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Abstract. Regularization of images with matrix-valued data is important in med-
ical imaging, motion analysis and scene understanding. We propose a novel method
for fast regularization of matrix group-valued images.
Using the augmented Lagrangian framework we separate total-variation regular-
ization of matrix-valued images into a regularization and a projection steps. Both
steps are computationally efficient and easily parallelizable, allowing real-time
regularization of matrix valued images on a graphic processing unit.
We demonstrate the effectiveness of our method for smoothing several group-
valued image types, with applications in directions diffusion, motion analysis
from depth sensors, and DT-MRI denoising.

1 Introduction

Matrix Lie-group data, and specifically matrix-valued images have become an integral
part of computer vision and image processing. Such representations have been found
useful for tracking [35, 44], robotics, motion analysis, image processing and computer
vision [10, 32, 34, 36, 47], as well as medical imaging [6, 31]. Specifically, developing
efficient regularization schemes for matrix-valued images is of prime importance for
image analysis and computer vision. This includes applications such as direction diffu-
sion [25, 41, 46] and scene motion analysis [27] in computer vision, as well as diffusion
tensor MRI (DT-MRI) regularization [7, 14, 21, 39, 42] in medical imaging.

In this paper we present an augmented Lagrangian method for efficient regulariza-
tion of matrix-valued images with constraints on the singular values or eigenvalues of
the matrices. Examples include the special-orthogonal, special-Euclidean, and symmet-
ric positive-definite matrix groups. We show that the augmented Lagrangian technique
allows us to separate the optimization process into a total-variation (TV, [37]) regular-
ization, or higher-order regularization step, and an eigenvalues or singular values pro-
jection step, both of which are simple to compute, fast and easily parallelizable using
consumer graphic processing units (GPUs), achieving real-time processing rates. The
resulting framework unifies algorithms using in several domains into one framework,
where only the projection operator is slightly different according to the matrix group in
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question. While such an optimization problem could have been approached by general
saddle-point solvers such as [12], the domain of our problem is not convex, requiring
such algorithms to be revisited in order to prove their convergence.

We suggest using two sets of auxiliary fields with appropriate constraints. One field
allows us to simplify the total-variation regularization operator as done, for example, in
[11, 20, 40]. Another field separates the matrix manifold constraint into a simple pro-
jection operator. This results in a unified framework for processing of SO(n), SE(n)
and SPD(n) images, as we describe in Section 3. In Section 4 we demonstrate a few
results of our method, for regularization of 3D motion analysis, direction diffusion and
diffusion tensor imaging. Section 5 concludes the paper.

2 A Short Introduction to Lie-Groups

Lie-groups are groups endowed with a differentiable manifold structure and an appro-
priate group action. Their structure allows us to define priors on Lie-group data in com-
puter vision and has been the subject of intense research efforts, especially involving
statistics of matrix-valued data [31], and regularization of group-valued images [42], as
well as describing the dynamics of processes involving Lie-group data [27]. We briefly
describe the Lie-groups our algorithm deals with, and refer the reader to the literature
for an introduction to Lie-groups [22].

The rotations group SO(n) - The group SO(n) describes all rotation matrices of
the n-dimensional Euclidean space,

SO(n) =
{
R ∈ Rn×n,R

TR = I,det(R) = 1
}
. (1)

The special-Euclidean group SE(n) - This group represents rigid transformations
of the n-dimensional Euclidean space. This group can be thought of as the product man-
ifold of the rotations manifold SO(n) and the manifold Rn representing all translations
of the Euclidean space. In matrix form this group is written as

SE(n) =

{(
R t
0 1

)
,R ∈ SO(n), t ∈ Rn

}
. (2)

The symmetric positive definite group SPD(n) - This group is the group of sym-
metric positive definite matrices. This group has been studied extensively in control
theory (see [17] for example), as well as in the context of diffusion tensor images [31],
where the matrices are used to describe the diffusion coefficients along each direction.
By definition, this group is given in matrix form as

SPD(n) = {A ∈ Rn×n,A � 0} . (3)

3 An Augmented Lagrangian Regularization Algorithm for
Matrix-valued Images

We now proceed to describe a fast regularization algorithm for images with matrix-
valued data, referred to as Algorithm 1. The optimization problem we consider is

argmin
u∈G

∫
‖u−1∇u‖+ λ‖u− u0‖2dx, (4)
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Fast Regularization of Matrix-Valued Images 3

where ‖ · ‖ is the Frobenius norm, u represents an element in an embedding of the Lie-
group G into Euclidean space, specifically for the groups SO(n), SE(n), SPD(n). We
use the notation ∇u to denote the Jacobian of u, described as a column-stacked vector.
The regularization term ‖u−1∇u‖ expresses smoothness in terms of the geometry of the
Lie-group. Elements of SO(n) can be embedded into Rm,m = n2, and elements of
SE(n) can similarly be embedded into Rm,m = n(n+ 1). The elements of SPD(n)
can be embedded into Rm,m = n(n+ 1)/2.

For brevity’s sake, we use the same notation to represent the Lie-group element, its
matrix representation, and the embedding onto Euclidean space, as specified in each
case we explore.

The term ‖u−1∇u‖ can be thought of as a regularization term placed on elements
of the Lie algebra about each pixel. In order to obtain a fast regularization scheme, we
look instead at regularization of an embedding of the Lie-group elements into Euclidean
space,

argmin
u ∈ G

∫
‖∇u‖+ λ‖u− u0‖2dx. (5)

The rationale behind the different regularization term ‖∇u‖ stems from the fact that
SO(n) and SE(n) are isometries of Euclidean space, but such a regularization is pos-
sible whenever the data consists of nonsingular matrices, and has been used also for
SPD matrices [45]. We refer the reader to our technical report [3] for a more in-depth
discussion of this important point. Next, instead of restricting u to G, we add an auxil-
iary variable, v, at each point, such that u = v, and restrict v to G, where the equality
constraint is enforced via augmented Lagrangian terms [23, 33]. The suggested aug-
mented Lagrangian optimization now reads

min
v∈G,u∈Rm

max
µ

L(u, v;µ) = (6)

min
v∈G,u∈Rm

max
µ

∫ [
‖∇u‖+ λ‖u− u0‖2+

r
2
‖u− v‖2 + tr(µT (u− v))

]
dx.

Given a fixed Lagrange multiplier µ, the minimization w.r.t. u, v can be split into alter-
nating minimization steps with respect to u and v, both of which are trivial to implement
in an efficient and parallel manner.

3.1 Minimization w.r.t. v

The minimization w.r.t. v is a projection problem per pixel,

argmin
v∈G

r

2
‖v − u‖2 + tr(µT (u− v))

= argmin
v∈G

r

2

∥∥∥v − (µ
r
+ u

)∥∥∥2 (7)

= Proj
G

(µ
r
+ u

)
,

where ProjG denotes a projection operator onto the specific matrix-group G, and its
concrete form for SO(n),SE(n) and SPD(n) will be given later on.
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3.2 Minimization w.r.t. u

Minimization with respect to u is a vectorial TV denoising problem

argmin
u∈Rm

∫
‖∇u‖+ λ̃ ‖u− ũ (u0, v, µ, r)‖2 dx, (8)

with ũ = (2λu0+rv+µ)
(2λ+r) . This problem can be solved via fast minimization techniques

for TV regularization of vectorial images, such as [9, 16, 19]. We chose to use the
augmented-Lagrangian TV algorithm [40], as we now describe. In order to obtain fast
optimization of the problem with respect to u, we add an auxiliary variable p, along with
a constraint that p = ∇u. Again, the constraint is enforced in an augmented Lagrangian
manner. The optimal u now becomes a saddle point of the optimization problem

min
u ∈ Rm

p ∈ R2m

max
µ2

∫ [
λ̃ ‖u− ũ (u0, v, µ, r)‖2 + ‖p‖
+µT

2 (p−∇u) + r2
2
‖p−∇u‖2

]
dx. (9)

We solve for u using the Euler-Lagrange equation,

2λ̃(u− ũ) + (div µ2 + r2 div p) +∆u = 0, (10)

for example, in the Fourier domain, or by Gauss-Seidel iterations.
The auxiliary field p is updated by rewriting the minimization w.r.t. p as

argmin
p ∈ R2m

∫
‖p‖+ µT

2 p+
r2
2
‖p−∇u‖2, (11)

with the closed-form solution [40]

p =
1

r2
max

(
1− 1

‖w‖ , 0
)
w,w = r2∇u− µ2. (12)

Hence, the main part of the proposed algorithm is to iteratively update v, u, and p respectively.
Also, according to the optimality conditions, the Lagrange multipliers µ and µ2 should be updated
by taking

µk = µk−1 + r
(
vk − uk

)
, (13)

µk
2 = µk−1

2 + r2
(
pk −∇uk

)
.

An algorithmic description is summarized as Algorithm 1.

3.3 Regularization of maps onto SO(n)

In the case of G = SO(n), Although the embedding of SO(n) in Euclidean space is not a
convex set, the projection onto the matrix manifold is easily achieved by means of the singular
value decomposition [18]. Let USVT =

(
µ
r
+ uk

)
be the SVD decomposition of µ

r
+ uk, we

update v by

vk+1 = Proj
SO(n)

(µ
r
+ uk

)
= U(x)VT (x), (14)

USVT =
(µ
r
+ uk

)
.
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Fast Regularization of Matrix-Valued Images 5

Algorithm 1 Fast TV regularization of matrix-valued data
1: for k = 1, 2, . . . , until convergence do
2: Update uk(x), pk(x), according to Equations (10,12).
3: Update vk(x), by projection onto the matrix group,

– For SO(n) matrices, according to Equation (14).
– For SE(n) matrices, according to Equation (15).
– For SPD(n) matrices, according to Equation (16).

4: Update µk(x), µk
2(x), according to Equation (13).

5: end for

Other possibilities include using the Euler-Rodrigues formula, quaternions, or the polar decom-
position [26]. We note that the nonconvex domain SO(n) prevents a global convergence proof.
The algorithm, in the case of G = SO(n) and G = SE(n), can be made provably convergent
using the method of Attouch et al. [5]. The details and proof are shown in our technical report
[3].

3.4 Regularization of maps onto SE(n)

In order to regularize images with values in SE(n), we use an embedding into Rn(n+1) as our
main optimization variable, u, per pixel.

The projection step w.r.t. v applies only for the n2 elements of v describing the rotation
matrix, leaving the translation component of SE(n) unconstrained.

Specifically, let v = (vR, vt), vR ∈ Rn2

, vt ∈ Rn denotes the rotation and translation
parts of the current solution, with a similar partition for the Lagrange multipliers µ = (µR, µt).
Updating v in step 3 of Algorithm 1 assumes the form

vk+1
R = Proj

SO(n)

(µR

r
+ uk

R

)
, vk+1

t =
(µt

r
+ uk

t

)
(15)

vk+1 = Proj
SE(n)

(vk) = (vk+1
R , vk+1

t ).

3.5 Regularization of maps onto SPD(n)

The technique described above can be used also for regularizing symmetric positive-definite ma-
trices. Here, the intuitive choice of projecting the eigenvalues of the matrices onto the positive
half-space is shown to be optimal [24]. Many papers dealing with the the analysis of DT-MRI
rely on the eigenvalue decomposition of the tensor as well, i.e. for tractography, anisotropy mea-
surements, and so forth.

For G = SPD(n), the minimization problem w.r.t. v in step 3 of Algorithm 1 can be solved
by projection of eigenvalues. Let U diag (λ)UT be the eigenvalue decomposition of the matrix
µ
r
+ uk. v is updated according to

vk+1 = Proj
SPD(n)

(vk) = U(x) diag
(
λ̂
)
UT (x), (16)

Udiag (λ)UT =
(µ
r
+ uk

)
,
(
λ̂
)
i
= max

(
(λ)i , 0

)
,
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where the matrix U is a unitary one, representing the eigenvectors of the matrix, and the eigen-
values

(
λ̂
)
i

are the positive projection of the eigenvalues (λ)i. Optimization w.r.t. u is done as
in the previous cases, as described in Algorithm 1.

Furthermore, the optimization w.r.t. u, v is now over the domain Rm × SPD(n), and the
cost function is convex, resulting in a convex optimization problem. The convex domain of op-
timization allows us to formulate a convergence proof for the algorithm similar to the proof by
Tseng [43]. We refer the interested reader to our technical report [3]. An example of using the
proposed method for DT-MRI denoising is shown in Section 4.

3.6 A Higher-Order Prior for Group-Valued Images

We note that the scheme we describe is susceptible to the staircasing effect, since it minimizes
the total variation of the map u. Several higher-order priors can be incorporated into our scheme
that do not suffer from staircasing effects. One such possibile higher-order term generalizes the
scheme presented by Wu and Tai [48], by replacing the per-element gradient operator with a
Hessian operator. The resulting saddle-point problem becomes

min
u ∈ Rm

p ∈ R4m,
v ∈ G

max
µ2

∫ [
‖p‖+ λ̃ ‖u− ũ (u0, v, µ, r)‖2

+µT
2 (p−Hu) + r2

2
‖p−Hu‖2

]
dx, (17)

where H denotes the per-element Hessian operator. We show an example using the appropriately
modified scheme in Figures 1,3

4 Numerical Results

As discussed above, the proposed algorithmic framework is considerable general and suitable
for various applications. In this section, several examples from different applications are used to
substantiate the effectiveness and efficiency of our algorithm.

4.1 Directions regularization

Analysis of principal directions in an image or video is an important aspect of modern computer
vision, in fields such as video surveillance [30, and references therein], vehicle control [15],
crowd behaviour analysis [29], and other applications[32].

Since SO(2) is isomorphic to S1, the suggested regularization scheme can be used for regu-
larizing directions, such as principal motion directions in a video sequence. A reasonable choice
for a data term would try to align the rotated first coordinate axis with the motion directions in
the neighborhood,

EPMD(U) =
∑

(xj ,yj)∈N (i)

(
U1,1 (vj)x + U1,2 (vj)y

)
,

where
(
xj , yj , (vj)x , (vj)y

)
represent a sampled motion particle [29] in the video sequence,

and Ui,j represent elements of the solution u at each point.
In Figure 1 we demonstrate two sparsely sampled, noisy, motion fields, and a dense recon-

struction of the main direction of motion at each point. The data for the direction estimation was
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Fast Regularization of Matrix-Valued Images 7

corrupted by adding component-wise Gaussian noise. In the first image, the motion field is com-
prised of 4 regions with a different motion direction at each region. The second image contains a
sparse sampling of an expansion motion field of the form v(x, y) = (x,y)T

‖(x,y)‖ . Such an expansion
field is often observed by forward-moving vehicles. Note that despite the fact that a vanishing
point of the flow is clearly not smooth in terms of the motion directions, the estimation of the
motion field is still correct.

Fig. 1. TV regularization of SO(n) data. Left-to-right, top-to-bottom: a noisy, TV-denoised, and
higher-order regularized (minimizing Equation 17) version of a piecewise constant SO(2) image,
followed by a expansion field direction image. Different colors mark different orientations of the
initial/estimated dense field, black arrows signify the measured motion vectors, and blue arrows
demonstrate the estimated field

In Figure 2 we used the algorithm to obtain a smooth field of principal motion directions
over a traffic sequence taken from the UCF crowd flow database [4]. Direction cues are obtained
by initializing correlation-based trackers from arbitrary times and positions in the sequence, and
observing all of them simultenaously. The result captures the main traffic lanes and shows the
viability of our regularization for real data sequence.

Yet another application for direction diffusion is in denoising of directions in fingerprint
images. An example for direction diffusion on a fingerprint image taken from the Fingerprint
Verification Competition datasets [1] can be seen in Figure 3. Adding a noise of σ = 0.05 to the
image and estimating directions based on the structure tensor, we smoothed the direction field
and compared it to the field obtained from the original image. We used our method with λ = 3,
and the modified method based on Equation 17 with ε = 10, as well as the method suggested
by Sochen et al. [38] with β = 100, T = 425. The resulting MSE values of the tensor field are
0.0317, 0.0270 and 0.0324, respectively, compared to an initial noisy field with MSE = 0.0449.
These results demonstrate the effectiveness of our method for direction diffusion, even in cases
where the staircasing effect may cause unwanted artifacts.

4.2 SE(n) regularization

We now demonstrate a smoothing of SE(3) data obtained from locally matching between two
range scans obtained from a Kinect device. For each small surface patch from the depth image
we use an iterative closest point algorithm[8] to match the surface from the previous frame. The
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Fig. 2. Regularization of principal motion directions. The red arrows demonstrate measurements
of motion cues based on a normalized cross-correlation tracker. Blue arrows demonstrate the
regularized directions fields.

background is segmented by simple thresholding. The results from this tracking process over raw
range footage are an inherently noisy measurements set. We use our algorithm to smooth this
SE(3) image, as shown in Figure 4. It can be seen that for a careful choice of the regularization
parameter, total variation in the group elements is seen to significantly reduce rigid motion esti-
mation errors. Furthermore, it allows us to discern the main rigidly moving parts in the sequence
by producing a scale-space of rigid motions. Visualization is accomplished by projecting the em-
bedded matrix onto 3 different representative vectors in R12. The regularization is implemented
using the CUDA framework, with computation times shown in Table 1, for various image sizes
and iterations. In the GPU implementation the polar decomposition was chosen for its simplicity
and efficiency. In practice, one Gauss-Seidel iteration sufficed to update u. Using 15 outer iter-
ations, practical convergence is achieved in 49 milliseconds on an NVIDIA GTX-580 card for
QVGA-sized images, demonstrating the efficiency of our algorithm and its potential for real-time
applications. This is especially important for applications such as gesture recognition where fast
computation is crucial.

4.3 DT-MRI regularization

In Figure 5 we demonstrate a smoothing of DT-MRI data from [28], based on the scheme
suggested in Section 3.5. We show an axial view of the brain, glyph-based visualization using
Slicer3D [2], with anisotropy-based color coding.

The noise added is an additive Gaussian noise in each of the tensor elements with σ = 0.1.
Note that while different noise models are often assumed for diffusion-weighted images, at high
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Fast Regularization of Matrix-Valued Images 9

Fig. 3. TV regularization of SO(2) data based on fingerprint direction estimation. Left-to-right,
top-to-bottom: The fingerprint image with added Gaussian noise of σ = 0.05, the detected di-
rection angles, the detected directions displayed as arrows, the detected directions after regu-
larization with λ = 3, regularization results using a higher-order regularization term shown in
Equation 17 with λ = 6, the regularization result by Sochen et al. [38].

Fig. 4. Regularization of SE(3) images obtained from local ICP matching of the surface patch
between consecutive Kinect depth frames. Left-to-right: diffusion scale-space obtained by differ-
ent values of λ: 1.5, 1.2, 0.7, 0.2, 0.1, 0.05 , the foreground segmentation based on the depth, and
an intensity image of the scene. Top-to-bottom: different frames from the depth motion sequence.
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Outer iterations 15 15 25 50 100
GS iterations 1 3 1 1 1
320× 240 49 63 81 160 321
640× 480 196 250 319 648 1295
1920× 1080 1745 2100 2960 5732 11560

Table 1. Processing times (ms) for various sizes of images, with various iteration counts.

noise levels the Gaussian model is a reasonable approximation. Regularization with λ = 30
is able to restore a significant amount of the white matter structure. At such levels of noise,
the TV-regularized data bias towards isotropic tensors (known as the swell effect [13]) is less
significant. The RMS of the tensor representation was 0.0406 in the corrupted image and 0.0248
in the regularized image. Similarly, regularized reconstruction of DT-MRI signals from diffusion-
weighted images is also possible using our method, but is beyond the scope of this paper.

Fig. 5. TV denoising of images with diffusion tensor data, visualized by 3D tensor ellipsoid
glyphs colored by fractional anisotropy. Left-to-right: the original image, an image with added
component-wise Gaussian noise of σ = 0.1, and the denoised image with λ = 30.

5 Conclusions

In this paper, a general framework for regularization of matrix valued maps is proposed. Based
on the augmented Lagrangian techniques, we separate the optimization problem into a TV-
regularization step and a projection step, both of which can be solved in an easy-to-implement
and parallel way. Specifically, we show the efficiency and effectiveness of the resulting scheme
through several examples whose data taken from SO(2), SE(3), and SPD(3) respectively. To
emphasize, for matrix-valued images, our algorithms allow real-time regularization for tasks in
image analysis and computer vision.

In future work we intend to explore other applications for matrix-valued image regularization
as well as generalize our method to other types of maps, and data and noise models.
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