euler-Lagrange equation corresponding to the gen-

eralized Ambrosio-Tortorelli functional (3.9), we transform the neighborhood of each

point into the corresponding Lie-algebra elements before applying the diffusion oper-

ator. Using Lie-algebra representation of differential operators for rigid motion has

been used before in computer vision [215], numerical PDE computations [112], path

planning and optimal control theory [126, 156].

The Euler-Lagrange equation for the generalized Dirichlet energy measuring the

map between two manifolds is given as [75]

∆Xg
α + Γα

βγ

〈
∇gβ,∇gγ

〉
g(x)

= 0, (3.10)

where α, β γ enumerate the local coordinates of our group manifold, se(3), and we use

Einstein’s notation according to which corresponding indices are summed over. Γα
βγ

are the Christoffel symbols of SE(3), which express the Riemannian metric’s local

derivatives. We refer the reader to [70] for an introduction to Riemannian geometry.

Finally, ∆X denotes the Laplace-Beltrami operator on the surface X .

In order to avoid computation of the Christoffel symbols, we transform the point and

its neighbors using the logarithm map at that point in SE(3). The diffusion operation

is now affected only by the structure of the surface X . After applying the diffusion

operator, we use the exponential map in order to return to the usual representation of the

transformation. While this approach may suffer at discontinuities, where the logarithm

and exponential maps are less accurate, it is at these continuities that we expect the

diffusivity function vAT to be very small, perventing numerical instability. In practice,

as we will demonstrate, this did not a significant problem.
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3.4 Numerical Considerations

We now describe the algorithm for articulated motion estimation based on the mini-

mization of the functional

E(g, vAT ) = λEDATA(g) + ρAT (g, vAT ), (3.11)

where EDATA(g) is the matching term defined by Equation 3.2, and ρAT (g, vAT ) is de-

fined in Equation 3.9. The main steps of the algorithm are outlined as Algorithm 3.1.

Throughout the algorithm we sample g(x) based on the first surface, given as a mesh

with vertices {xi}Ni=1, and an element from SE(3) defined at each vertex. The trian-

gulation of the mesh is used in Subsection 3.5.1 merely as a mean of obtaining a more

consistent numerical diffusion operator, and can be avoided, for example by point-cloud

based Laplacian approximations [24]. Special care is made in the choice of coordinates

during the optimization as explained in Section 3.4.2.

3.4.1 Initial Correspondence Estimation

As in other motion segmentation and registration algorithms, some initialization of the

matching between the surfaces must be used. One approach [11] is to use nonrigid

surface matching for initialization. Another possibility, in the case of high framerate

range scanners [248], is to exploit temporal consistency by 3D tracking. Yet another

possible source for initial matches incorporates motion capture marker systems. Such

sparse initial correspondence lends itself to interpolation of the motion field, in order

to initialize a local ICP algorithm, and match the patch around each source point to the

target mesh. In Figure 3.4, we use 30 matched points for initialization. This number of

points is within the scope of current motion capture marker systems, or of algorithms

for global nonrigid surface matching such as spectral methods [114, 150, 179, 193], or

the generalized multidimensional scaling (GMDS) algorithm [40].

We expect that a better initial registration, as can be obtained e.g. using a smooth-

ness assumption, or by pruning unsuitable candidates [194], will reduce the number of
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markers needed.

3.4.2 Diffusion of Lie-Group Elements

Rewriting the optimization over the functional in Equation 3.11 in a fractional step

approach [249], we update the parameters w.r.t. each term of the functional in a suitable

representation. The treatment of regularized data fitting in a fractional step approach

with respect to different forces has been used before for rigid body motion [51], and

is also similar to the approach taken by Thirion’s demons algorithm [170, 223] for

registration.

Using the transformation described in Section 3.3, the update step with respect to

the regularization now becomes

gk+1/2 = gkexp

(
−dtδρAT

δg̃

)
, vk+1

AT = vkAT − dt
δρAT
δvAT

(3.12)

where exp(A) = I + A + A2/2! + A3/3! + . . . denotes the matrix exponential, g̃

denotes the logarithm transform of g, and dt denotes the time step. δρAT

δg̃
denotes the

variation of the regularization term ρAT (g) w.r.t. the Lie-algebra local representation of

the solution, describing the Euler-Lagrange descent direction. g(x) and the neighboring

transformations are parameterized by a basis for matrices in se(3), after applying the

logarithm map at g(x). The descent directions are given by

δρAT
δg̃i

= v2AT∆X(g̃i) + vAT 〈∇vAT ,∇g̃i〉 (3.13)

δρAT
δvAT

= 〈∇g,∇g〉g(x)vAT + 2ε∆X(vAT ) +
(vAT − 1)

2ε
,

where g̃i denote the components of the logarithmic representation of g. The dis-

cretization we use for ∆X for triangulated meshes is a cotangent one suggested by [69],

which has been shown to be convergent for relatively smooth and well-parameterized

surfaces. It is expressed as

∆X (u) ≈ 3

Ai

∑
j∈N1(i)

cotαij + cot βij
2

[uj − ui] , (3.14)
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for a given function u on the surface X , where N1(i) denotes the mesh neighbors of

point i, and αij, βij are the angles opposing the edge ij in its neighboring faces. Ai

denotes the area of the 1-ring around i in the mesh. For unstructured meshes (point-

clouds), we use the Laplacian approximation suggested by Belkin et al. [24]. After a

gradient descent step w.r.t. the diffusion term, we take a step w.r.t. the data term.

gk+1 = PSE(3)

(
gk+1/2 − dt

δEDATA

δg

)
, (3.15)

where PSE(3)(·) denotes a projection onto the group SE(3) obtained by correcting the

singular values of the rotation matrix [26]. We compute the gradient w.r.t. a basis for

small rotation and translation matrices comprised of the regular basis for translation

and the skew-matrix approximation of small rotations. We then reproject the update

onto the manifold. This keeps the inaccuracies associated with the projecting manifold-

constrained data [52, 96, 112, 156] at a reasonable level, and leads to a first-order ac-

curacy method. As noted by Belta and Kumar [25] in the context of trajectory planning

and ODEs over Lie-groups, this method is reasonably accurate. In practice the time-step

is limited in our case by the data-fitting ICP term and the explicit diffusion scheme. We

expect improved handling of these terms to allow faster implementation of the proposed

method.

Finally, we note that we may not know in advance the points y(x) which match

X in Y . The correspondence can be updated based on the current transformations in

an efficient manner similarly to the ICP algorithm. In our implementation we used

the ANN library [12] for approximate nearest-neighbor search queries. We did not

incorporate, however, any selective pruning of the matching candidates. These are often

used in order to robustify such the ICP algorithm against ill-suited matches but are

beyond the scope of this chapter.
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Algorithm 3.1 Articulated Surface Segmentation and Matching
1: Given an initial correspondence.

2: for k = 1, 2, . . . , until convergence do

3: Update gk+1/2, vk+1
AT w.r.t. the diffusion term, according to Equation 3.12.

4: Obtain gk+1 according to the data term, using Equation 3.15.

5: Update yk+1(x), the current estimated correspondence of the deformed surface.

6: end for

3.4.3 Visualizing Lie-Group Clustering on Surfaces

Finally, we need to mention the approach taken to visualize the transformations as the

latter belong to a six-dimensional non-Euclidean manifold. Motivated by the widespread

use of vector quantization in such visualizations, we use a clustering algorithm with

spatial regularization. Instead of minimizing the Lloyd-Max quantization [113] cost

function, we minimize the function

EV IS(gi, Ri) =
∑
i

∫
Ri

‖g − gi‖2da+
∫
∂Ri

v2AT (s)ds, (3.16)

where ∂Ri denotes the set of boundaries between partition regions {Ri}Ni=1, gi are the

group representatives for each region, and v2AT (s) denotes the diffusivity term along the

region boundary. The representation of members in SE(3) is done via its embedding

into R12, with some weight given to spatial location, by looking at the product space

R3 × SE(3) ⊂ R15. Several (about 50) initializations are performed, as is often cus-

tomary in clustering, with the lowest cost hypothesis kept. The visualization is detailed

as Algorithm 3.2

While this visualization algorithm coupled with a good initialization at each point

can be considered as a segmentation algorithm in its own right, it is less general as it

assumes a strict separation between the parts. One possible question that can be raise

concerned the meaning behind vector quantization of points belonging to a manifold

through its embedding into Euclidean space. In our case, since we are dealing with

relatively well-clustered points (most of the points in a part move according to a single
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Algorithm 3.2 Spatially-consistent clustering algorithm

1: for j = 1, 2, . . . , for a certain number of attempts do

2: Use k-means on the spatial-feature space embedding, R3×SE(3) ⊂ R15, to get an initial

clustering.

3: Use the clusters in order to optimize a spatially-regularized vector quantization measure,

C = min
gi,∂Ri

∫
X
‖g − gi‖2da+

∫
∂Ri

v2AT (s)ds,

where ∂Ri denotes the set of boundaries between clustered regions, gi are the transfor-

mation representatives for each region, and v2AT (s) denotes the diffusivity term along the

region boundary.

4: If C is lower than the lowest C found so far, keep the hypothesis.

5: end for

6: return current best hypothesis.

transformation in SE(3)), the distances on the manifold are not large and are therefore

well-approximated by Euclidean ones. We further note, however, that the diffusion

process lowered the score obtained in Equation 3.16 in the experiments we conducted,

indicating a consistency between the two algorithms in objects with well-defined rigid

parts.

3.5 Results

We now show the results of our method, in terms of the obtained transformations clus-

ters and the Ambrosio-Tortorelli diffusivity function. We first demonstrate results on

standard datasets of triangulated meshes. We then demonstrate results on point cloud

data.
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3.5.1 Triangulated Meshes

In Figure 3.1 we show the segmentation obtained by matching two human body poses

taken from the TOSCA dataset [41]. We visualize the transformations obtained using

the clustering algorithm described in subsection 3.4.3. We initialized the transforma-

tions on the surface by matching the neighborhood of each surface point to the other

poses using the true initial correspondence. The results of our method seem plausible,

except for the missing identification of the right leg, which is due to the fact that its

motion is limited between the two poses.

Figure 3.1 also demonstrates the results of comparing four poses of the same sur-

face, this time with the patch-based data term described by (3.3). In our experiments

the patch-based term gave a cleaner estimation of the motion, as is observed in the dif-

fusivity function. We therefore demonstrate the results of minimizing the functional

incorporating this data term. We also show the diffusivity function, which hints at the

location of boundaries between parts, and thus justifies the assumption underlying Al-

gorithm 3.2.

In Figure 3.2,3.3 we show the results of our algorithm on a set of 6 poses of a horse

and camel surfaces taken from [216]. In this figure we compare our results to those

of Wuhrer and Brunton [247], obtained on a similar set of poses with 10 frames. The

results of our method seem to be quite comparable to those obtained by Wuhrer and

Brunton, despite the fact that we use only 6 poses. We also note that both the diffusion

scheme and the visualization algorithm gave a meaningful result for the tail part, which

is not rigid and does not have a piecewise-rigid motion model.

In Figure 3.4 we demonstrate our algorithm, with an initialization of 30 simu-

lated motion capture marker points, where the displacement is known. The relatively

monotonous motion range available in the dynamic mesh sequence leads to a less com-

plete, but still quite meaningful, segmentation of the horse, except for its head.

We also note the relatively low number of poses required for segmentation – in both

Figure 3.2 and Figure 3.4 we obtain good results despite the fact that we use only a few
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poses, six and eight respectively.

Finally, in Figure 3.4 we demonstrate initialization of our method based on a sparse

point set, with 30 known correspondence points. The points are arbitrarily placed using

farthest point sampling [92, 106]. This demonstrates a possibility of initializing the

algorithm using motion capture markers, coupled with a 3D reconstruction pipeline,

for object part analysis. While the large-motion examples shown in this chapter are

synthetic, this example shows that the algorithm can be initialized with data obtained in

a realistic setup.

Figure 3.1: Segmenting a human figure. Top row: the set of poses used. Bottom row, left to right: the

transformations obtained from the two left most poses, the transformations obtained from all four poses

using Equation 3.3 as a data term, and the Ambrosio-Tortorelli diffusivity function based on four poses.

3.5.2 Point-Clouds

We now show a few results of our algorithm. We demonstrate segmentation of real

point-clouds obtained from laser scanners and Microsoft Kinect depth sensors. We first

describe the visualization technique used. In Figures 3.5–3.7 we use vector quantization

(VQ, [142, 152]), in terms of the embedding SE(3) ⊂ R12, with multiple initializations

in order to visualize the resulting transformations. In the examples shown, 40 initial-
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Figure 3.2: Segmenting a horse dynamic surface motion based on six different poses. Top row: the poses

used. Bottom row, left to right: a visualization of the transformations of the surface obtained by our

method, and the segmentation results obtained by [247], and the diffusivity function vAT .

izations of vector quantization are used, at which point a minimal quantization cost is

practically achieved and new hypotheses do not feature lower costs.

While vector quantization can be used in itself to provide segmentation of motion,

using it over the raw estimated transformation creates various artifacts due to the noisy

initial estimation and the inaccuracy of using the embedding-space (Euclidean) metric

to reason about matrix-manifold distances. These are seen in the examples, where our

piece-wise smooth regularization solution manages to fix these artifacts.

In addition, we show the Ambrosio-Tortorelli diffusivity field, where several of the

main boundaries between parts can be seen.

In Figure 3.5 we demonstrate results from the SCAPE dataset [10]. The results are

based on the algorithm with initialization using 200 initial matches, and use the first 5

frames of the dataset.

In Figures 3.6,3.7 we demonstrate results from a Kinect sensor. The transformation

maps were initialized using frame-to-frame 3D tracking. Figure 3.6 demonstrates re-

sults on arbitrarily segmented part of the upper arm, with initialization based on local,

patch-based, ICP between frames. For this experiment, 4 frames were taken. Figure 3.7
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Figure 3.3: Segmenting a camel dynamic surface motion based on six different poses. Top row: the

poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained by

our method and the diffusivity function vAT .

demonstrates results on a human hand doing a waving motion, with initialization based

on the coherent point drift algorithm [159], with 6 frames taken for the segmentation.

These results show the applicability of the proposed framework also for analysis of

depth video from noisy data sources in an automated manner.

3.6 Conclusion

In this chapter we present a new method for motion-based segmentation of articulated

objects, in a variational framework with axiomatic motivation. The method is based on

minimizing a generalized Ambrosio-Tortorelli functional regularizing a map from the

surface onto the Lie-group SE(3) – extending the generalized Dirichlet functional. We

demonstrate the method’s effectiveness, and compare it with state-of-the-art articulated
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Figure 3.4: Segmenting a horse dynamic surface motion with a given sparse initial correspondences. Top

row: the eight random poses used. Bottom row, left to right: the set of points used for initializing the

transformations, and a visualization of the transformations obtained, and the diffusivity function vAT .

motion segmentation algorithms, showing it to be competitive with domain-specific

algorithms. The variational formulation of the problem allows us to easily tailor the

functional to specific problems where it can be combined with domain-specific terms.

In future work we intend to adapt the proposed algorithm to depth videos, which will

allow more robust detection of motion estimates, and a more complete detection of the

overall set of degrees of freedom. Another promising direction is to explore global

Figure 3.5: Visualization of the detected transformations before and after smoothing, using 6 frames from

the SCAPE dataset. Colors show the vector quantization results on the transformations embedded into

R12
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Figure 3.6: Top row: Visualization of the detected transformations before and after regularization, based

on a point cloud from a Kinect sensor at 70cm, using local ICP for initialization. Colors show the vector

quantization results on the transformations embedded into R12. Left: visualization of the initial solution

based on local-ICP between frames. Right: the result after optimization. Bottom row: the first input

frame from the front/side. Note the fragmented surface

optimization methods as well as to use the proposed framework in other applications

such as surfaces denoising in order to handle noisy data.
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Figure 3.7: Top row: Visualization of the detected transformations before and after regularization, based

on a point cloud from a Kinect sensor at 70cm. Colors show the vector quantization results on the

transformations embedded into R12, greyscale shows the depth in regions that were not subject to the

algorithm. Left: VQ visualization of the initial state obtained by the CPD algorithm. Right: visualization

of the resulting state after optimization. Note the merged sections of the ring and middle finger, as well

as additional artifacts vector quantization before the regularization. Bottom row: Left: Two surface

reconstructions of the point cloud obtained from the Kinect. Note the relatively high noise level in the

surface reconstructions. Right: The diffusivity function vAT .
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Chapter 4

Fast Regularization of Matrix-Valued

Images

4.1 Introduction

Matrix-manifolds such as Lie-groups, and Matrix-valued images have become an inte-

gral part of computer vision and image processing. Matrix-manifolds and groups have

been used for tracking [178, 231], robotics [52, 168, 234], motion analysis [84, 182],

image processing and computer vision [47, 172, 177, 182, 241], as well as medi-

cal imaging [23, 171]. Efficient regularization of matrix-valued images is therefore

highly important in the fields of for image analysis and computer vision. This in-

cludes applications such as direction diffusion [121, 220, 239] and scene motion analy-

sis [138] in computer vision, as well as diffusion tensor MRI (DT-MRI) regularization

[30, 72, 95, 211, 229] in medical imaging.

We present an augmented Lagrangian method for efficient regularization of matrix-

valued images, or maps. We assume the matrix-manifold to have an efficient projection

operator onto it from some embedding into a Euclidean space, and that the distortion

associated with this mapping is not too large in term of the metric accompanying these

spaces.

Examples for such matrix-manifolds of interest include the special-orthogonal, special-
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Euclidean Lie-groups and the symmetric positive-definite matrices. We show that the

augmented Lagrangian technique allows us to separate the optimization process into a

regularization update step of a map onto an embedding-space, and a per-pixel projec-

tion step. An efficient regularization step is shown for the total-variation (TV, [192])

regularization, and a second-order regularization penalizing the Hessian norm. Both

the regularization step and the projection steps are simple to compute, fast and eas-

ily parallelizable using consumer graphic processing units (GPUs), achieving real-time

processing rates. The resulting framework unifies algorithms using in several appli-

cation domains into one framework, since they differ only in the choice of projection

operator. While such an optimization problem could have been approached by general

saddle-point solvers such as [55], the domain of our problem is not convex, requiring

such algorithms to be revisited in order to prove their convergence.

In order to obtain fast update steps we add two auxiliary fields, with appropriate

constraints. One field approximates the gradient of the image and simplifies the total-

variation cost function minimization, as done, for example, in [53, 90, 166, 219]. An-

other field approximates the image, but is forced during its update to stay on matrix

manifold, turning the group constraint into a simple projection operator. This results

in a unified framework for processing of SO(n), SE(n) and SPD(n) images, as we

describe in Section 4.3. This framework was initially presented in a recent conference

paper [189] and we now expand upon it, with additional explanations and a partial

convergence proof. In addition, we relate in this section the proposed algorithms to

split-Bregman iterations and describe their convergence properties. In Section 4.4 we

demonstrate a few results of our method, for regularization of 3D motion analysis, med-

ical image analysis, and direction diffusion. Section 4.6 concludes the chapter.

4.2 A Short Introduction to Lie-Groups and Matrix Manifolds

We now shortly describe the matrix manifolds we deal with in our algorithm. Their

structure allows us to define priors on matrix-valued data in computer vision and has
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been the subject of intense research efforts, especially involving statistics of matrix-

valued data [171], and regularization of matrix-valued images [229], as well as describ-

ing the dynamics of spatial processes involving Lie-group data [138]. Lie-groups are

algebraic groups endowed with a differentiable manifold structure and an appropriate

group action. We briefly describe the matrix manifolds our algorithm deals with, and

refer the reader to the literature for an introduction to Lie-groups [97].

The rotations group SO(n) - The group SO(n) describes all rotation matrices of

the n-dimensional Euclidean space,

SO(n) =
{
R ∈ Rn×n,R

TR = I, det(R) = 1
}
. (4.1)

The special-Euclidean group SE(n) - This group represents rigid transformations

of the n-dimensional Euclidean space. This group can be thought of as the product man-

ifold of the rotations manifold SO(n) and the manifold Rn representing all translations

of the Euclidean space. In matrix form this group is written as

SE(n) =


R t

0 1

 ,R ∈ SO(n), t ∈ Rn

 . (4.2)

The symmetric positive definite set SPD(n) - Another matrix manifold that has

an efficient projection operator is the cone of symmetric positive definite matrices. This

matrix manifold has been studied extensively in control theory (see [83] for example),

as well as in the context of diffusion tensor images [171], where the matrices are used to

describe the diffusion coefficients along each direction. By definition, this set is given

in matrix form as

SPD(n) = {A ∈ Rn×n,A � 0} . (4.3)

4.3 An Augmented Lagrangian Regularization Algorithm for Matrix-

valued Images

We now proceed to describe a fast regularization algorithm for images with matrix-

valued data, referred to as Algorithm 4.1. The standard regularization problem of Lie-
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groups maps is formulated in terms of the Lie-algebra,

argmin
u∈G

∫
‖u−1∇u‖+ λ‖u− u0‖2dx, (4.4)

where ‖ · ‖ is the Frobenius norm, u represents an element in an embedding of the

Lie-group G into Euclidean space. We use the notation ∇u to denote the Jacobian

of u, described as a column-stacked vector. We note that we use the same notation

to represent the Lie-group element, its matrix representation, and the embedding into

Euclidean space, as specified in each case we explore.

The term ‖u−1∇u‖ can be thought of as a regularization term placed on elements

of the Lie algebra about each pixel. This formulation parallels the time derivatives

in construction of Lie-group integrators [52], and defines smoothness in the tangent

space of the Lie-group. Smoothness expressed in the regularization term ‖u−1∇u‖

is in sense of the geometry of the Lie-group, via the Lie-algebra, but this may not

generalize to other matrix groups. Furthermore, its minimization is inefficient as it

requires computing the logarithm and exponential maps at each pixel update. In order

to obtain a fast regularization scheme that applies for all matrix groups, we look instead

at the regularity of an embedding of the Lie-group into Euclidean space,

argmin

u ∈ G

∫
‖∇u‖+ λ‖u− u0‖2dx, (4.5)

where ‖∇u‖ denotes (by abuse of notation) the Frobenius norm of the Jacobian of the

map from the domain (R2 or R3) into the embedding space. This allows us to consider

also matrix groups that are not Lie-groups, such as symmetric positive-definite matrices

and Stiefel matrices, as part of the same framework. In our formulation, elements of

SO(n) can be embedded into Rm,m = n2, and elements of SE(n) can similarly be

embedded into Rm,m = n(n + 1). The elements of SPD(n) can be embedded into

Rm,m = n(n+ 1)/2.

The rationale behind the different regularization term ‖∇u‖ stems from the fact

that SO(n) and SE(n) are isometries of Euclidean space, but such a regularization is
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possible whenever the data consists of nonsingular matrices. This regularization term

has also been used for SPD matrices [233]. We refer the reader to our technical report

[187] for a more in-depth discussion of this important point. Next, instead of restricting

u to G, we add an auxiliary variable, v, at each point, such that u = v, and restrict v to G,

where the equality constraint is enforced via augmented Lagrangian terms [103, 175].

The suggested augmented Lagrangian optimization now reads

min
v∈G,u∈Rm

max
µ

L(u, v;µ) = (4.6)

min
v∈G,u∈Rm

max
µ

∫  ‖∇u‖+ λ‖u− u0‖2+
r
2
‖u− v‖2 + tr(µT (u− v))

 dx.
Given a fixed Lagrange multiplier µ, the minimization w.r.t. u, v can be split into

alternating minimization steps with respect to u and v, both of which lend themselves

to an efficient and parallel optimization. Specifically, we can further reformulate the

regularization of u in the same way as Wu and Tai [245], by introducing an auxiliary

variable p

min
v∈G,u∈Rm,p∈Rmn

max
µ

L(u, v, p;µ, µ2) = (4.7)

min
v∈G,u∈Rm,p∈Rmn

max
µ

∫ 
‖p‖+ λ‖u− u0‖2+

r
2
‖u− v‖2 + tr(µT (u− v))+

r2
2
‖∇u− p‖2 + tr(µT

2 (∇u− p))

 dx,
where µ2 is the Lagrange multiplier associated with the constraint p = ∇u, and r2 is

the related penalty coefficient.
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4.3.1 Minimization w.r.t. v

The advantage of adding the auxiliary variable v is that minimization w.r.t v becomes a

simple projection problem per pixel,

argmin
v∈G

r

2
‖v − u‖2 + tr(µT (u− v))

= argmin
v∈G

r

2

∥∥∥v − (µ
r
+ u
)∥∥∥2 (4.8)

= Proj
G

(µ
r
+ u
)
,

where ProjG denotes a projection operator onto the specific matrix-group G. The nu-

merical update step for SO(n), SE(n) and SPD(n) will be explicitly given later on.

4.3.2 Minimization w.r.t. u

The update step w.r.t u in Equation 4.6 is a vectorial TV denoising problem

argmin
u∈Rm

∫
‖∇u‖+ λ̃ ‖u− ũ (u0, v, µ, r)‖2 dx, (4.9)

with ũ = (2λu0+rv+µ)
(2λ+r)

. This problem can be solved via fast minimization techniques for

TV regularization of vectorial images, such as [38, 74, 89]. In our case, we regularize

the image using the algorithm [219], as we now describe. In order to obtain fast opti-

mization of the problem with respect to u, we add an auxiliary variable p, along with a

constraint that p = ∇u. Again, the constraint is enforced in an augmented Lagrangian

manner. The optimal u now becomes a saddle point of the optimization problem

min

u ∈ Rm

p ∈ R2m

max
µ2

∫  λ̃ ‖u− ũ (u0, v, µ, r)‖2 + ‖p‖

+µT
2 (p−∇u) + r2

2
‖p−∇u‖2

 dx. (4.10)

We solve for u using the Euler-Lagrange equation,

2λ̃(u− ũ) + (div µ2 + r2 div p) + ∆u = 0, (4.11)
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for example, in the Fourier domain, or by Gauss-Seidel iterations. We have chosen

Gauss-Seidel iterations since complete minimization of the functional is not required at

each substep.

The auxiliary field p is updated by rewriting the minimization w.r.t. p as

argmin

p ∈ R2m

∫
‖p‖+ µT

2 p+
r2
2
‖p−∇u‖2, (4.12)

with the closed-form solution obtained by shrinkage [219]

p =
1

r2
max

(
1− 1

‖w‖
, 0

)
w, w = r2∇u− µ2. (4.13)

It is easy to see that the solution should lie on the segment connecting 0 and w, see

Figure 4.1. Hence the solution comes from minimizing a relatively 1D problem. See

[219] for more details, where the level-lines of the two terms of the functional involving

p are shown.

Regularization Term Coupling Term Combined Terms

Figure 4.1: Level-lines of the two cost function terms involving p. Left to right: the regularization term,

the coupling term, an overlay of both these terms together.

Hence, the main part of the proposed algorithm is to iteratively update v, u, and p

respectively. Also, according to the optimality conditions, the Lagrange multipliers µ

and µ2 should be updated by taking

µk = µk−1 + r
(
vk − uk

)
, (4.14)

µk
2 = µk−1

2 + r2
(
pk −∇uk

)
.

An algorithmic description is summarized as Algorithm 4.1.
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Algorithm 4.1 Fast TV regularization of matrix-valued data

1: for k = 1, 2, . . . , until convergence do

2: Update uk(x), according to Equations (4.11).

3: Update pk(x), according to Equations (4.13).

4: Update vk(x), by projection onto the matrix group,

• For SO(n) matrices, according to Equation (4.19).

• For SE(n) matrices, according to Equation (4.28).

• For SPD(n) matrices, according to Equation (4.29).

5: Update µk(x), µk2(x), according to Equation (4.14).

6: end for

4.3.3 Split-Bregman method for matrix-valued regularization

An additional interpretation of augmented-Lagrangian total variation regularization has

been suggested in [219], relating it to split-Bregman techniques, and specifically, the

method suggested in [130]. In fact, for the set of unit vectors, G = Sm, the projection

operator for v would be the same as the one used in [130]. In split-Bregman iterations

[91], in each iteration a Bregman distance [37] is minimized.

Looking at the function

E (p, u, v) =

∫
‖p‖+ ‖u− u0‖2 , (4.15)

and vector sequence

dkBREG =
(
dku, d

k
p, d

k
v

)
= −

(
div µk

2 + µk, µk
2,−µk

)
, (4.16)

we use the Bregman distance

DdkBREG
(
(u, q, v) ,

(
uk, pk, vk

))
= (4.17)∫

‖p‖+ ‖u− u0‖2 − ‖pk‖ −
∥∥uk − u0

∥∥2 − 〈dkBREG, (u, p, v)
〉
.
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Re-examining our inner update step in algorithm 4.1, we can reformulate our algorithm

(between updates of the Lagrange multipliers) in the form of a split-Bregman iterations(
uk+1, pk+1, vk+1

)
= (4.18)

argmin
u,p,v

D(dku,dkp ,dkv)
(
(u, p, v) ,

(
uk, pk, vk

))
+ r

2

∫
‖p−∇u‖2 + r2

2

∫
‖u− v‖2

=

argmin
u,p,v

∫ ‖p‖+ ‖u− u0‖2 +
〈
div µk

2 + µk, u
〉

+
〈
µk, p

〉
+
〈
−µk

2, v
〉
+ r2

2
‖p−∇u‖2 + r

2
‖u− v‖2

=

argmin
u,p,v

∫ ‖p‖+ ‖u− u0‖2 +
〈
µk
2, p−∇u

〉
+
〈
µk, u− v

〉
+ r2

2
‖p−∇u‖2 + r

2
‖u− v‖2

.

We note that we take into account the nature of v while minimizing the Bregman

distance only. In this sense, and in the choice of vector dkBREG the algorithm differs

from the split-Bregman method. This is not surprising as our domain is not necessarily

convex, and the convergence properties of the split-Bregman iteration cannot automat-

ically hold for nonconvex domains. Partial convergence proofs for the algorithm can

be obtained in the context of the augmented-Lagrangian formulation, with some small

modification, as mentioned in the following section for nonconvex matrix manifolds.

4.3.4 Regularization of maps onto SO(n)

In the case of G = SO(n), Although the embedding of SO(n) in Euclidean space is not

a convex set, the projection onto the matrix manifold is easily achieved by means of the

singular value decomposition [86]. Let USVT =
(
µ
r
+ uk

)
be the SVD decomposition

of µ
r
+ uk, we update v by

vk+1 = Proj
SO(n)

(µ
r
+ uk

)
= U(x)VT (x), (4.19)

USVT =
(µ
r
+ uk

)
.

Other possibilities include using the Euler-Rodrigues formula, quaternions, or the polar

decomposition [131]. We note that the nonconvex domain SO(n) makes the analysis

of global convergence for this scheme quite elaborate.
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Convergence proof for the Inner Iterations

Despite the non-convex domain, and non-continuous projection operator, the inner

iterations (update of u, v, p) of a modified variant of the algorithm, in the case of

G = SO(n) (and G = SE(n)) can be easily made convergent in a weak sense us-

ing the method inspired by the work of Attouch et al. [16], as described in our technical

report [187]. In this limited setup, we hold the Lagrange multipliers µ, µ2 fixed, and

update p, u, v, minimizing them as described above. Adapting our notation to that of

Attouch et al. [16], we rewrite

f(u, p) = ‖p‖+ µT
2 (p−∇u) + r2

2
‖p−∇u‖2, (4.20)

g(v) = ig (v) ,

Q(u, p, v) = µT (u− v) +
r

2
‖u− v‖2,

L(u, v, p) = f(u, p) +Q(u, p, v) + g(v),

where Q, f, g would fill similar roles as in [16], and ig (v) is the indicator function for

the group g. We note that care needs to be taken when adapting the proofs from [16],

as in our case the minimization step of v is confined to a subset of the Euclidean space

which is not an affine subspace, and hence many of the proofs utilizing the subgradient

w.r.t v need to be significantly revised. We can still, however, prove convergence of the

residuals towards zero in the following manner. We modify our update steps to be

uk = argmin
u

L(u, pk−1, vk−1) +
1

2θ
‖u− uk−1‖2, (4.21)

vk = argmin
v

L(uk, pk−1, v) +
1

2θ
‖v − vk−1‖2, (4.22)

pk = argmin
p

L(uk, p, vk), (4.23)

where θ is a (finite and positive) constant coefficient. We begin by noting according to

Equation 4.23 that

L
(
uk, pk, vk

)
≤ L

(
uk, pk−1, vk

)
. (4.24)
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Using Equation 4.22 we get

L
(
uk, pk−1, vk

)
+

1

2θ
‖vk − vk−1‖2 ≤ L

(
uk, pk−1, vk−1

)
.

Finally, using Equation 4.21 we get

L
(
uk, pk−1, vk−1

)
+

1

2θ
‖uk − uk−1‖2 ≤ L

(
uk−1, pk−1, vk−1

)
,

resulting in the inequality

L
(
uk, pk, vk

)
+

1

2θ
‖uk − uk−1‖2 + 1

2θ
‖vk − vk−1‖2 ≤ L

(
uk−1, pk−1, vk−1

)
,

or alternatively

‖uk − uk−1‖2 + ‖vk − vk−1‖2 ≤ 2θ
(
L
(
uk−1, pk−1, vk−1

)
− L

(
uk, pk, vk

))
. (4.25)

Since the sequence of L
(
uk, pk, vk

)
is non-increasing, and is bounded from below (be-

cause of the quadratic structure of Lwith respect to u, v, p) for a given set of multipliers,

we know that

2θ
(
L
(
uk−1, pk−1, vk−1

)
− L

(
uk, pk, vk

))
→ 0, (4.26)

and therefore

‖uk − uk−1‖2 + ‖vk − vk−1‖2 → 0. (4.27)

Thus, we can show that the residual decreases towards 0, and give some assurance

as to the convergent behavior of the algorithm. A complete convergence analysis is not

straightforward, as mentioned in [130]. Empirical results seem to demonstrate strong

convergence properties in a variety of applications and scenarios, for a wide variety of

θ values. Convergence plots for a range of θ values is shown in Figure 4.2. As can be

seen, there is a slight advantage in terms of convergence speed for high θ values and

weak coupling, but in general, the method works well for a large variety of θ values.

Moreover, the case where only partial updates of u, v, p are performed is more elabo-

rate and its analysis is left as future work. We note that for the case of total-variation reg-

ularization, properties of the split-Bregman iterations with partial accuracy have been

analyzed by Yin and Osher [254].
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Figure 4.2: Residual plots for a variety of θ values, for the optimization problem given in Figure 4.3

4.3.5 Regularization of maps onto SE(n)

In order to regularize images with values in SE(n), we use the embedding of SE(n)

into Rn(n+1) as our main optimization variable, u, per pixel.

The projection step w.r.t. v applies only for the n2 elements of v describing the

rotation matrix, leaving the translation component of SE(n) unconstrained.

Specifically, let v = (vR, vt), vR ∈ Rn2
, vt ∈ Rn denotes the rotation and translation

parts of the current solution, with a similar partition for the Lagrange multipliers µ =

(µR, µt). Updating v in line 4 of Algorithm 4.1 assumes the form

vk+1
R = Proj

SO(n)

(µR

r
+ ukR

)
, vk+1

t =
(µt

r
+ ukt

)
(4.28)

vk+1 = Proj
SE(n)

(vk) = (vk+1
R , vk+1

t ).
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4.3.6 Regularization of maps onto SPD(n)

The technique described above can be used also for regularizing symmetric positive-

definite matrices. Here, the intuitive choice of projecting the eigenvalues of the matrices

onto the positive half-space is shown to be optimal [105]. Many papers dealing with the

analysis of DT-MRI rely on the eigenvalue decomposition of the tensor as well, i.e. for

tractography, anisotropy measurements, and so forth.

For G = SPD(n), the minimization problem w.r.t. v in step 3 of Algorithm 4.1 can

be solved by projection of eigenvalues. Let U diag (λ)UT be the eigenvalue decompo-

sition of the matrix µ
r
+ uk. v is updated according to

vk+1 = Proj
SPD(n)

(vk) = U(x) diag
(
λ̂
)
UT (x), (4.29)

U diag (λ)UT =
(µ
r
+ uk

)
,
(
λ̂
)
i
= max ((λ)i , 0) ,

where the matrix U is a unitary one, representing the eigenvectors of the matrix, and

the eigenvalues
(
λ̂
)
i

are the positive projection of the eigenvalues (λ)i. Optimization

w.r.t. u is done as in the previous cases, as described in Algorithm 4.1.

Furthermore, the optimization w.r.t. u, v is now over the domain Rm × SPD(n),

and the cost function is convex, resulting in a convex optimization problem. The convex

domain of optimization allows us to formulate a convergence proof for the algorithm

similar to the proof by Tseng [230]. We refer the interested reader to our technical report

[187]. An example of using the proposed method for DT-MRI denoising is shown in

Section 4.4.

Global Convergence for SPD(n) Regularization

For SPD(n) regularization we basically do a coordinate descent on a convex domain

[230] and therefore can show global convergence of our method. At each step of the

inner iteration, we do a full minimization with respect to the selected variables block u,
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v and p. Using the notation provided by [230], we can rewrite our functional as

Fµ,µ2(u, v, p) = f0(u, v, p) + f1(u) + f2(v) + f3(p), (4.30)

where

1. f0 is a convex, smooth, function.

f0(u, v, p) =
r

2
‖v − u‖2 + 〈µ, v − u〉+ r2

2
‖p−∇u‖2 + 〈µ2, p−∇u〉

2. f1, f2 and f3 are convex, lower-semiconinuous, continuous in their effective do-

main,

f1(u) = ‖u− u0‖2 (4.31)

f2(v) = 0 (4.32)

f3(p) = ‖p‖. (4.33)

By [230, Proposition 1], it can be shown that the alternating minimization will con-

verge to a minimizer of Fµ,µ2(u, v, p). Along the same proof in [246], it can be proved

the whole algorithm converges. For completeness we repeat the proof here. The fol-

lowing characterization for the minimizers of functional F(u, v, p;µ, µ2) will be used.

Assume that (u∗, v∗, p∗) is one of the minimizers, and for arbitrary (u′, v′, p′) we have,

λ‖u∗ − u0‖2 − λ‖u′ − u0‖2 + r2(p
∗ −∇u∗,−(∇u∗ −∇u′))

+r(u∗ − v∗, u∗ − u′) + (µ∗, u∗ − u′) + (µ∗
2,−(∇u∗ −∇u′)) ≤ 0 (4.34)

−r(u∗ − v∗, v∗ − v′)− (µ∗, v∗ − v′) ≤ 0 (4.35)

‖p∗‖ − ‖p′‖+ r2(p
∗ −∇u∗, p∗ − p′) + (µ∗

2, p
∗ − p′) ≤ 0 (4.36)

(see [77],p.38 Proposition 2.2)

Theorem 4.3.1. The sequence (uk, vk, pk;µk, µk
2) generated by Algorithm 4.1 converges

to the saddle-point (u∗, v∗, p∗;µ∗, µ∗
2) of the functional F(u, v, p;µ, µ2)
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Proof. Let ūk = u∗ − uk,v̄k = v∗ − vk,p̄k = p∗ − pk, µ̄k = µ∗ − µk, and µ̄k
2 = µ∗

2 − µk
2

Since (u∗, v∗, p∗;µ∗, µ∗
2) is the saddle point of F(u, v, p;µ, µ2), we have

F(u∗, v∗, p∗;µ∗, µ∗
2) ≤ F(u′, v′, p′;µ∗, µ∗

2), ∀u, v, p (4.37)

In particular when u′ = uk (4.34) still holds

λ‖u∗ − u0‖2 − λ‖uk − u0‖2 + r2(p
∗ −∇u∗,−∇(u∗ − uk))

+r(u∗ − v∗, u∗ − uk) + (µ∗, u∗ − uk) + (µ∗
2,−∇(u∗ − uk)) ≤ 0 (4.38)

On the other hand, since the (uk, vk, pk;µk, µk
2) is the minimizer of F(u, v, p;µk, µk

2),

uk will also satisfy (4.34) and after substituting u′ = u∗ we obtain

λ‖uk − u0‖2 − λ‖u∗ − u0‖2 + r2(p
k −∇uk,−∇(uk − u∗))

+r(uk − vk, uk − u∗) + (µk, uk − u∗) + (µk
2,−∇(uk − u∗)) ≤ 0. (4.39)

Adding the two inequalities yields

r2(p̄
k −∇ūk,−∇ūk) + r(ūk − v̄k, ūk) + (µ̄k, ūk) + (µ̄2

k,−∇ūk) ≤ 0 (4.40)

Similarly, w.r.t v∗, vk using the same argument to (4.35) we have

−r(u∗ − v∗, v∗ − vk)− (µ∗, v∗ − vk) ≤ 0 (4.41)

−r(uk − vk, vk − v∗)− (µk, vk − v∗) ≤ 0 (4.42)

adding two inequalities yields

−r(ūk − v̄k, v̄k)− (µ̄k, v̄k) ≤ 0 (4.43)

w.r.t p∗, pk, the same argument is applied to (4.36)

‖p∗‖ − ‖pk‖+ r2(p
∗ −∇u∗, p∗ − pk) + (µ∗

2, p
∗ − pk) ≤ 0 (4.44)

‖pk‖ − ‖p∗‖+ r2(p
k −∇uk, pk − p∗) + (µk

2, p
k − p∗) ≤ 0 (4.45)

thus

r2(p̄
k −∇ūk, p̄k) + (µ̄2

k, p̄k) ≤ 0 (4.46)

76



CHAPTER 4: FAST REGULARIZATION OF MATRIX-VALUED IMAGES

Adding (4.40), (4.43) and (4.46) we have

r2‖p̄k −∇ūk‖2 + r‖ūk − v̄k‖2 + (µ̄2
k, p̄k −∇ūk) + (µ̄k, ūk − v̄k) ≤ 0 (4.47)

By the way of updating multipliers, also note that u∗ = v∗ and p∗ = ∇u∗ we obtain

µ̄k+1 = µ̄k + r(ūk − v̄k) (4.48)

µ̄k+1
2 = µ̄k

2 + r2(p̄
k −∇ūk) (4.49)

therefore by (4.47) we have

r2‖µ̄k+1‖2 + r‖µ̄k+1
2 ‖2 − r2‖µ̄k‖2 − r‖µ̄k

2‖2

= 2rr2(µ̄
k, ūk − v̄k) + 2rr2(µ̄

k
2, p̄

k −∇ūk) + r2r2‖ūk − v̄k‖2 + rr22‖p̄k −∇ūk‖

≤ −r2r2‖ūk − v̄k‖2 − rr22‖p̄k −∇ūk‖ ≤ 0 (4.50)

This actually implies µk and µk
2 are bounded, and

lim
k→∞

‖pk −∇uk‖ = 0 (4.51)

lim
k→∞

‖uk − vk‖ = 0 (4.52)

With this in mind, it is not hard to show that (uk, vk, pk;µ∗, µ∗
2) converge to the saddle-

point of the functional

4.3.7 A Higher-Order Prior for Group-Valued Images

We note that the scheme we describe is susceptible to the staircasing effect, since it

minimizes a total variation regularization of the map u. Several higher-order priors

can be incorporated into our scheme, that avoid this effect. One such possible higher-

order term generalizes the scheme presented by Wu and Tai [245], by replacing the per-

element gradient operator with a Hessian operator. The resulting saddle-point problem
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becomes

min

u ∈ Rm

p ∈ R4m,

v ∈ G

max
µ2

∫  ‖p‖+ λ̃ ‖u− ũ (u0, v, µ, r)‖2

+µT
2 (p−Hu) + r2

2
‖p−Hu‖2

 dx, (4.53)

where H denotes the per-element Hessian operator,

(H(u))i,· =
(
D−+

xx ui, D
++
xy ui, D

++
yx ui, D

−+
yy ui

)
, (4.54)

where we use, for example D−+
xx to describe the second order derivative obtained by

first applying the forward and then the backward first order derivative. Minimizing this

functional with respect to p is done by shrinkage, as described in [245]. Solving with

respect to u given p is done by solving the resulting optimality system of equations

[245],

2λ̃ (u) + r2H
∗ (H(u)) = H∗(µ2) + r2H

∗ (p) + 2λ̃ũ, (4.55)

where H∗(·) denotes the adjoint operator for the operator H(·),

H∗(p) = D+−
xx p

1 +D−−
xy p

2 +D−−
yx p

3 +D+−
yy p

4, (4.56)

where pi denotes the ith element of the per-pixel vector p for each element in u, using

scalar notations in order to avoid further complicating the notation. We refer the reader

to [245] for the complete discussion and definition of these operators, and remark that

in our case, Gauss-Seidel iteration were used instead of a Fourier-domain solver.

We show an example using the appropriately modified scheme, for the case of G =

SO(2) in Figures 4.3,4.4

4.4 Numerical Results

As discussed above, the proposed algorithmic framework is considerably general and

suitable for various applications. We show several examples from different application

domains to demonstrate our algorithm
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4.4.1 Directions Regularization

Analysis of principal directions in an image or video is an important aspect of mod-

ern computer vision, in fields such as video surveillance [162, and references therein],

vehicle control [73], crowd behaviour analysis [153], and other applications[172].

The input in this problem is a set of normalized / unnormalized direction vectors

located throughout the image domain, either in a dense or sparse set of locations. The

goal is to obtained a smoothed version of the underlying direction field. Since SO(2)

is isomorphic to S1, the suggested regularization scheme can be used for regularizing

directions, such as principal motion directions in a video sequence. A reasonable choice

for a data term that does not depend on the vector lengths would try to align the rotated

first coordinate axis with the motion directions in the neighborhood,

EPMD(U) =
∑

(xj ,yj)∈N (i)

(
U1,1 (vj)x + U1,2 (vj)y

)
,

where
(
xj, yj, (vj)x , (vj)y

)
represent a sampled motion particle [153] in the video se-

quence (location and velocity), and Ui,j represent elements of the solution u at each

point.

In Figure 4.3 we demonstrate two sparsely sampled, noisy, motion fields, and a

dense reconstruction of the main direction of motion at each point. The data for the

direction estimation was corrupted by adding component-wise Gaussian noise. In the

first image, the motion field is comprised of 4 regions with a different motion direction

at each region. The second image contains a sparse sampling of an expansion motion

field of the form ~v(x, y) = (x,y)T−c

‖(x,y)T−c‖ , where c denotes the center of the image. Such an

expansion field is often observed by forward-moving vehicles. Note that despite the fact

that a vanishing point of the flow is clearly not smooth in terms of the motion directions,

the estimation of the motion field remains reasonable, due to the robust nature of total-

variation regularization.

Another classical example of direction diffusion is in denoising of directions in fin-

gerprint images. An example for direction diffusion on a fingerprint image taken from
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the Fingerprint Verification Competition datasets [1] can be seen in Figure 4.4. Adding

a noise of σ = 0.05 to the image and estimating directions based on the structure ten-

sor, we smoothed the direction field and compared it to the field obtained from the

original image. We used our method with λ = 3, and the modified method based on

Equation 4.53 with λ̃ = 10, as well as the method suggested by Sagiv et al. [195] with

β = 100, T = 425. The resulting MSE values of the tensor field are 0.0317, 0.0270

and 0.0324, respectively, compared to an initial noisy field with and MSE of 0.0449.

The results demonstrate the effectiveness of our method for direction diffusion, even in

cases where the staircasing effect may cause unwanted artifacts.

4.4.2 SE(n) Regularization

An example of SE(3) valued images can be obtained by doing local matches between

two range scans obtained from a Kinect device. For each small surface patch from the

depth image we use an iterative closest point algorithm [31, 57] to match the surface

from the previous frame. This obtains for us a field over SE(3) over the image plane

for every time frame. The method is described as Algorithm 4.2

Algorithm 4.2 Regularized 3D rigid motion estimation

1: for each frame t, and the scanned 3D surface at time t, St do

2: for each pixel xi ∈ St do

3: Crop a small patch around xi, Pi = St ∩Br (xi)

4: Estimate the rigid motion Ri, ti that minimizes the L2 error between Pi and St−1, by

running the iterative closest point algorithm.

5: Set u0(xi) = (Ri, ti)

6: end for

7: Perform regularization of u0 using Algorithm 4.1.

8: end for

We note that this measurement process is highly contaminated by non-Gaussian

noise. Despite this high level of noise we can use our algorithm to smooth this SE(3)
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image, obtaining a scale-space of SE(3) images, as shown in Figure 4.5. It can be seen

that for a careful choice of the regularization parameter, total variation in the group

elements is seen to significantly reduce rigid motion estimation errors. Visualization is

accomplished by projecting the embedded matrix onto 3 different representative vectors

in R12.

In order to demonstrate the efficiency of this method and its parallelizable nature, we

implement it using the CUDA framework, and measure the computational time required

in order to obtain practical levels of convergence, at least 3 orders of magnitude. The

computation times are shown in Table 4.1, for various image sizes and iterations. Most

of the examples shown are with only 1 inner iteration since this has given us the fastest

convergence, without artifacts in the final result. In the GPU implementation the polar

decomposition was chosen for its simplicity and efficiency. In practice, one Gauss-

Seidel iteration sufficed to update u. Using 15 outer iterations, practical convergence

is achieved in 49 milliseconds on an NVIDIA GTX-580 card for QVGA-sized images,

demonstrating the efficiency of our algorithm and its potential for real-time applica-

tions. This is especially important for applications such as gesture recognition where

fast computation is crucial. We note that we do not use here the information between

more than two frames, as is often done in optical flow. Furthermore, using nonrigid

deformation rather than ICP in order to compute u0 leads to significantly better results

using the same regularization scheme, as we demonstrated [181], including segmenta-

tion of articulated motion. Such discussion of the initialization method is beyond the

scope of this work.

We now demonstrate the results of our algorithm using a more accurate initial mo-

tion estimation technique.

In order to estimate the non-rigid motion occuring between two subsequent time-

frames of a depth video, we first apply a simple non-rigid registration process, similar

to the approach suggested by Li et al. [136], followed by the estimation of a locally-

rigid motion model, as described in the supplementary material. In general, any motion
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Outer iterations 15 15 25 50 100

GS iterations 1 3 1 1 1

320× 240 49 63 81 160 321

640× 480 196 250 319 648 1295

1920× 1080 1745 2100 2960 5732 11560

Table 4.1: Processing times (ms) for various sizes of images, with various iteration counts.

estimation method can be used.

Since the overall motion field can involve both piecewise rigid and non-rigid motion

components, and because of the noisy scan results often obtained from commodity

depth scanners, the estimated instantaneous motion is quite noisy, as can be seen in

Figure 4.7. The motion field should be post-processed so as to obtain locally-rigid

interpretation.

In Figure 4.6, we demonstrate results based on a synthetic hand model undergoing

motion. We used the non-rigid registration model to track the surface over several

frames so as to obtain a sufficiently large motion. While the detected motion is not

completely piecewise-rigid due to skinning artifacts, occlusions, etc, the fingers are

detected quite well. Using a standard mean-shift algorithm on the log-coordinates of the

rotation matrices, we obtain segmentation of the fingers and the phalanges that undergo

motion.

In Figure 4.7, we demonstrate TV regularization of SE(3) for several frame pairs

in a depth sequence by a Kinect sensor. Visualization is done using log-coordinates of

the rotation matrix. The resulting estimated rigid motion allows segmentation of body

parts, or finger phalanges in the (synthetically rendered) hand. In Figure 4.8 we use the

mean-shift clustering algorithm [62] on the SE(3) images’ projection onto the small

rotations standard linearization basis in order to segment the main moving parts. De-

spite the simple choice of the segmentation algorithm, that does not take into account

the geometry of the surface and linearizes the Lie-group in the simplest possible man-
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ner, the segmentation of the moving parts is clear. It is expected that utilizing geometric

prior on the regions size will prevent artifacts such as oversegmentation. In the exam-

ples shown here, QVGA resolution (320 × 240) was used. The estimation of motion

coefficients takes in Matlab about 5 seconds on an Intel i3 CPU. The regularization is

on the order of a tenth of a second to compute on GPU. Preliminary results support this

efficiency claim.

4.4.3 DT-MRI Regularization

In Figure 4.10 we demonstrate a smoothing of DT-MRI data from [146], based on

the scheme suggested in Section 4.3.6. We show an axial view of the brain, glyph-

based visualization using Slicer3D [2], with anisotropy-based color coding. In this

visualization, the color of the glyphs marks isotropic (red) to anisotropic (blue/violet)

tensors. The relative size of the ellipsoids denotes the amount of diffusion (trace of the

tensor), and the directions of the ellipsoids’ principal axes align with the eigenvectors

of the tensor at each point.

The noise added is an additive Gaussian noise in each of the tensor elements with

σ = 0.1. Note that while different noise models are often assumed for diffusion-

weighted images, at high noise levels the Gaussian model is a reasonable approxima-

tion. Regularization with λ = 30 is able to restore a significant amount of the white

matter structure. At such levels of noise, the TV-regularized data bias towards isotropic

tensors (known as the swell effect [68]) is less significant. The RMS of the tensor rep-

resentation was 0.0406 in the corrupted image and 0.0248 in the regularized image.

An additional application of our method is to perform regularized reconstruction of

DT-MRI signals from diffusion-weighted images (DWI). This is done by replacing the

quadratic fidelity term with a fitting term based on the Stejskal-Tanner equation [212].

Demonstrating this application is shown in our technical report [187], as discussion of

such reconstruction terms is beyond the scope of this chapter.
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4.5 Regularized DTI Reconstruction

There are several possibilities of using the proposed regularization scheme for DT-MRI

reconstruction from diffusion-weighted measurements. Instead of adding a fidelity term

as in Equation (4.5), we add a term for fitting the Stejskal-Tanner equations [212], based

on a set of measurements describing the diffusion in specific directions, and reconstruct

the full diffusion tensor at each voxel. The fitting term can be written as

∑
i

∥∥∥∥bigT
i ugi − log

(
Si

S0

)∥∥∥∥2 ,
where bi and gi are the b-values and gradient vectors, u is the diffusion tensor recon-

structed at each voxel, and Si

S0
define the relative signal ratio for each direction at each

voxel. The complete minimization problem reads

argmin

v ∈ SPD(n)

u

∫ ∑
i

∥∥∥∥bigT
i ugi − log

(
Si

S0

)∥∥∥∥2 + λ‖∇u‖+ r

2
‖v − u‖2 + 〈µ, v − u〉dx.

(4.57)

While the memory requirements seem less favorable for fast optimization, looking

closely at the quadratic penalty data term, we see it can be expressed by looking at a

fitting term for the Stejskal-Tanner equations ,

∑
i

∥∥∥∥bigT
i ugi − log

(
Si

S0

)∥∥∥∥2 = uTAu+ bTu+ c, (4.58)

where A is a constant matrix over the whole volume,

A =
∑
i

b2i



g41 2g31g2 2g31g3 g21g
2
2 2g21g2g3 g21g

2
3

2g31g2 4g21g
2
2 4g21g2g3 2g1g

3
2 4g1g

2
2g3 2g1g2g

2
3

2g31g3 4g21g2g3 4g21g
2
3 2g1g

2
2g3 4g1g2g

2
3 2g1g

3
3

g21g
2
2 2g1g

3
2 2g1g

2
2g3 g42 2g32g3 g22g

2
3

2g21g2g3 4g1g
2
2g3 4g1g2g

2
3 2g32g3 4g22g

2
3 2g2g

3
3

g21g
2
3 2g1g2g

2
3 2g1g

3
3 g22g

2
3 2g2g

3
3 g43


(4.59)
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and b is the vector

b =
∑
i

bi log

(
Si

S0

)(
2g21 4g1g2 4g1g3 2g22 4g2g3 2g23

)T
, (4.60)

and c is the scalar image

c =
∑
i

(
log

(
Si

S0

))2

. (4.61)

We note that, unlike the denoising case, in the reconstruction case it is the data term

that couples together the elements of the tensor together. Care must be taken so as to

handle this coupled data term.

Reconstruction with the new data term can be computed using several techniques.

• Freezing all elements of the tensor but one, we obtain from the Euler-Lagrange

equations pertaining to Equation 4.57 an update rule for the image, to be com-

puted in the Fourier domain, or via Gauss-Seidel iterations. While the coupling

between the tensor elements (expressed via the non-diagonal matrix A) prevents

us from treating each tensor element separately, the optimization w.r.t. each of the

elements converges quite rapidly.

• Another possibility is to take a block Gauss-Seidel approach, and optimize each

tensor separately, going over all the voxels one-by-one.

• Yet another possibility is to further decouple the TV and data term, using separate

variables and constraining them using an augmented Lagrangian approach.

Of the above techniques, we have tried the first one. The reconstruction obtained

is the spatially-regularized version of the linear-least-squares (LLS) method. One can

incorporate a weighted least-squares (WLS, [196]), or nonlinear-least-squares (NLS)

[125] data term instead. Combining such data terms and exploring the interaction be-

tween the regularization and nonlinear terms is beyond the scope of this work.

In Figures 4.11,4.12 we demonstrate reconstruction of the DT-MRI tensors, again

based data from Lundervold et al. [146], using a set of 30 directional measurements.

85



CHAPTER 4: FAST REGULARIZATION OF MATRIX-VALUED IMAGES

The measure ratios log
(

Si

S0

)
were added a Gaussian additive noise of standard deviation

100. The reconstructed image obtained by regularized reconstruction with λ = 1×10−3

had an MSE of 2.1× 10−4, compared to 8.9× 10−3 without regularization.

4.6 Conclusions

We propose in this chapter a general framework for matrix-valued image regulariza-

tion. Using the augmented Lagrangian technique, we separate the optimization prob-

lem into a TV-regularization step and a projection step, both of which can be solved

in an easy-to-implement and parallel way. We also demonstrate how to reformulate

the optimization in terms of split-Bregman iterations, and relate it to existing works on

split-Bregman iterations. Furthermore, we show the efficiency and effectiveness of the

resulting scheme through several examples whose data taken from SO(2), SE(3), and

SPD(3) respectively. Our algorithms allow real-time regularization for tasks in image

analysis and computer vision.

In an extension work we intend to explore other applications for matrix-valued im-

age regularization as well as generalize our method to other modalities and data of maps.

Additional research paths incorporates higher level priors, replacing locally-acting pri-

ors with patch-based and global shape priors.
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Directions Original

Total Variation Second order TV

Directions Original

Total Variation Second order TV

Figure 4.3: TV regularization of SO(n) data. Left-to-right, top-to-bottom: a noisy, TV-denoised, and

higher-order regularized (minimizing Equation 4.53) version of a piecewise constant SO(2) image, fol-

lowed by a expansion field direction image. Different colors mark different orientations of the ini-

tial/estimated dense field, black arrows signify the measured motion vectors, and blue arrows demonstrate

the estimated field
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Figure 4.4: TV regularization of SO(2) data based on fingerprint direction estimation. Top two rows,left-

to-right: The fingerprint image with added Gaussian noise of σ = 0.05, the detected direction angles

displayed as arrows, the detected directions after regularization with using a higher-order regularization

term shown in Equation 4.53 with λ = 6, the regularization result by Sochen et al. [195]. Bottom two

rows: color legend for the directionality images, initial estimated field, result of TV regularization with

λ = 3, higher-order regularization with λ = 6.
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Figure 4.5: Regularization of SE(3) images obtained from local ICP matching of the surface patch

between consecutive Kinect depth frames. Left-to-right: diffusion scale-space obtained by different

values of λ: 1.5, 1.2, 0.7, 0.2, 0.1, 0.05 , the foreground segmentation based on the depth, and an intensity

image of the scene. Top-to-bottom: different frames from the depth motion sequence.

Figure 4.6: TV regularization based of an SE3-valued image placed on a rendered depth surface. Left-

To-Right, Top-To-Bottom: An overlay of the two consecutive time-frames used to obtain motion estima-

tion, the estimated and regularized SE(3) images, and a resulting segmentation using mean-shift.
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Figure 4.7: TV regularization of an SE3-valued image given on a scanned depth surface. . Each row

represents results on two different frames from a depth sequence. Left-To-Right, for each frame: An

overlay of the two consecutive time-frames used to obtain motion estimation, the estimated SE(3) mea-

surement, and regularized image. Raw depth data is used to estimate the motion. The regularized SE(3)

image hints at joint locations for parts that were moving at the time the depth frames were taken. Note

in the last example, using a slightly stronger regularization, a nonrigid object (a shirt) is still separated

clearly from the arms.
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Figure 4.8: Segmentation based on mean-shift clustering of the SE(3) image. Left-to-right: The motion

between the two frames, the segmentation obtained using the raw estimated SE(3), and the segmentation

obtained using the regularized result, showing a segmentation of the moving limb parts.

Figure 4.9: A scale-space obtained by changing the fidelity coefficient through the values λ =

5, 2.5, 1.5, 0.8.

Figure 4.10: TV denoising of images with diffusion tensor data, visualized by 3D tensor ellipsoid glyphs

colored by fractional anisotropy. Left-to-right: the original image, an image with added component-wise

Gaussian noise of σ = 0.1, and the denoised image with λ = 30.
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Figure 4.11: TV-regularized reconstruction of images with diffusion tensor data. Left-to-right: the origi-

nal image, an image with added component-wise Gaussian noise, and the denoised image. Noise was of

standard deviation 100, λ = 1× 10−3.

Figure 4.12: TV-regularized reconstruction of diffusion tensor data. Left-to-right: the original recon-

struction without noise, the noisy least-squares fitting solution (used as initialization), and the regularized

reconstruction result. Top-to-bottom: a visualization of the principal directions, the fractional anisotropy,

and the mean diffusivity. The noise added to the field ratio logarithm was of strength 100, λ = 1× 10−3.
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Chapter 5

Sparse Priors for Structured-Light

Reconstruction

5.1 Introduction

With ever more prevalent sources for 3D data, 3D acquisition and processing is an

increasingly important part of scene analysis. Active illumination range scanners are

used for scene understanding [104, 119, 143], robotics [94, 151, 176], object modeling

[48, 81], indoor scene mapping [160], and human computer interaction [206], among

other tasks.

Structured-light systems usually consist of a calibrated camera-projector pair, where

coded light pattern sequences emitted by the projector are acquired by the camera,

allowing robust triangulation and depth reconstruction. Time-multiplexed structured-

light systems trade-off spatial for temporal resolution. They allow us to obtain dense

and accurate reconstruction at low cost, with relatively simple hardware and without

too many limiting assumptions on the scene. Other alternatives for structured-light at-

tempt to trade-off resolution for coding robustness by incorporating decoding schemes

for larger neighborhoods which add a certain assumption of regularity. For a review of

existing structured-light techniques see, for example, [197].

In order to improve reconstruction robustness, many of the techniques used to re-
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construct 3D depth via structured-light incorporate ad-hoc assumptions on the scene

structure and the 3D imaging process. These include, for instance, smoothness of the

acquired surface [129, 259], or temporal objects behavior [98, 129, 259]. This regular-

ity, however, is usually based on channel decoding error approaches (see for example

[50, 108]), and does not relate to the geometry of the scene or the image formation

model. As such, its optimality is often limited due to the inaccurate reconstruction error

model.

Yet, modeling these assumptions in a more complete way is crucial when the cap-

tured illumination patterns are of low SNR, for example due to long scanning range and

short camera exposure times. In the case of dynamic scenes, where some of the captured

images are subject to abrupt intensity changes due to motion of depth discontinuities or

albedo boundaries, failing to model the imaging process in a realistic manner may cause

more reconstruction artifacts.

The probabilistic model we present here relates the time-multiplexed structured-

light to methods for spatio-temporal stereo reconstruction [67, 218]. In our case, how-

ever, we are estimating the expected camera luminous intensity, rather than assuming

brightness constancy.

Here, we obtain improved reconstruction results from structured-light scanners [174,

197], in face of challenging illumination conditions and motion artifacts, by providing

strong priors for the imaging model and surface shape. Instead of using strong shape

priors for range image correction, the approach we suggest incorporates shape and illu-

mination priors into the reconstruction itself, giving us a principled approach of combin-

ing powerful surface priors and probabilistic understanding of the acquisition process.

We use patch-based range image priors, similar to those successfully utilized for im-

ages, depth images, and surface processing [46, 79, 99, 134, 200, 227, 255, 256]. We

demonstrate the priors obtained from range images to be quite intuitive and meaningful.

This chapter builds upon a previous conference paper [183], discussing more com-

pletely the reconstruction model and demonstrating additional priors. Furthermore, we
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add more examples in order to test the behaviour of the algorithm in real-life low SNR

conditions, and add an additional structured-light patterns scheme.

Specifically, in Section 5.2 we develop our reconstruction model. In Section 5.3 we

describe the resulting reconstruction algorithm. We demonstrate our results and several

aspects of the model’s behavior on real images in Section 5.4. Section 5.5 concludes

the chapter and discusses future venues of research.

5.2 Regularized Structured-Light Model

In shape from structured-light, we reconstruct the geometric structure of the scene based

on active illumination. We illuminate the scene with projected patterns IP = {I(i)P }Ni=1,

where N is the number of patterns, and capture a sequence of images IC = {I(i)C }Ni=1

with a camera. Let us denote the optical centers of the camera and projector by points

C and P respectively. The overall setup is shown in Figure 5.1. In our formulation,

we denote the estimated range image as z(x). x ∈ R2 is the (two-dimensional) camera

image coordinates vector.

In this work we assume a Lambertian surface model for objects, and a projector

emitting directional light in a temporal sequence of patterns. The main source of image

noise is assumed to be the sensor/imaging process. Although other sources of deviations

from the model exist (for example object motion), in many cases they can be overcome

as we will show. Since structured-light systems decode a set of patterns and need all

of the patterns to be decoded correctly, we can assume relatively low noise levels – the

photon count per image sensor pixel is high enough so that the image noise model is

approximately Gaussian, yet the signal is weak enough so that correctly decoding the

coded light patterns poses a challenge. This is the typical scenario in real structured-

light systems with temporal multiplexed code, aimed for example at capturing dynamic

scenes, and thus requiring short exposure intervals.

Assuming a global illumination component and a projector illumination component,
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Figure 5.1: An example of a structured-light system setup.

we can model every pixel’s intensity at each frame i as

I
(i)
C (x) = a(x)I

(i)
P (Πz(x)) + b(x) + n(i) (x) , (5.1)

n(i) (x) ∼ N
(
0, σ2

I

)
.

a(x) and b(x) are pixel-wise coefficients that depend on the global illumination of the

scene, the surface properties, object albedo, projector properties, and so forth. Πz(x)

denotes the depth-dependent intensity transformation from pixel x to a corresponding

pixel on the projector image. It is obtained by backprojecting the camera ray to depth

z and projecting the point into the projector optical center. n(i) (x) is the pixel noise,

assumed to be additive white Gaussian noise, independent and identically distributed
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(i.i.d.) in space and time. The above model assumes a linear camera gain model. In

practice, this approximate model works well enough so as to obtain good reconstruction

results. Incorporating camera gain nonlinearity is deferred as future work since it is not

necessary for this model.

We wish to formulate and maximize a probability function of the depth given the

known camera images and projected textures. In reconstruction we are looking for the

depth value z(x) that maximizes the probability

z = argmax
z

min
a,b

P (z, a, b|IP , IC)

= argmax
z

min
a,b

P (z, a, b, IP , IC)

P (IP , IC)
(5.2)

= argmax
z

min
a,b

P (IP , IC , a, b|z)P (z)

P (IP , IC)

= argmax
z

min
a,b

P (IP , IC , a, b|z)P (z)

= argmin
z

min
a,b

(−logP (IP , IC , a, b|z)− logP (z)) ,

where we have applied Bayes’ rule, and switched to log-probability domain. In order

to obtain an efficient algorithm for computing and optimizing photoconsistency in the

structured-light case, we note that we can incorporate the computation of the maximum-

likelihood expressions for a, b into a plane-sweep operation [61] when seeking the opti-

mum value of z. In the framework of probabilistic inference, this is known as max-sum

elimination. Minimizing the negative log-probability over a and b, we have

min
z

min
a,b

[− log (P (IP , IC , a, b|z))] = (5.3)

min
z

min
a,b

∑
i

(
a(x)I

(i)
P (Πz(x)) + b(x)− I

(i)
C (x)

)2
σ2
I


 .

The optimal values of a and b for this least-squares fitting problem are given in

analytical form by solving the normal equations using IC ,IP at points x,Πz(x), respec-
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tively,  a

b

 =

 µPP µP

µP N

−1 µCP

µC

 , (5.4)

µP =
∑

I
(i)
P (Πz(x)) , µC =

∑
I
(i)
C (x) ,

µCP =
∑

I
(i)
C (x) I

(i)
P (Πz(x)) ,

µPP =
∑(

I
(i)
P (Πz(x))

)2
.

Inserting the optimal a, b as a function of z and noting the conditional independence

(given z) of neighboring pixel values IC(x), IP (Πz(x)) provides us with a functional

to minimize with respect to z(x), similar to [221],

argmin
z

∫
x

min
a,b

(− log (P (IP , IC , a, b|z))) dx+ ψ (z) =

argmin
z

∫
x

ρSL (z; IC , IP ,x) dx+ ψ (z) . (5.5)

The expression ρSL (z; IC , IP ,x) denotes a penalty for the photoconsistency assump-

tion. In standard structured-light techniques, this term is often optimized per pixel in

several steps, including binarization of the code letters, decoding of the code, and depth

reconstruction. These separate steps, however (for any specific code) are sub-optimal,

even if efficient to compute. In order to achieve robustness to noise and computa-

tional efficiency, these approaches treat binarization or code-word identification errors

as general channel decoding errors, using robust codes which have a firm theoretical

background, but which do not really model the channel characteristics for this specific

problem. These characteristics should result from the imaging model and geometric

relations, and should not be ignored.

The term ψ (z) denotes our choice for approximating the negative log-probability

prior for the surface shape, − logP (z). There are several possible choices of surface

shape priors. These can incorporate either smoothness assumptions and more elabo-

rate geometric priors, assumptions on local shape of patches on surfaces, or reasoning

on natural depth image statistics [252]. In Section 5.2.1 we describe several possible
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regularization priors for depth images.

Incorporating Illumination and Reflectance Characteristics An additional im-

provement to the model can be made if we take into account the regularity of scene

characteristics such as object albedo, illumination and normals. These assumptions

have been utilized in the context of shape-from-single-image reconstruction [21], but

in our case a simpler model suffices. We augment the photoconsistency assumption by

adding a prior for the choice of a, b,

min
z

min
a,b

∑
i

(
a(x)I

(i)
P (Πz(x)) + b(x)− I

(i)
C (x)

)2
σ2
I

+
(a(x)− µa)

2

σ2
a

+
(b(x)− µb)

2

σ2
b


 , (5.6)

where µa, µb are taken from a locally computed average. σa, σb are constants set

manually, since estimating second-order moments from a small neighborhood of a noisy

signal can be quite sensitive. This allows us to compute a, b even if only a few noisy

frames are available, as is often the case with multiple color structured-light systems,

as shown for example in Figure 5.5.

5.2.1 Regularization Terms for Depth Images

We now describe a few possible regularization terms for the depth image, representing

various tradeoffs between model robustness and computational efficiency.

Total-Variation Regularization The minimum area [58] and total-variation [192]

(TV) priors, and related smoothness measures have been suggested in several forms for

regularization of range images [161] and surface reconstruction [118, 122, 214]. TV

regularization for structured-light can be expressed as

argmin
z

∫
x

ρSL (z; IC , IP ,x) + c̃‖∇z‖dx, (5.7)

where ‖∇z‖ is the total variation of the range image, for some coefficient c̃. This form

of regularization is strongly related to MRF-based structured-light [221]. A related
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prior is the second order total variation,

argmin
z

∫
x

ρSL (z; IC , IP ,x) + c̃‖Hz‖dx, (5.8)

whereH denotes the matrix of second order derivatives of z, H(z) = (zxx,
√
2zxy, zyy).

This prior can be computed quite efficiently and lends itself to parallel computation

[244]. Furthermore, it is well suited to the often-made approximation of the scene as a

piecewise-linear surface.

Patch-basedL1 Prior for Structured-Light Another possibility for modeling range

images involves assuming a local model for each patch of the surface. Regularizing

the surface then expresses itself via the parameters of this model. This includes mod-

elling via polynomials or similar functions, leading to the moving-least-squares [135]

approach, or expressing the patch via a functional basis with sparse coefficients, leading

to sparsity-based regularization. Priors for depth images based on patch-estimators are

described, for example, in [111, 147, 200, 227].

In our case, we assume that the depth image can be locally viewed as a sparse

combination of basis functions. We note by ψ̃ (·) our prior for surface patches. This

leads to a patch-based regularizer of the reconstruction,

argmin
z

∫
x

ρSL (z; IC , IP ,x) dx+ c̃1
∑
j

ψ̃ (Pjz) , (5.9)

where Piz denotes extraction of a small neighborhood i from the surface z. For exam-

ple, for an L1-sparse representation prior, Equation 5.5 becomes

argmin
z,αj

∫
x

ρSL (z; IC , IP ,x)+ (5.10)

c̃1

∑
j

‖Pjz −Dαj‖2 + λ‖αj‖1

 ,

where D denotes a dictionary for depth image patches, Pj denotes a matrix extracting

block j from the image in column-stacked notation, and αj denotes the representation

coefficients of patch Pjz in that dictionary.

Gaussian Mixtures Prior for Structured-Light Since depth images are expected

locally to be very sparse, another approach of modeling them is by a Gaussian-mixture
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patch model, which in a sense first selects the support set of atoms from a structured-

sparsity dictionary where each Gaussian component defines a support set, and then es-

timates its coefficients. In this approach, data patches are assumed to be generated from

a sparse Gaussian-Mixture model in patch-space, similar to the approach suggested by

Yu et al. [256], and Zoran and Weiss [260]. The relation of this image model to sparsity

has been thoroughly discussed in [256]. In our case, Gaussians are pre-learned from

a set of depth images, although an adaptive approach, learning the component distri-

butions from the processed image itself is also possible. Unlike the case of natural

images, such a learning process would have to account for the bias of the depth image

patches, and the nature of the noise in the initial reconstruction results, as described in

Subsection 5.3.1. As the reconstruction errors are far from the standard additive noise

model, learning under such an outliers noise is not trivial and is left for future research.

The components of the Gaussian components form natural features of the range images,

adapted to edges and corners. This is not surprising, and has often been demonstrated

in sparsity-related literature. The components of the patch distribution obtained by a

Gaussian mixture model (GMM) are given in Figure 5.3. The optimization problem

can be written as

argmin
z,αj ,kj

∫
x

ρSL (z; IC , IP ,x)+ (5.11)

∑
j

c̃1‖Pjz − Ujfj‖2+

λ
(
fkj
)T

Σ−1
k

(
fkj
)
+
λ

2
log
(
πN
∣∣Σ−1

k

∣∣) ,
where fk

j denotes the coefficients used to represent patch j in terms of Gaussian com-

ponent kj . Σk denotes the covariance matrix of component k, N is the number of pixel

in each patch, and Uj define the principal directions of the Gaussian component used

for patch j. As is often the case in patch-based priors, the patches’ mean is subtracted

before coefficients estimation, and added before the synthesis of the new patch.

Change in the Dictionary Coefficients under Surface Transformations

The use of the sparse model for depth images revives the discussion of invariance of-

ten held in visual images reconstruction. The standard invariant properties often sought

in visual image processing are those of scale, translation, and rotation. These degrees

of freedom are not accounted for in the standard models for sparsity-based image pro-
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cessing. It is, however, instructive to look at standard geometric primitives and reason

about their transformation. Occlusion edges and corners are handled in depth images

in the same way as in visual images – translational and in-plane rotational invariances

are handled by multiple dictionary atoms. The robustness of the model to out-of-plane

rotationals is partially obtained by changing the coefficients of the atoms, but in gen-

eral, it is obtained in the same way, by multiplicity of the atoms in the dictionary - the

standard sparse model is not invariant to rotations of the object and a rotated object will

result in different atoms at each patch.

5.3 Alternating Minimization Algorithm for Regularized Structured-

Light

We now describe the specific algorithm used to solved structured-light reconstruction

with a sparsity-based prior, as shown in Equation 5.10. A complete algorithmic descrip-

tion is given as Algorithm 5.1.

We assume the coded light pattern can be initially reconstructed by minimizing per-

pixel the decoding error function ρSL(x, IC , IP ; z). While this reconstruction is usually

obtained by binarization and decoding of the time-multiplexed code, we view it as a

photoconsistency term between the structured-light patterns and the resulting camera

image intensities [165], when estimating the illumination conditions. Note that this

function depends only on the depth value and camera intensities per pixel. In order

to obtain the regularized solution we suggest to use an alternating minimization. By

adding a set of auxiliary variables, we decouple the problems of regularization and

structured-light decoding. This is done by minimizing the functional in Equation 5.5,

which is of a half-quadratic form [85]. Minimization with respect to the regularization

term given z results in a denoising problem. For patch-based priors, the resulting ap-

proach is similar to the one shown in [116]. We now detail each of the minimization

steps.
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Solving for z The update of z depends on the structured-light patterns, and may

not even be continuous. We note that for all of the regularization terms presented in

subsection 5.2.1, the term coupling the regularization to the photoconsistnecy term is

quadratic in zi(x), the patch-dependent representation of z(x) in patch i. Therefore we

can rewrite the term for each pixel x in z as the sum of a photoconsistency measure and

a sum of squared distances from z̃(x), an averaged version of z(x) in all of the patches

containing this pixel, with an aggregate weight w(x), for every x

zn+1 = argmin
z

ρSL(z) + c̃1w‖z − z̃‖2. (5.12)

A solution can be obtained by sweeping the set of possible z values, similar to stereo al-

gorithms [61]. Doing this plane-sweep is highly suitable for parallel implementation on

graphics processing units (GPUs) [251]. Note that plane-sweeps are discrete by nature,

as are the coded patterns in many cases. This does not constitute a further disadvan-

tage as they are of approximately the same resolution. In order to obtain convergence,

however, and in order to allow sub-pixel precision, we minimize a linearly-interpolated

photoconsistency, along with the quadratic distance in the second term of Equation 5.12.

The depth estimated at each pixel is set according to the minimum of the interpolated

cost function, allowing us to incoporate sub-pixel precision into the plane-sweeping

operator, as can be seen in the results section. Achieving sub-pixel resolution is im-

portant both in terms of accuracy and in terms of the visual artifacts that accompany

discrete-pixel reconstruction, as seen for example in Figure 5.4, where the staircasing

effect in the noise of the median-filtered reconstruction is typical of discrete-patterns

structured-light systems.

Solving an L1 regularization Given a patch estimate Pjz, an update of its represen-

tation becomes a standard sparse approximation problem. Specifically, if we take our

sparse prior to be of an L1 regularity type, we can update αj using iterative shrinkage

[54],

αn+1
j = Sλt

(
αn
j − 2tDT

(
Dαn

j − Pjz
))
, (5.13)
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where t is a gradient descent step, chosen to be small enough, and Sλt (·) denotes the

soft shrinkage operator,

Sλt (y) =


0, |y| ≤ λt

y − λt, y > λt

y + λt, y < −λt

(5.14)

While faster iterative methods exist for L1 minimization (see [250] for a few ex-

amples), because of the alternating minimization nature of our scheme, more complex

steps may not lead to faster convergence. We therefore chose to use the original iterative

shrinkage scheme. We note that the dictionary in our case is pretrained from a set of

depth images. The exact training procedure is defined in Subsection 5.3.1.

Solving a GMM regularization prior In this case, the choice of Gaussian compo-

nent and its coefficients are given by going over the Gaussian components, computing

the corresponding linear estimator, and the resulting log-probability term. Given that

patch Pjz belongs to Gaussian mixture component k with basis Uk and covariance ma-

trix Σk, the linear estimator for the coefficients fj is given by

fk
j =

(
c̃1U

T
k Uk + λΣ−1

k

)−1 (
c̃1U

T
k

)
Pjz. (5.15)

The component k for each patch is chosen so that the minimum regularized error is

achieved over all components,

argmin
k

 c̃1‖Pjz − Ujf
k
j ‖2+

λ
(
fkj
)T

Σ−1
k

(
fkj
)
+ λ

2 log
(
πN
∣∣Σ−1

k

∣∣)
 , (5.16)

where the GMM coefficients fk
j are computed according to Equation 5.15. We refer

the reader to Yu et al. [256] for further elaboration on the method, and comment that

the Gaussian mixture component are pretrained on a dataset of images, as defined in

Subsection 5.3.2.

5.3.1 Learning a Depth Dictionary

In order to learn a surface model from range images, several properties of the data must

be taken into account. Since reconstruction errors are of an outlier nature, algorithms
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Algorithm 5.1 Alternating Minimization Sparse Structured-Light
1: Compute initial reconstruction z by plane-sweeping, according to Equation 5.6.

2: for k = 1, 2, . . . , until convergence do

3: Update auxiliary variable for regularization:

• Update z̃k by TV denoising, or second order TV denoising, according to [244], or

• Update αk
j (x) for all j, according to Equation (5.13), for L1 regularization, or

• Update f̃kj by GMM component selection and linear estimation according to Equa-

tion 5.15,5.16, for GMM regularization.

5: Update zk(x), according to Equation (5.12).

6: end for

such as KSVD [79] that assume an additive white Gaussian noise model. Such algo-

rithms require some form of pre-processing and outlier removal in order to train on data

with outliers. Furthermore, since many of the patches in range scans are of smooth sur-

faces, and since the KSVD algorithm is initialization-dependent, care must be taken to

provide a diversified initial dictionary. We focus the algorithm on the less-frequent edge

patches by clustering the data first using the mean-shift algorithm [62]. The resulting

dictionary obtained from a set of 50 range scans is shown in Figure 5.2. We note that

the examples used for testing are not part of this dataset. Thus we avoid overfitting for

a specific subject. While the training data is from a specific class of human faces, the

learned primitives are quite general, as can be seen in Figure 5.2. We leave the effect of

different dictionary and training data choices for future research.

5.3.2 Learning a Gaussian-Mixture Model for Depth Images

For the GMM prior we have used 200 Gaussian components, learned from the same

dataset as the sparse dictionary prior, and using the same type of pruning for flat and

outlier-containing patches. Learning the GMM component was done in a standard way
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Figure 5.2: Example atoms from a dictionary of 300 words obtained from a set of 50 range scans.

(see [256] for more details). The components of the patch distribution obtained by a

Gaussian mixture model are given in Figure 5.3.

5.4 Results

We now proceed to demonstrate the results of the proposed scheme. We first note that

merely by using a sweeping approach instead of the usual decoding approach, we can

improve the reconstruction. This is not surprising since the channel noise model used in

the standard gray-code reconstruction was inaccurate to begin with. This improvement

is obtained even without an additional regularization term, as shown in Figure 5.5. In

this figure, in order to measure the amount of reconstruction outliers, we measure the

deviation of the current depth beyond the (0.4, 0.6) quantiles of the local neighborhood

depth for a small (9×9) region. As can be seen in the zoomed images, there are signifi-

cantly more outliers in the decoding-based reconstruction at areas with low illumination

intensity such as the sides of the object, where the incident angle is large.

The importance of using a better per-pixel model can be clearly observed around the

eyes of a reconstructed face, which is often a problematic area in 3D reconstruction due

to the low reflection coefficient of the pupil. This is demonstrated in Figure 5.4, where

reconstructing and then post-processing the depth image does not provide reasonable
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Figure 5.3: An example of 200 Gaussian mixture components obtained from a set of 50 range scans.

Each 6-columns group of columns represents the principle directions of Gaussian components. Each row

represents a Gaussian component, with the leftmost columns representing the more variable directions in

the mixture.

reconstruction of the eyes region. Similarly, the sides of the face which are poorly

illuminated by the projector suffer from reconstruction artifacts as well.

The main structured-light patterns scheme we experimented with is a standard structured-

light setup similar to [199], with 10 striped black and white patterns, along with an all-

ones and all-zeros pattern. The camera images are sampled at a resolution of 320×240,

and projector patterns are shot using a 1024 × 768 DLP projector. In order to simu-

late low-SNR conditions, we have added Gaussian noise to the camera images before

reconstruction. Results are shown in Figure 5.6,5.7 for the case of structured-light im-

ages with intensity Gaussian noise of standard deviations 5 and 10.

In order to quantitatively validate our method, we take as ground truth an almost-

noiseless range image of the head statue, and measure range errors compare to it. We

compare both L1 and robustified L2, truncated at 10 millimeters. The error measure-

ments are performed over a manually segmented mask of the 3D object in the image

domain. The results of this comparison are given in Table 5.1. For all of the images,

the dictionary trained for patched-based priors was of patch size 8× 8. As can be seen,
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Figure 5.4: An example reconstruction of the eye region of a person. Left-to-right: the intensity im-

age based on the structured-light setup of [191], the result obtained by plane-sweeping according to

Equation 5.6 with no post-processing, the result after median filtering, and the result of regularized re-

construction using Equation 5.8.

the error of the median filtered result is smaller than those of sparse denoising with

robust fitting term, or that of TV regularized reconstruction. This is due to the fact that

TV regularization is too weak to overcome errors in the data term, and denoising with

an L1 term is still somewhat sensitive to the strong outliers found in structured-light

reconstructed depth images.

We compare our results to several approaches. A common way of removing recon-

struction artifacts is by median filtering, as was done in [191]. We compared to median

post-processing, taken with the smallest filter size that removed range outliers from the

face, in order to avoid oversmoothing. Yet another approach treats the problem as a

denoising problem with a strong prior and impulse noise assumption. An example of

this type of method would be to take the same depth prior we use, but solve a denoising

problem with an L1 fidelity term

argmin
z

∫
x

‖z − z0‖dx+ c̃1
∑
j

ψ̃ (Pjz) , (5.17)

where z0 is the reconstruction results without a prior. This approach would be similar,
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Figure 5.5: Top row, left-to-right: One of the texture images, the result obtained by the method of [191],

and an outlier map (red pixels signify gross errors in the reconstruction), the result obtained by plane-

sweeping according to Equation 5.6, and an outlier map. Bottom row: two zoomed-in areas of low SNR,

marked as boxes in the texture intensity image. In these areas of weak illumination, plane-sweeping

results in fewer outliers compared to a standard decoding approach for structured-light.

in a sense, to the depth image denoising suggested in [227]. This approach is marked in

Table 5.1 under the Sparse Denoise column. In addition, it would be interesting to try a

weaker prior for reconstruction such as TV regularization as suggested in Section 5.3.

This approach is shown in the table as column TV. For all of the methods, parame-

ters were chosen so as to obtain optimal robust L2 results, while preventing remaining

depth outliers. The table demonstrates the effectiveness of the proposed algorithm.

While the computational cost of our algorithm is quite high with current Matlab code,

the algorithm is highly parallelizable and one future line of work involves fast parallel

implementation of this algorithm.

In Figure 5.8 we demonstrate the results of our algorithm on artifacts caused by head

motion in the vertical direction. Even though the assumption of constant a(x), b(x)

breaks down, the algorithm overcomes many of the errors caused by a decoding-based

reconstruction followed by outlier removal. The size of the median filter is chosen to

be the smallest size that filters the motion artifacts over the eyes and mouth regions, a

7× 7 filter in this case. We note that at this filter size, the mouth and nose areas merge,

while artifacts remain on the eyelids.
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Figure 5.6: First row, left-to-right: An example textured pattern, reconstruction results, reconstruction

with median filtering, reconstruction with sparse prior, where camera images were added Gaussian noise

with standard deviation of 5, with close-up on the right eye region and the nose and mouth region. Second

row, left-to-right: ground-truth reconstruction obtained from noiseless reconstruction, same sequence of

results, where camera images were added Gaussian noise with standard deviation of 10. In order to view

the range images, color and/or online viewing is suggested.

5.4.1 Color Structured-Light Example

Another example patterns scheme we used involves a color pattern projector, similar to

[191]. In this setup, a single grayscale camera is used, operating at a resolution of 480×

360, at 180 frames-per-second. The exposure time is 5.56ms, due to synchronization

between the projector and camera (see [191] for more details). A DLP projector emits

color patterns sequentially in each cycle, and 12 patterns are used, 4 at each channel. In

such a patterns set, since only 4 patterns are available per color channel, estimation of

a, b is sensitive to image noise.

111



CHAPTER 5: SPARSE PRIORS FOR STRUCTURED-LIGHT RECONSTRUCTION

Noise Raw Median TV Sparse Sparse Raw Median TV Sparse Sparse

Level Denoising Reconst. Denoising Reconst.

L2 error L2 error L2 error L2 error L2 error L1 error L1 error L1 error L1 error L1 error

2.5 1.4608 0.8411 0.8744 0.8680 0.8191 0.5996 0.4255 0.4240 0.4298 0.3379

5 2.6443 1.1033 1.1508 1.1768 0.9584 1.2013 0.5696 0.5689 0.6356 0.4135

7.5 3.9080 1.5315 1.715 1.8136 1.3489 2.1032 0.7384 0.7164 0.9489 0.5603

10 4.9841 1.9399 2.3866 2.758 1.7490 3.0949 0.9840 1.216 1.288 0.7571

Table 5.1: Error measurement at various noise levels, for structured-light reconstruction, and noise re-

duction by median post-processing, reconstruction with TV prior, reconstruction followed by sparse de-

noising, and reconstruction using a sparse prior as shown in Algorithm 5.1. Errors are shown as robust

L2 (truncated at 10mm) and L1 errors, in millimeters, over the region of the scanned object.

It is quite important in this setup to have a prior for a, b as part of the model. Incor-

porating such a prior as shown in Equation 5.6 contributed greatly to the reconstruction

performance. The result of the reconstruction is shown in Figures 5.4,5.9. The noise

levels in these examples are not very high, but these examples are important because

they demonstrate a real structured-light scenario, with real sensor short exposure arti-

facts. The frame-rate of the camera, about 15Hz, is still relatively low. It is therefore

important to stress that in faster scanners short exposure time (and the resulting arti-

facts) is likely to play an even more significant role.

In Figure 5.9 we demonstrate the results using the Gaussian mixture model prior

shown in Figure 5.3. This result demonstrates the generality of the proposed framework

using a different regularization term. The Gaussian mixture components we used are

shown in Figure 5.3.

5.5 Conclusions

In the chapter we presented a novel model for regularized structured-light reconstruc-

tion. Incorporating a sparse surface prior into a physically-motivated probabilistic out-

look on structured-light decoding, we demonstrate accurate results in scenarios where

the usual approach for decoding structured-light tends to fail.

The results obtained merit the coupling of a strong surface prior with a probabilis-
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tic model for structured-light reconstruction, and motivate further exploration of the

benefits of the proposed method as well as investigating the use of this approach for

different types of depth scanners. Even in the case of no regularization, incorporating a

realistic illumination model into the reconstruction cost function leads to a more robust

reconstruction of each range pixel. An additional line of work involves implementing

the current algorithm in an efficient manner, exploiting the high level of parallelism

available in each phase. Other relevant venues of research include online learning of

the surface model, and the incoproration of a more complete illumination model into

the reconstruction.
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Figure 5.7: First row, left-to-right: 3D raw reconstruction results, reconstruction with median post-

processing and with a sparse prior for the case of σ = 5 noise. Second row, left-to-right: (3D raw

reconstruction omitted since it was too noisy), reconstruction with median post-processing and with a

sparse prior for the case of σ = 10 noise. In order to view the range images, color and/or online viewing

is suggested.
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Figure 5.8: Left-to-right: An example with artifacts caused by vertical head motion, a median-filtered

result, the result of the proposed method. Note the merging of the mouth and nose area in the median

filter, and the remaining artifacts around the left eye and nose area.
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Figure 5.9: Reconstructed surface based on the structured-light setup of [191], with GMM prior. Top,

Left-to-right: one of the camera images in all 3 channels, raw reconstruction front view, median-filtered

initial solution, regularized reconstruction with GMM prior. Bottom: reconstruction, side view.
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Chapter 6

Discussion and Conclusions

In this work we discussed an extension to the over-parameterized framework for the

case of non-linear parameterization models and various regularization terms. The re-

sulting flexibility of the framework provides for various new applications for this frame-

work, while still using axiomatically developed regularization terms and well-founded

parameterization models.

6.1 The Generality of the Proposed Approach

We demonstrated several cases where a well-informed choice of parameterization for

motion and depth allows us to solve key problems in structure and motion estimation.

The resulting framework demostrate the power of a careful choice of parameterization,

coupled with regularization of the model parameters.

In the case of 2D stereo motion, a new method for optical flow computation was

presented, which hinges on a guiding principle that optic flow regularization should

have a strong theoretical foundation related to the scene geometry, while having as

few parameters as possible. The method is applicable to static scenes and retrieves

meaningful local motion parameters related to the scene geometry. At each pixel, the

parameters provide an estimation of the plane tangent to the scene manifold, up to a

fixed shift and scale. To that extent, they can be seen as a higher level output than
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optical flow in the computer vision hierarchy.

In 3D articulated motion segmentation, we have demonstrated a clear axiomatic

development of a segmentation functional for this case, based on the Mumford-Shah

framework. The highly-related TV regularization term can be generalized in our case

into fast regularization schemes for various types of matrix-valued images. This results

in various applications, both in smoothing and denoising, as well as more general in-

verse problems. Using the augmented-Lagrangian technique, we split the optimization

problem into highly-parallelizable and efficient to solve subproblems. This results in

an algorithm that achieves real-time speed for a nonlinear inverse problem with several

possible applications.

In the case of 3D reconstruction, we demonstrate how the structured-light recon-

struction problem can be rewritten as stereo motion estimation based on a probabilistic

model. This probabilistic model described the geometry and illumination model for the

object and the scanner system. This outlook connects this problem to the discussion

of motion parameterization and allows us to incorporate high-level priors on the scene

geometry and plausible shapes to be reconstructed – despite the nonlinearity of the in-

verse problem. We have examined several such priors, and shown them to allow great

improvement in the reconstruction robustness, while expressing a quite intuitive model

of the local 3D structure.

These examples highlight the interplay of parameterization and regularization in

motion and structure estimation problems, and demonstrate the possible future benefits

of such approaches. The generality of the proposed framework suggests new ways

to extend the over-parameterized approach well beyond linear estimation models, and

places the emphasis on the choice of parameters and nonlinear regularization terms.

6.2 Optimization Techniques

The optimization techniques demonstrated in the algorithms presented are local meth-

ods, acting on nonconvex functionals. Hence, they achieve a local minimum, which
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may not be always optimal, as noted before in the case of over-parameterized optical

flow. We expect global optimization techniques being developed to provide us with

better results in the future.

Another question regarding the optimization of the solution involves the the question

of whether the global minimum for a more elaborate model is the correct one. This

question has been previously raise by Wedel et al. [237], and it is an important one.

There are two prominent ways to tackle this question while handling overparameterized

models. One approach is by verifying the properties of the solution under a well defined

problem instance. We have done this in Chapter 2, where the optimal solution is shown

to be a global minimizer under conditions relating to the scene geometry. Another

approach is by choosing the optimization steps in ways that lead to a descent step, but

incorporate additional knowledge on the problem instance. Since we have focused on

axiomatic approaches for formulating and solving the problems described, we found

these techniques to be less aligned with the focus of this thesis, but they remain a valid

and important research direction.

Indeed, much work is required if novel parameterizations and over-parameterizations

are to be fully utilized. The resulting cost functions have many local minima, and

generic global minimization algorithms cannot solve them in reasonable time. We ex-

pect specially tailored global optimization techniques with domain-specific update steps

to help reduce the computational complexity of the search.

Finally, in the way of more advanced models, we believe more natural parame-

terization can be proposed for addtional, more elaborate, problems. Such problems

may include higher-order tensors, and stereoscopic models that include motion between

the frames, helping strengthen the connection between low-level vision and high-level

scene understanding.

We expect the methods and models presented in this thesis to allow solutions of these

problems and more, extending the basis of axiomatic over-parameterized approaches
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and help bridging these approaches to more data-driven parameterizations, resulting

in significant benefits to various fields of computer vision, machine intelligence, and

computer science.
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ים מבוססי הדלילות מגיעים לתוצאות משמעותית יותר טובות משיטות אחרות ואילו הפריור, בפרויקט שביצענו

המאופיינות , כיצד ניתן ללמוד מילונים דלילים לתמונות עומק יםמגדיר ואנ .בגלל התמך הרחב שלהם ודיוק המודל

שמשמש בדרך כלל במידול אלגוריתמים כמו רעש לבן גאוסי אדיטיבי על ידי עיוותים השונים מהותית ממודל 

KSVD ,ועל ידי הטיה חזקה של פילוג ה-patches על אלגוריתמים סטנדרטיים לבניית  דבר שמקשה, בתמונות

  .מילון

שבשימוש מימד - שמשמשות בסורק התלת, י סטים שונים של תבניות אור מקודדמודגם בשנ יםמבצע והשחזור שאנ

בפרויקט  הדגמנוכפי ש, בזמן אמת יםגרפי יםמימוש מקבילי יעיל על כרטיסחלק מהניסוחים ניתנים ל. נותבמעבד

שנעשית חסינה לרעשי תמונה וחשיפה  ,שיפור בתוצאות הסריקההתוצאות מראות על . שלנושבוצע במעבדה 

 קלקוליםו, למברטיות- תופעות לא ,כמו גם שיחזור של משטחים עם מקדם החזר נמוך ,חיישניםנמוכה של ה

  .במהלך הקרנת התמונות מתזוזת האוביקט הנסרק בשחזור שנובעים

     

 



), סיבוב והזזהמטריצות של  ת ליהמיפוי מהמשטח אל חבורשל , הת שפומשמר ותלמקוטעין בתור החלק )3SE .

שמשלבת סגמנטציה לפי , על שדה התנועה Mumford-Shahחלקות מסוג  םימימדג ואנ בתחילת חלק זה

עם התאמת ביחד , וללא אילוץ של חלוקה מוגדרת סתומהבצורה , המקורבת בכל נקודה הטרנספורמציה הקשיחה

לפי  הן על משטחים משולשיים החלקה זה תהליךלדיסקרטיזציה  יםמגדיר ואנ. ICPמשטחים בדומה לתהליך 

ים מרא ואנ .לפי הסכמה של בלקין וסון ללאפלסיאן, והן על ענני נקודות ותמונות עומק, נוסחת משקלות קוטנגנס

המוכללת לפונקציונל  Dirichletאת פונקציונל אנרגית  ניתן להתאים Ambrosio-Tortorelliסכמת כיצד בעזרת 

של תהליך זרימה שממזער את הפונקציונל  מפורטתהחלקה זאת ממומשת בסכמה  .המעודד חלקות למקוטעין

משיגים תוצאות דומות לכלים האלגוריתמים שמתקבלים  .הכולל גורם חלקות וגורם התאמה לנתונים, המתאים

  .מימדי ממצלמות עומק- לתוממידע ת, ים מהתחום על משטחים סטנדרטיים מתחום עיבוד המשטחיםיעודי

. קשיחות על גבי תמונות עומק התמרותשל  Total Variationים חלקות מסוג יממדג ואנ החלק השניבהמשך 

המקומית בין שתי תמונות עומק  התמרהכיצד ניתן לקבל שיערוך של ה יםמגדיר ובהינתן וידאו של תמונות עומק אנ

 ךמנסים להחליק בצורה משמרת שפות לצורליצור מפה עם ערך מטריצי אותו אנו  למעשהו, עוקבות בכל נקודה

 .Augmented Lagrangianבתור בעית אופטימיזציה עם אילוצים שנאכפים בשיטת  הבעיה מנוסחת .סגמנטציה

במימוש על גבי יחידה לחישוב , אלגוריתם זה. מהאלגוריתמים ניתן למימוש מקבילי בעזרת הניסוח שבנינואחד 

 Total Variationהאלגוריתם מבוסס , בנוסף. אמת- לזמן זמן חישוב מתאים מאפשר להשיג) GPU(מקבילי 

אפליקציות בתחום הדימות  יםמרא ועבור מטריצות חיוביות אנ. בעיות היפוך אחרותמספר מגדיר מסגרת שכוללת 

מתוך סט של תמונות  DT-MRIשיחזור של תמונות ו, Diffusion Tensor MRIניקוי תמונות כגון  הרפואי 

MRI .המשוערכים מתוך תמונות של טביעות אצבע כיווניםשדה החלקת א וה יישום נוסף.   

 Augmented- של התהליך באיטרציות הפנימיות של סכמת הבחלק זה את ההתכנסות  יםמוכיח ובנוסף אנ

Lagrangian. ניתן לשנות במעט את התהליך לקבלת סכמה עם  ,למרות שהן כוללות אופרטורים לא רציפים

את  יםמרא ואנ כמו כן. האיטרנטים וערך הפונקציההמרחקים בין  הבטחת התכנסות והוכחה שמתבסס על הקשר בין

ומטריציות , DT-MRI–כמו לדוגמא במקרה של , ההתכנסות הגלובלית במקרים שמרחב הפרמטריזציה קמור

תופעת מדרגות דבר המאפשר להמנע מ, את הפונקציונל לכדי חלקות מסדר שני יםמכליל ולאחר מכן אנ .חיוביות

)staircasing( סכמות  תשמאפיינTotal Variation.  

  

קסימיזציה מימד מאור מקודד ניתן לניסוח בתור מ- ם כיצד שחזור תלתמימדגי והתזה אנ בחלק השלישי והאחרון של

רכיבי התאורה . לפי מודל תאורה למברטי, מימדי בהינתן תמונות המצלמה והמקרן- של הסתברות המודל התלת

הסתברותי ניסוח . ולמעשה מקבלים מקסימום על פני רכיבי התאורה והעומק, משוערכים בכל נקודה כתלות בעומק

ניתן , למרות שהבעיה לא לינארית. לינארי- זה מאפשר לנו לשלב פריורים לצורת המשטח לתוך תהליך החישה הלא

  .ומתוך איתחול סביר ופשוט, ת המקרן והמצלמהלהראות התכנסות מקומית טובה מעבר לדיוק של רזולוציו

מתגלים כבעלי מבנה טבעי ואינטואיטיבי שמתאר שפות , שנלמדו מנתוני עומק, בהן יםמשתמש ושאנפריורים ה

שני פריורים ווריאציונים  – פריורים שונים לתמונות רעש 4- ם בחלק זה כמימדגי ואנ. ופינות בתמונת העומק

)Total Variation, Second-order TV( , ושני פריורים מבוססי דלילות)L1  Shrinkage ,Structured 

Sparsity/GMM.( ים כפי שהוגדר, הפריורים הווריאציונים ניתנים למימוש בזמן אמת על גבי כרטיס גרפים



 

  

   בעברית תקציר

  

. של הפתרון לבעיה, או הפרמטריזציה, שאלה בסיסית וחשובה המופיעה כאשר ניגשים לפתרון בעיה היא הייצוג

לתובנה בסיסית זאת . לבעיה, או אף נכון במובנים מסוימים, ייצוג מתאים לפתרון מאפשר לעיתים פתרון יותר קל

גלובליות הפרמטריזציות בין ה. ל"הנומים ובבעיות היפוך בתח, בראייה ממוחשבת, בעיבוד תמונה מופעיםמגוון 

 ,פורייההתמרת כמו של אותות התמרות ספקטרליות , Houghאת התמרת אנו כוללים שמשמשות בתחומים אלה 

ים בילטרליים מסננלכבסיס שמשמשת  מיקום- צבעההתמרה למרחב או , waveletsשריג כמו התמרות - וייצוגי רב

כוללות מודלים וייצוגים דלילים של אותות  מקומיותפרמטריזציות . בלטרמיי ולמסננ, מהירים לעיבוד תמונה

  .והבנת תמונותהשלמה , אינטרפולציה, ניקוי, המשמשים לשיחזור, וייצוגים ייתירים, לתמונות

 ובשחזור, מימד- תלתמימד וב- תנועה בדו תפיעים במקרים שונים של אנליזמוהעוסק בייצוגים חשובים  הזהמחקר 

 חשיבות יש מקרים בהםאלו הם מקרים . שניתן לקשור אותו ישירות להבנת תנועה בין מספר מצלמות, דמימ- תתל

הגדרת הפרמטריזציה משפיעה . הגדרה של מרחקים בתוך מרחב הפרמטריזציהול, הפרמטריזציהרבה לבחירת 

בחירות מתאימות של . דבר העומד בבסיס של שיטות יתירות למידול, ומושפעת מבחירת הרגולרציה לאותה בעיה

פתרונות  אקסיומטיים ויעילים לחישוב, יםפרמטריזציה ורגולריזציה יכולות במקרים אלה להוביל לניסוחים פשוט

של הבנת  יותר גבוהיםשר את תהליך החישה לתהליכים ניסוחים אלה יכולים במקרים מסוימיים לק .לבעיות אלה

 נוניסחו, מספר ייצוגים המשמשים בבעיות אלה נורט חקרבמהלך הדוקטו .התמונה וזיהוי אוביקטים בסצינה

  .כולל סכמות נומריות יעילות לבעיות אלה, אלגוריתמים לפי המודלים שמשתמשים בייצוגים האלה

בחלק . בין זוג תמונות של אותה סצנה ושטף אופטי סקופיתסטריאו בראייה יםעוסק ודה אנבחלק הראשון של העבו

ה בתור יצוג יתיר לשטף ימד ובהומוגרפיות שמוגדרות על ידמ- במשוואת המישור בתלתיעים להשתמש אנו מצ זה

הפרמטריזציה . ושותפיו שטף אופטי של טל נירכהמשך לא לינארי לייצוג היתיר שהוצג בעבודתו על  ,אופטיה

ורך לינארית דורשת הוספת איטרציה פנימית נוספת למבנה הסטנדרטי של פתרון בעיות שטף אופטי לצ- הלא

מגדירה את משוואת המישור דרגות חופש  שלושעם של פרמטר  מקומיתבחירה . לינאריזציה של מודל התנועה

חלוקה למישורים תתואר על  סצינה שמקורבת על ידי, בהתאם. וההומוגרפיה שפועלת בנקודה בין שתי התמונות

האלגוריתם שמתקבל משיג תוצאות  .ורובה תהיה חלקה או קבועה ,ידי שדה פרמטרים עם מעט שינויים חדים

- ועל ה Middlebury Dataset-כפי שנבדקו ב, מהשורה הראשונה במונחים של דיוק של השטף האופטי המחושב

Yosemite sequence .פיזיקלי פשוט שנובע ממודל - לגורם הרגולריזציה יש במקרה שלנו פירוש גיאומטרי

Mumford-Shah בין ראייה ממוחשבת ברמה נמוכה של חישוב שטף אופטי  והוא מקשר, והפרמטריזציה שבחרנו

  .כמו גם סגמנטציה של הסביבה למשטחים מישוריים, ובין רמות הבנה כלליות יותר של מידול והבנת הסביבה

   

זיהוי  – תנועה קשיחה למקוטעיןסגמנטציה של בפרט מימד ו- ה בתלתנועמתייחס להבנת ת החלק השני של התזה

תנועה קשיחה  מחדש הבנת יםמנסח ובחלק זה אנ. התנועה והחלוקה שלה למקטעים שנעים בצורה קשיחה
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