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Abstract. Bounded model checking (BMC) is a technique for overcom-
ing the state explosion problem which has gained wide industrial accep-
tance. Bounded model checking is typically applied only for linear-time
properties, with a few exceptions, which search for a counter-example in
the form of a tree-like structure with a pre-determined shape. We suggest
a new approach to bounded model checking for universal branching-time
logic, in which we encode an arbitrary graph and allow the SAT solver to
choose both the states and edges of the graph. This significantly reduces
the size of the counter-example produced by BMC.

A dynamic completeness criterion is presented which can be used to
halt the bounded model checking when it becomes clear that no counter-
example can exist. Thus, verification of the checked property can also
be achieved. Experiments show that our approach outperforms another
recent encoding for μ-calculus on complex ACTL properties.

1 Introduction

Bounded model-checking (BMC) is a model-checking method that has gained
popularity due to the inability of BDD-based symbolic model-checkers to handle
large designs. In classical BMC [3], one tries to find a bug of bounded length
k. If a bug is not found, the bound is increased until either a bug is found or a
pre-determined completeness threshold [4] is reached. If the threshold has been
reached but no bug has been found, it is concluded that the formula holds in the
model. In practice, the threshold is rarely reached, but recent works (e.g., [6])
also describe techniques for SAT-based temporal induction which can be used
to prove formulas without reaching the completeness threshold.

BMC has mostly been restricted to linear-time specifications, with a few ex-
ceptions ([14], [16]). Most encodings for linear-time logic have a common form,
a conjunction of two formulas: one encodes a path starting from an initial state
of the model, and the second is property-dependent and constrains the path to
be a counter-example to the property being checked.

Bounded model-checking for branching-time logic is a somewhat thornier
problem, because it is usually not known in advance what exact shape the
counter-example will take. The works that extended the BMC paradigm to uni-
versal branching-time logic dealt with this problem in different ways: [14] encodes
a property-dependent number of bounded paths, either lasso-shaped or finite,
and constrains them to represent a counter-example; [16] encodes a bounded
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proof-tree for the negation of the formula, using the local proof rules of [15] for
μ-calculus. Both approaches assume a worst-case scenario in the construction of
the tree-like structure they encode, with the result that many more states may
be encoded than are necessary for the counter-example. For example, to disprove
a formula of the form ψ1∨ψ2, both approaches will encode two separate tree-like
structures — one for disproving ψ1 and one for disproving ψ2. In practice, there
may exist counter-examples for both ψ1 and ψ2 which share many model states.
The counter-examples returned in [14] and [16] are therefore not minimal in the
number of states they contain.

In this paper we suggest a new approach to bounded model-checking for uni-
versal branching-time logic wherein we encode exactly the states that are nec-
essary for the counter-example. Unlike [14] and [16], we make no assumptions
about the structure of the counter-example; we encode k states, where k is the
bound, and allow the SAT solver to choose both the states and the edges of
the model that will comprise the counter-example. We use the local constraints
of Namjoshi’s proof system for μ-calculus [13] to ensure that the structure rep-
resented by the states is a counter-example to the formula being checked. Our
approach ensures a minimal counter-example, and it avoids representing the
same model-state more than once.

We present an encoding for proving existential μ-calculus properties (or falsi-
fying universal properties), using alternating parity tree automata as the spec-
ification mechanism. We also present a simplified variation of the encoding for
alternation-free existential μ-calculus. The encoding for full existential μ-calculus
uses roughly O(|Q| · k log k) variables, where k is the bound and |Q| is the num-
ber of automaton states. The simpler encoding for alternation-free μ-calculus is
less compact, requiring O(|Q| ·k2) variables, but it is more explicit and performs
better than the more general encoding. The simplified encoding can be extended
to handle fairness constraints while still requiring roughly O(|Q| · k2) variables.

We also describe a dynamic termination criterion which can be used to halt
the bounded model-checking by determining that no counter-example compris-
ing k′ > k states can exist, where k is the current bound. The idea is similar to
the criterion suggested in [16]: we attempt to identify situations where the struc-
ture encoded cannot be extended by adding new states (that is, increasing the
bound). However, our implementation is quite different, due to the difference
between the encodings. Using the termination criterion it is possible to prove
and disprove both existential and universal formulas. As is typical for bounded
model-checking, the algorithm performs better when proving existential formulas
or disproving universal ones than when proving universal formulas or disproving
existential ones.

Finally, we present experimental results for the branching-time logic ACTL.
Our experiments show that our approach is a good complement to the encoding
of [16], especially for complex formulas with a large nesting depth, where our
encodings can often disprove formulas that cannot be disproven by the encoding
of [16]. Deeply-nested formulas are generated during automatic translation to
ACTL from a high-level specification language, e.g., PSL [1], where complex
regular expressions translate into deeply-nested ACTL formulas.
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2 Preliminaries

2.1 Alternating Parity Tree Automata

A normal-form alternating parity tree automaton [17] is a tuple A = (AP,
Q, q0, δ, Ω), where AP is a set of atomic propositions, Q is the set of automaton
states, and q0 is the initial state; δ is an alternating transition relation, assigning
to each state q ∈ Q a transition of the form q1 ∨ q2, q1 ∧ q2, ♦q1, �q1, p or
¬p, where q1, q2 ∈ Q and p ∈ AP ; and finally, Ω : Q → N is a partial priority
function which represents a parity acceptance condition (in [13], the acceptance
condition is represented as a partition of Q instead of a priority function). For an
automaton state q ∈ Q, Ω(q) will be called the priority of q. The automata we
will deal with contain no cycles of priorityless states. We will say that an infinite
sequence π = q0q1 . . . ∈ Qω satisfies Ω if the lowest priority Ω(q) of a state q that
has a priority and appears infinitely often in π is even. (An alternative definition,
e.g. in [17], requires that the infinite sequence also have an infinite number of
states for which the priority is defined. However, automata constructed using
the standard translation from μ-calculus have at least one state that has a pri-
ority on every cycle in the automaton; all infinite sequences contain an infinite
number of states that have a priority. We assume this property in the automaton
representing the specification we check.)

Universal μ-calculus properties [11] can be expressed by automata that do not
have ♦-transitions. We will refer to such an automaton as a �-automaton. Sim-
ilarly, existential μ-calculus properties can be expressed by ♦-automata, which
have no �-transitions.

Tree automata run over labeled trees. A labeled tree is a pair T = (N, L)
where N ⊆ N

+ is a prefix-closed set of tree nodes and L : N → 2AP is a labeling
function. The node ε (the empty word) is the tree root, and there is an edge from
node n1 to node n2 iff n2 = n1 · i for some i ∈ N. We will use Succ(n) to denote
the targets of edges outgoing from n; that is, Succ(n) = {n · i | i ∈ N} ∩ N .

The acceptance of a tree by an automaton is defined in terms of a two-player
infinite game. The game positions are N × Q, and the initial position is (ε, q0).
The player who owns the position (n, q) and the moves available to that player are
determined according to δ: player I owns positions (n, q) such that δ(q) = q1∨q2 or
δ(q) = ♦q1; player II owns positions (n, q) such that δ(q) = q1 ∧ q2 or δ(q) = �q1.
If δ(q) = q1 ∨ q2 or δ(q) = q1 ∧ q2, the available moves are (n, q1) and (n, q2); if
δ(q) = ♦q1 or δ(q) = �q1, the available moves are (m, q1) for all m ∈ Succ(n).
A position (n, q) is winning for player I if δ(q) = p and p ∈ L(n) or δ(q) = ¬p
and p �∈ L(n), and winning for player II if δ(q) = p and p �∈ L(n) or δ(q) = ¬p
and p ∈ L(n). A play is winning for player I if it is finite and ends in a position
that is winning for player I, or if it is infinite and satisfies Ω; otherwise, the play
is winning for player II. Strategies are defined as usual: a strategy for player x is a
partial function mapping finite sequences of configurations to a choice of the next
configuration at every position owned by player x. A play is said to be according
to a strategy for player x if every choice made by player x in the play conforms to
the strategy. A strategy is winning for player x if player x wins any play she plays
according to the strategy. We will say that an automaton A accepts a tree T iff
player I has a winning strategy for the game thus described.
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2.2 Kripke Structures

To represent finite-state programs, we use Kripke structures. A Kripke structure
is a tuple M = (S, s0, R, L), where S is the set of states, s0 is the initial state,
R ⊆ S × S is a total transition relation and L : S → 2AP is a labeling function.

Given a Kripke structure M and an alternating parity tree automaton A, we
will say that M satisfies A iff the computation tree of M is accepted by A. We will
say that a model state s ∈ S satisfies an automaton state q if the computation
tree starting from s is accepted by the automaton A′ which is identical to A
except that q is the initial state of A′.

Theorem 1 ([9], [17]). For every mu-calculus formula ϕ there exists an al-
ternating parity tree automaton Aϕ such that for every Kripke structure M , M
satisfies Aϕ iff M |= ϕ.

Example 1. Consider the automaton A = ({p} , {q0, q1, q2, q3, q4} , q0, δ, Ω) shown
in Fig.1, where the type of the transition is indicated below each state or on the
relevant edge, and Ω is defined only for q2 and q3 (shown dashed), which have
Ω(q2) = 2 and Ω(q3) = 1.

q0

∧
q2

♦

q1

∨
q3

♦

q4

p

(a) An automaton for EGEFp

s0 s1

p

s2

(b) A Kripke structure satis-
fying EGEFp

Fig. 1. An example automaton and Kripke structure

The automaton is equivalent to the property “there exists a path on which
from every state, p is reachable”, expressed as EGEFp in the temporal logic
ECTL. State q0 stands for EGEFp, and state q2 stands for EXEGEFp, “there
exists a successor that satisfies EGEFp”. Similarly, q1 stands for EFp and q3
for EXEFp, and state q4 stands for p. The odd priority for q3 requires that a
winning play only pass through q3 a finite number of times (since there is no
state with a lower even priority), so that eventually the play must transition to
q4, which requires that p be satisfied at the current model state.
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2.3 Namjoshi-Style Temporal Proofs

Several proof systems have been suggested for the model checking problem of μ-
calculus. Here we focus on the proof system presented by Namjoshi in [13]. The
feature which makes it useful for our purposes is that its conditions are local: to
verify that a proof is valid, one need only check a series of local conditions, which
refer at most to a state’s immediate successors in the Kripke structure. Other
proof systems, such as Stirling’s proof rules [15], keep track of states visited
along the current proof branch; in Namjoshi’s system such “book-keeping” is
not required, and ranks are used instead.

In [13], the proof system is presented for automata where the priority function
is full. We will present the system from [13] and then explain how it can be
extended to the case where the priority function is a partial function.

Let M = (S, s0, R, L) be a Kripke structure, and let A = (AP, Q, q0, δ, Ω) be a
normal-form alternating parity tree automaton with Ω defined for all q ∈ Q. To
show that M satisfies A, one must exhibit: (i) for each automaton state q ∈ Q,
a predicate Iq, which, intuitively, characterises the set of model states which
satisfy q; (ii) non-empty, well-founded sets W1, . . . , Wm, where m is the number
of odd priorities assigned by Ω to states from Q, and pre-orders ≺1, . . . , ≺m; (iii)
for each automaton state q ∈ Q, a partial rank function ρq : S → (W, ≺), where
W = W1 × . . .×Wm and ≺ is the lexicographic order induced by ≺1, . . . , ≺m on
W . In this paper, we will assume without loss of generality that W = N

k, with
≺i the standard order < over N. We will henceforth omit W and simply write
Π = (I, ρ), where I = {Iq | q ∈ Q} is the set of invariants and ρ = {ρq | q ∈ Q}
is the set of rank functions.

We use Invariance and Progress obligations to ensure that player I has a
winning strategy for the game induced by A on the computation tree of M : the
obligation for automaton states q with ∨- or ♦-transitions represents the move
player I must make in positions (s, q) owned by her. Obligations for states q with
∧- or �-transitions ensure that no matter which move player II makes from a
position (n, q), player I will have a winning strategy from the resulting position.
In the case of an infinite play, we use ranks to ensure that the play satisfies Ω.

Intuitively, the rank ρq(s) represents a commitment regarding the number of
times we may pass through states with each odd priority before passing through
a state with lower priority in a play from position (n, q), where n is a tree node
corresponding to model state s. For example, coordinate 0 of the rank counts the
number of times we may pass through states with priority 1 before passing through
a state with priority 0. Each time we pass through a state with priority 2i + 1,
coordinates 0 through i decrease lexicographically, and can only increase again
when passing through a state q with Ω(q) < 2i+1.A play according to the strategy
induced by the invariants can only pass through a state with an odd priority 2i+1 a
finite number of times before coordinates 0, . . . , i of the rank reach zero, and then
we must pass through a state with lower priority. The lowest priority occurring
infinitely often in the play must be even, and player I wins.

This notion is captured by an order �q over N
k, defined for each q ∈ Q

as follows: (x0, . . . , xm−1) �q (y0, . . . , ym−1) iff Ω(q) = 0, or Ω(q) = 2i, i > 0
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and (x0, . . . , xi, 0, . . . , 0) 
 (y0, . . . , yi, 0, . . . , 0), or Ω(q) = 2i+1 and (x0, . . . , xi,
0, . . . , 0) ≺ (y0, . . . , yi, 0, . . . , 0). Note that coordinates i, . . . , m − 1 are uncon-
strained when passing through a state with priority Ω(q) < 2i + 1, but when
passing through states with Ω(q) ≥ 2i+1, coordinate i may not increase. When
passing through a state with priority 2i + 1, coordinates 0, . . . , i must decrease
in lexicographic order.

A valid proof must satisfy the following requirements.

– Consistency: for each q ∈ Q and s ∈ Iq , ρq(s) is defined.
– Initiality: s0 ∈ Iq0 .
– Invariance and Progress: for each q ∈ Q and s ∈ Iq:

• If δ(q) = p then p ∈ L(s).
• If δ(q) = ¬p then p �∈ L(s).
• If δ(q) = q1 ∨ q2, then either s ∈ Iq1 and ρq1(s) �q ρq(s), or s ∈ Iq2 and

ρq2(s) �q ρq(s).
• If δ(q) = q1 ∧ q2, then s ∈ Iq1 and ρq1(s) �q ρq(s), and also s ∈ Iq2 and

ρq2(s) �q ρq(s).
• If δ(q) = ♦q1, then there exists t ∈ S such that (s, t) ∈ R and t ∈ Iq1

and ρq1(t) �q ρq(s).
• If δ(q) = �q1, then for all t ∈ S such that (s, t) ∈ R, t ∈ Iq1 and

ρq1(t) �q ρq(s).

Theorem 2 ([13]). For every Kripke structure M and automaton A with a full
priority function, M satisfies A iff there exists a Namjoshi-style proof showing
that M satisfies A.

Automata resulting from the standard translation for μ-calculus have a partial
priority function, with infinitely many priorities on every infinite path. For such
automata, we would still like the �q relation to enforce the parity acceptance
condition, which now concerns only states that have a priority. Define an exten-
sion �q as follows: x �q y iff Ω(q) is defined and x �q y, or Ω(q) is undefined
and x = y. The idea is that priorityless states should simply preserve the rank,
keeping it unchanged until the next time we pass through a state with a priority.

Lemma 1. The proof system obtained by replacing �q with �q is sound and
complete for all automata with no cycles of priorityless states.

Example 2. Consider the automaton and structure shown in Fig.1. A proof show-
ing that M satisfies A is given by Π = (I, ρ), where Iq0 = Iq2 = {s0} (states that
satisfy EGEFp and EXEGEFp), Iq1 = Iq3 = {s0, s1} (states that satisfy EFp
and EXEFp), and Iq4 = {s1} (the only state labeled with p). The ranks in Π
have a single coordinate, representing the length of a path to a state satisfying
p. The relation �q is = for all q �= q3, and for q3, �q3 is <. An assignment of
ranks that satisfies the proof obligations is ρq(s0) = 1, ρq(s1) = 0 and ρq(s2)
undefined for all q ∈ Q. Note that since we attached the decrease in rank to an
automaton state with a ♦-transition, all the automaton states agree on the rank
assigned to each model state. This can be done for all ECTL formulas.
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2.4 Notation and Terminology

We will let Q♦ denote the set of automaton states q with a transition δ(q) = ♦q1.
For automaton states q ∈ Q♦ and model states s ∈ Iq, it will sometimes be useful
to identify the model state (or one of the model states) t ∈ S which serves to
satisfy the Invariance and Progress obligation for s and q in a proof Π . We will
refer to t as a proof successor for s as required by q.

3 The Encodings

We present two encodings to SAT for model checking existential alternating
parity tree automata (with no �-transitions). In both encodings, we search for
a counter-example of bounded size k in the Kripke structure, where k is the
number of states in the counter-example; the counter-example is represented
as an arbitrary graph of unknown structure, and each state in the graph must
satisfy certain local obligations to ensure that the graph constitutes a counter-
example for the formula in question. The structure of the graph is determined
by the local obligations of each state.

3.1 Encoding Namjoshi-Style Proof Obligations

The first encoding we present is a direct translation of the proof obligations of
a Namjoshi-style temporal proof to Boolean constraints.

Let M = (S, s0, R, L) be a Kripke structure. We assume that the initial state
and the transition relations are given in the form of propositional formulas I and
R respectively, and that the state space S is represented by {0, 1}n. Also, for
each atomic proposition p ∈ AP , we assume a propositional formula Lp which is
true exactly for states s ∈ S such that p ∈ L(s). Let A = (AP, Q, q0, δ, Ω) be a
♦-automaton. To encode the requirements on ranks, we use a set of propositional
formulas LTq for all q ∈ Q, such that LTq(σ1, σ2) holds iff σ1 �q σ2.

The encoding uses the following variables.

– u0, . . . , uk−1: vectors representing model states. Each vector comprises n
bits.

– xq
i for each i = 0, . . . , k −1 and q ∈ Q: an indicator variable for the fact that

the state assigned to ui satisfies q.
– ρq

i for each i = 0, . . . , k − 1: a vector representing the rank ρq(s) assigned to
ui by q.

Each rank vector ρq
i has m coordinates, where m is the number of odd priorities

assigned by Ω to automaton states, and each coordinate j comprises log |Q|k
bits. This is sufficient because if there exists an infinite winning play for player
I, then there exists a play that does not pass through an odd-priority state
twice before passing through a state with a lower priority. The total number of
variables used in the encoding is O(nk + k|Q| + |Q|mk log |Q|k).
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The obligations for a state ui and an automaton state q are encoded as a
Boolean formula of the form xq

i → 〈〈δ(q)〉〉i, where 〈〈δ(q)〉〉i is defined as follows.

〈〈p〉〉i = Lp(ui)
〈〈¬p〉〉i = ¬Lp(ui)
〈〈q1 ∧ q2〉〉i = xq1

i ∧ LTq(ρ
q1
i , ρq

i ) ∧ xq2
i ∧ LTq(ρ

q2
i , ρq

i )
〈〈q1 ∨ q2〉〉i = (xq1

i ∧ LTq(ρ
q1
i , ρq

i ) ∨ xq2
i ) ∧ (LTq(ρ

q2
i , ρq

i ))

〈〈♦q1〉〉i =
k−1∨

j=0

(
R(ui, uj) ∧ xq1

j ∧ LTq(ρ
q1
j , ρq

i )
)

It is possible to eliminate the indicators xq
i when δ(q) = q1∧q2 or δ(q) = q1∨q2

by substituting the constraints generated for these formulas anywhere that the
indicator appears.

To represent the Initiality requirement, we add the constraint I(u0)∧xq0
0 . The

resulting formula is given by

PRF1
M,A,k = I(u0) ∧ xq0

0 ∧
k−1∧

i=0

∧

q∈Q

xq
i → 〈〈δ(q)〉〉i

Optimizating the Encoding. The encoding presented above is naive, and can
be improved in several ways.

First, the encoding suffers from symmetry, which has an adverse effect on the
performance of most SAT solvers; the model states u1, . . . , uk−1 are interchange-
able, and the SAT solver is forced to consider many equivalent permutations of
the same counter-example before eliminating it. We have found that perfor-
mance is greatly improved when we break the symmetry by ordering the states
u1, . . . , uk−1, obtaining the formula

PRF1′

M,A,k = PRF1
M,A,k ∧

k−2∧

i=1

ui < ui+1

where “<” is implemented as the lexicographic order on binary vectors. (u0 is
excluded from the ordering as it is the only state that serves a “special” role: it
must be an initial state, and we cannot require that it be smaller than all the
other states.)

The way ranks are handled in the encoding can also be improved. By analyzing
the structure of the automaton, we can identify sets of automaton states that
can share the same rank vectors. For example, if δ(q) = q1 ∧ q2 and q does not
have a priority, then in a valid proof, ρq(s) = ρq1(s) = ρq2(s) for any model state
s. There is no need to encode the rank separately, and instead of having three
vectors ρq

i , ρq1
i and ρq2

i all three automaton states can “share” a vector ρ
{q,q1,q2}
i .

This also simplifies the constraint 〈〈δ(q)〉〉i , because now we can remove the LTq
constraint; it is implicit in using the same rank vector.

In particular, for ECTL formulas it is possible to construct automata where
all the automaton states share a single rank vector ρQ

i , greatly simplifying the
encoding. For lack of space, we do not elaborate.
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Encoding Successor States Explicitly. In the constraints generated for
states q ∈ Q♦, the transition relation appears k times each. Since the transi-
tion relation is often complicated, it is desirable to decrease the number of times
it appears. We can do so at the cost of increasing the number of variables, by
encoding proof-successors explicitly. For each q ∈ Q♦ and i = 0, . . . , k−1, we will
assign a vector tqi to represent the successor required by q if the state assigned
to ui is in Iq. Since we are searching for a proof of size k, tqi will be constrained
to be one of the states u0, . . . , uk−1; also, if tqi = uj , then we require uj to be
in the appropriate invariant Iq1 , where δ(q) = ♦q1, and its rank must behave
appropriately. The constraint can now be written as

〈〈♦q1〉〉i = R(ui, t
q
i ) ∧

k−1∨

j=0

(
tqi = uj ∧ xq1

j ∧ LTq(ρ
q1
j , ρq

i )
)

In the new encoding, the transition relation appears k · |Q♦| times instead of
k2 ·|Q♦| times as before. We will also have further use for the information we gain
by explicitly encoding proof successors in constructing a dynamic completeness
criterion (Section 4).

3.2 Eliminating the Use of Ranks

Although the previous encoding uses a rather small number of variables, which
increases as O(k log k) with the bound k, the use of ranks can be SAT-unfriendly.
The second encoding we present is similar to the first, but using ideas from
[10] and [8], we eliminate the use of ranks. The idea is that instead of directly
encoding the rank ρq(s) for states s ∈ Iq, we will store a subset Iσ

q for each rank
σ, containing states s ∈ Iq that have ρq(s) ≤ σ. In the encoding, we will unroll
the proof obligations once for each such invariant; when a decrease in rank is
called for, we will use the subset that represents the lower rank. This encoding
becomes inefficient when the ranks have more than one coordinate, and we will
restrict attention to automata that only assign the priorities 1, 2. Such automata
require a single coordinate in the rank, and includes the alternation-free fragment
of μ-calculus.

The encoding will use the following variables.

– u0, . . . , uk−1: vectors representing model states.
– xq,t

i for each i = 0, . . . , k−1, q ∈ Q and t = 0, . . . , mk where m is the number
of odd-priority automaton states: an indicator variable for the fact that the
state assigned to ui satisfies q and has rank no greater than t.

Our obligations will now take the form xq,t
i → 〈〈δ(q)〉〉t

i for t > 0, where 〈〈δ(q)〉〉t
i

is defined by

〈〈p〉〉t
i = Lp(ui)

〈〈¬p〉〉t
i = ¬Lp(ui)

〈〈q1 ∧ q2〉〉t
i = x

q1,rq(t)
i ∧ x

q2,rq(t)
i
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〈〈q1 ∨ q2〉〉t
i = x

q1,rq(t)
i ∨ x

q2,rq(t)
i

〈〈♦q1〉〉t
i =

k−1∨

j=0

(
R(ui, uj) ∧ x

q1,rq(t)
j

)

where rq(t) = t if Ω(q) = 2 or Ω(q) is not defined, and rq(t) = t − 1 if Ω(q) = 1.
For t = 0, we will constrain xq,0

i → false (or just substitute false where the
indicator appears).

The optimizations for the previous encoding can be applied here as well. The
encoding can be further optimized for ECTL by exploiting the weak structure of
the automata along the lines of [8]. Also, although ECTL formulas with fairness
cannot always be described by automata that only assign the priorities 1 and 2, it
is not difficult to extend the encoding for ECTL to handle fairness, by imitating
the way a symbolic model-checker for ECTL handles fairness constraints.

Theorem 3. Given a Kripke structure M and a ♦-automaton A, the formulas
generated by the encodings of Sections 3.1 and 3.2 are satisfiable iff there exists
a proof Π = (I, ρ) showing that M satisfies A that contains k states; that is,∣∣∣
⋃

q∈Q Iq

∣∣∣ = k.

4 A Dynamic Completeness Criterion

Both encodings presented in the previous section provide a way to determine
when a Kripke structure does not satisfy a �-automaton A: construct the com-
plement A¬ for A, choose a bound k, and if a SAT solver returns a satisfying
assignment for PRFM,A¬,k then M does not satisfy A. For some formulas there
is a known completeness threshold, which is a bound on the number of states
(usually the length of a path) necessary to disprove the formula. However, the
completeness threshold usually depends on both the formula and the model, and
in practice it is difficult to compute. Following [16], we are interested in a dy-
namic completeness criterion: a formula CMPM,A,k that is satisfiable while there
is still hope of finding a counter-example, and that becomes unsatisfiable when
there is none. Essentially, CMPM,A,k should encode the fact that it is possible
to arrange k states so that they form a “beginning” of a proof that might be
extended into a valid proof by adding more states.

To see how CMPM,A,k should be constructed, consider the situation where
we have not found a proof when the bound is k, but there exists a proof Π
with k′ > k states. Now let Π ′ be an invalid proof constructed by taking k
states of Π , including s0, and using the invariants and ranks of Π restricted
to these k states. It is easy to see that in Π ′, the Initiality and Consistency
obligations are satisfied. For automaton states q ∈ Q \ Q♦, the Invariance and
Progress requirements are satisfied as well. However, Π ′ must violate some proof
obligations, because there is no valid proof of size k. The obligations that are
violated are Invariance and Progress obligations for states q ∈ Q♦ that have
♦-transitions, and the reason they are violated in Π ′ is that they rely on some
of the states that appear in Π but not in Π ′.
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We would like to identify situations where no proof fragment Π ′ matching
this description exists, and therefore CMPM,A,k will encode these requirements:

– Initiality.
– For automaton states q ∈ Q \ Q♦, Invariance and Progress.
– For automaton states q ∈ Q♦, a weakened version of Invariance and Progress,

where the successor required by the obligation for q with δ(q) = ♦q1 is not
required to be in the invariant for q1 unless it is one of the states u0, . . . , uk−1.
This allows the successor to be a new unconstrained state, required only to
be distinct from the regular proof states.

The weakened Invariance and Progress requirement identifies cases where adding
more states to the proof may yield a valid proof. Assuming the encoding of
Section 3.1 with proof successors encoded explicitly, the weakened requirement
is given by

〈〈♦q1〉〉W
i = R(ui, t

q
i ) ∧

k−1∧

j=0

(
tqi = uj →

(
xq1

j ∧ LTq(ρ
q1
j , ρq

i )
))

where tqi is the successor required by q ∈ Q♦ that has δ(q) = ♦q1 for ui. Violated
Invariance and Progress requirements for states that do not have a ♦-transition
cannot be satisfied directly by adding more states, so they are left unchanged:
〈〈δ(q)〉〉W

i = 〈〈δ(q)〉〉i for all q ∈ Q \ Q♦.
Additionally, we would like to constrain the SAT solver to use the k proof

states “constructively”, otherwise a satisfying assignment might encode, e.g., k
unreachable states, and satisfy all their proof obligations by adding new and
unconstrained states. To this end we will require that all k proof states be
distinct from each other, and also that each state except s0 (represented by
u0) be a proof-successor for some state. This constrains satisfying assignments
to encode only “proof-reachable” states — states that are reachable from s0 by
a path in which each state is a proof-successor for the state preceding it.

The formula that encodes all these requirements is given by

CMP1
M,A,k =I(u0) ∧ xq0

0 ∧
k−1∧

i=0

∧

q∈Q

xq
i → 〈〈δ(q)〉〉W

i ∧
∧

i�=j

ui �= uj∧

∧
k−1∧

i=1

⎛

⎝
k−1∨

j=0

∨

q∈Q♦

ui = tqj ∧ xq
j

⎞

⎠

Theorem 4. If there exists a proof for the fact that M satisfies A with k′ ≥ k
states, then CMP1

M,A,k is satisfiable.

The scheme for using the dynamic completeness criterion is shown in Alg. 1,
which takes as input a ♦-automaton A and a structure M . For a �-automaton
one constructs the complement, calls the algorithm and returns the opposite
answer.
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Algorithm 1. BMC using the dynamic completeness criterion
for k = 1 to |S| do

if PRF1′
M,A,k is satisfiable then

return M |= A
else if CMP1

M,A,k is not satisfiable then
return M �|= A

end if
end for
return M �|= A

5 Related Work

Many BMC encodings have been suggested for linear-time logics of increasing
complexity, among them [7], which handles LTL with past, and [10] and [8], which
handle all ω-regular properties. In particular, [10] and [8] apply ideas from the
world of symbolic model-checking for branching-time logic to BMC for linear-
time. Here we apply similar ideas in their original context of model-checking for
branching-time logic.

The first BMC scheme for a branching-time logic, ACTL, was suggested in
[14]. This scheme works by explicitly encoding a computation tree of depth k
which does not satisfy the formula. Instead of encoding a full tree, it bounds the
number of paths needed, based on the structure of the formula. The number of
paths is exponential in the nesting depth of the formula (in the worst case).

A more general approach was suggested by Wang in [16], in which the existence
of a bounded-depth proof for the negation of a universal μ-calculus property is
encoded as a SAT problem. The approach is somewhat similar to ours, but [16]
relies on Stirling’s local proof rules [15], which keep track of all the states visited
along each proof branch, and require directly that the branch be acyclic (for a
least fixpoint) or cyclic (for a greatest fixpoint). Different branches of the proof
share no information, and a single model state can appear many times in the
proof tree.

The encoding of [16] is simple and elegant, but encoding the proof as a tree-
like structure allows no sharing of information between different branches of the
proof. The disadvantage becomes more acute for complicated formulas, where
the proof tree contains many nested subgoals, each of which needs to be justified
separately. For disjunction, the encoding of [16] unrolls two separate subproofs,
even though only one of the goals needs to be satisfied; for example, to show
that EFp ∨ EFq holds (“there exists a path on which we eventually reach p or
a path on which we eventually reach q”), two separate paths will be unrolled.
In contrast, our encoding enables maximal sharing of information: a model state
need never be encoded more than once, and information about the automaton
states it satisfies can be used to justify many different subgoals.

The number of variables used in the encoding of [16] increases exponentially
with the bound in the worst case for universal μ-calculus properties, and poly-
nomially for ACTL formulas, with the exponent being the nesting depth of
temporal operators in the formula; when the bound increases by one, a full layer
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is added to the proof tree. Our encoding allows finer control. Although in the
worst case it may need to encode the same number of states as the encoding of
[16], it can often terminate with a smaller bound and smaller counter-examples.
It is not possible to obtain a minimal counter-example from a satisfying assign-
ment to the formula generated in [16], and it is also not possible to determine
which parts of the structure returned are relevant to the proof (for example, in
the case of conjunction, it is not possible to tell which conjunct was disproved).
The bounds used in our encoding and in [16] are incomparable: our bound rep-
resents the exact number of states in the counter-example, while the bound in
[16] represents the depth of the proof tree. Either method may terminate with
a smaller bound than the other.

In [12] it is shown how to solve parity games through a reduction to SAT. This
work is closely related to our own, since parity games are equivalent to μ-calculus
and to alternating parity tree automata; [12] also uses ranks in a manner similar
to ours. However, the encoding of [12] assumes that an explicit representation
of the gameboard, which is difficult to compute for the model checking problem,
since it means computing the product of the model and the automaton. Also,
the encoding represents the entire gameboard at once, and therefore it does not
lend itself immediately to bounded model checking.

6 Experimental Results

We implemented an ACTL version of our encodings and Wang’s encoding from
[16] in the NuSMV2 framework [2], and tested their performance on a 3GHz Pen-
tium 4 with 4GB memory, using the ZChaff SAT solver. We used random Kripke
structures with 100 states each, and random formulas that were not satisfied in
the models. The formulas were of nesting depth 2 – 5 of the temporal operators
AF , AG and AU . We used a maximal bound of 20, which was never reached
in our experiments, and a timeout of 5 minutes. The simplified encoding from
Section 3.2 greatly outperformed the general encoding of Section 3.1, probably
owing to our naive implementation of ranks, and we present results only for the
simplified encoding. Our results for 500 formulas for each nesting depth from 2
to 4 are summarized in Fig. 2 and Table 1.
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(c) Nesting depth 4

Fig. 2. Total SAT runtimes for disproving ACTL formulas of nesting depth 2 – 4
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Table 1. Success rate in disproving ACTL formulas of nesting depth 2 – 5

Nesting depth 2 Nesting depth 3 Nesting depth 4 Nesting depth 5
Wang’s encoding 100% 99% 84% 76%
New encoding 98% 97% 95% 94%

For nesting depth 2, the encoding of [16] performs better than our encoding
(Fig. 2(a)). For nesting depth 3 (Fig. 2(b)) the encodings perform roughly the
same, and for nesting depth 4 or greater our encoding performs better than the
encoding of [16] (Fig. 2(c)). The counter-examples found by our encoding were
generally very small (10 states or less), and the depth of the proof tree encoded
in Wang’s encoding was often larger. The counter-examples returned by Wang’s
encoding were larger by an order of magnitude than the examples returned by
our encoding for all nesting depths.

7 Conclusion

We have presented a novel approach to bounded model-checking for branching-
time logics. We showed two encodings, together with a dynamic termination
criterion, which can be used to both prove and disprove specifications in universal
or existential branching-time logic. Our experimental results show that for ACTL
formulas with a large nesting depth, our encodings perform better than the
previous encoding of Wang. We believe that these results will extend to ACTL
with fairness and to general μ-calculus formulas.

The approach presented here is applicable to many logics, from ACTL to μ-
calculus, and can be extended to use different types of automata as specifications,
using ranking functions to represent different acceptance conditions. The use of
ranks can also be applied to BMC in linear-time logics, for example by modify-
ing the encoding of [8] for weak alternating Büchi word automata, resulting in
encodings that use fewer variables; however, it is not clear that performance will
be improved.

The formulas generated in our encodings, and particularly the dynamic com-
pleteness criterion, share most of their constraints with the formulas generated
in previous iterations. This makes them suitable for incremental SAT, where
conflict clauses learned in previous calls to the SAT solver are re-used to help
solve the next instance. Performance may also be improved by using encodings
of ranks optimized for SAT, developed in the context of termination checking
(e.g., [5]).
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