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Abstract. We study problems of data aggregation, such as approxiroatginog
and computing the minimum input value, in synchronous dé@aetworks with
bounded message bandwidbth= 2(log n). In undirected networks of diameter
D, many such problems can easily be solvedifD) rounds, using)(log n)-
size messages. We show that for directed networks this iheatase: when the
bandwidth B is small, several classical data aggregation problems adirae
complexity that depends polynomially on the size of the oekweven when the
diameter of the network is constant. We show that computimngapproximation
to the sizen of the network require$?(min {n, 1/¢*} /B) rounds, even in net-
works of diameter 2. We also show that computing a sensitivetfon (e.qg.,
minimum and maximum) require€(+/n/B) rounds in networks of diameter
2, provided that the diameter i®t known in advance to be o(1/n/B). Our
lower bounds are established by reduction from several-kvelivn problems
in communication complexity. On the positive side, we givaearly optimal
O(D + \/n/B)-round algorithm for computing simple sensitive functiaising
messages of sizB = 2(log N), whereN is a loose upper bound on the size of
the network andD is the diameter.

1 Introduction

Consider a wireless network comprising two base statisassimitting at high power,
and an unknown number of client devices which communicalg with the base sta-
tions. The base stations are received at all devices, aidotiant device is received by
at least one base station. However, due to power constrietslients are not neces-
sarily received at both stations. The bandwidth of each bidi®n is limited, allowing
it to send only a certain numbé&r of bits per timeslot. How many timeslots are required
for the base stations to determine the approximate numbarenits? In this paper we
study this problem, and other data aggregation problendirécted networks, where
communication is not necessarily bidirectional.

Data aggregation tasks are central to many distribute@msysstfor example, a peer-
to-peer network might require information about the nunddalients that have a local
copy of a file, and a sensor network might need to verify thaammmalous reading
was detected by a certain percentage of sensors befordingpitrWith the increasing
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availability of dynamic, large-scale distributed systeeficient data aggregation has
become a particularly interesting challenge.

Classically, data aggregation has been studied in netwatksbidirectional com-
munication links. In this setting the method of choice is tstfconstruct a spanning
tree of the network graph, and then perform distributed dgtgegation “up the tree”.
In a synchronous undirected network, if computation igatéid by some node, a global
broadcast starting at the initiating node induces a brefidtihsearch spanning tree of
the network. Basic aggregation functions, such as the mimipmmaximum, sum, or
average of values distributed across the nodes of the systamthen efficiently be
computed by a simple convergecast on the tree. Even whenaksage bandwidth is
quite restricted (e.g., if only a constant number of datagiean be sentin a single mes-
sage), this method allows any of the functions above to bepcted inO(D) rounds
in networks of diameteP. Network properties such as the size of the network and the
diameterD itself can also be determined (D) time using small messages. In fact,
in [1] Awerbuch observes that computing certain aggregdtioctions and computing
a spanning tree are intimately related problems, whosedimdemessage complexities
are within constant factors of each other. This makes tharspg-tree/convergecast
approach a canonical solution of sorts.

The situation changes significantly when communicatiortsnecessarily bidirec-
tional. Constructing a rooted directed spanning tree besomuch more challenging,
as it is much harder for the sender of a message to obtaindekdiom the recipients,
or even to determine who are the recipients. In this paperhee shat in contrast to
undirected networks, in directed networks with restridiaddwidth it is not always de-
sirable to aggregate data by first computing a rooted spgriree; for some functions,
such as minimum and maximum, it is faster to compute the agdedy other means.
Moreover, we show that the time complexity of computing agragate with restricted
bandwidth is not governed by the diameter of the networkegldor small-diameter
networks, the time complexity of computing certain aggteg#s dominated by a fac-
tor polynomial inn, the size of the network. We are particularly interestedhandffect
of initial knowledge, i.e., whether or not the problem becomes easier if parassteh
as the size or diameter of the network are known in advance.

The paper is organized as follows. In Section 2 we discuasagwork. In Section 3
we introduce the model and problems studied in the paperranew several results
in communication complexity that form the basis for our loweunds. In Section 4
we consider the problems of exact and approximate countvhgn the diameter of
the network is known to be 2; we show that computingeaapproximate count with
constant probability require€(min {n,1/¢*} /B) rounds whereB is the message
bandwidth. Our lower bound implies that computing a roofgathsiing tree in networks
of diameter 2 require®(n/B) rounds.

In Section 5 we turn our attention to computing sensitivecfioms in networks of
unknown diameter. Informally, a function ggobally sensitive if its value depends on
all the inputs, and-sensitive if its value depends on a#fraction of inputs. In undi-
rected networks, or even in directed networks of known diamP, some globally-
sensitive functions can be computediD) time with only single-bit messages. We
show that for directed networks aihknown diameter the picture is quite different:
2(y/n/B) rounds are required, even when the diameter of the netwdklsit this



fact is not known in advance). This lower bounds holds fodmmized computation
of any globally-sensitive function and for deterministangputation of any-sensitive
function wheree € (0,1/2). The lower bound holds even when the sizef the net-
work is known in advance and the UID spacé |s. ., n.

Finally, in Section 5.2 we give a randomized algorithm far glnoblem of determin-
ing when a node has been causally influenced by all nodes grépd. This condition
is necessary to compute a globally-sensitive function, sufticient to compute sim-
ple functions such as minimum or maximum. The algorithm esD + O(y/n/B)
rounds w.h.p., nearly matching our lower bound. For lackpafcge, some of the proofs
are omitted here, and appear in the full version of this paper

2 Background and Related Work

Distributed data aggregation and spanning tree computation. Early work on these
problems was concerned with thefessage complexity, that is, the total number of
messages sent by all processes, as well as their time coitgplexerbuch observed
in [1] that in undirected networks, the message and time dexitp of leader election,
computing a distributive sensitive function (e.g., minimer maximum) and count-
ing are all within a constant factor of the complexity of fingia spanning tree in the
network. It is also shown in, e.g., [1, 3] that the time comfileof these problems in
undirected networks i®(n) and the message complexityé¥m + nlogn) in net-
works of sizen with m edges. However, th€(n) lower bound is obtained in networks
of diameter2(n), and the message complexity lower bound does not yield amaoal
bound in our model. In a synchronous undirected network afndterD edges, it is
possible to construct a breadth-first search spanningitré¥ D) rounds, even if the
diameter and size of the network are not known in advanceddsich a tree, functions
such as minimum, maximum, sum, or average can all be computiete O (D). Based
on a pre-computed spanning tree, researchers have alsde@usthe computation of
more complicated functions such as the median or the mo&12, 13, 15-17].

Communication complexity. A two-player communication game involves two players,
Alice and Bob, which are given private inputsy and must compute some joint func-
tion of their inputs,f(x, y). In order to computg the players communicate over sev-
eral rounds, and are charged for the total number of bitsangéd. Theleterministic
communication complexity of f is the worst-case number of bits exchanged in any de-
terministic protocol for computing’. The randomized communication complexity is
defined similarly; in the current paper we are interestedaimdlomized protocols that
err with constant probability.

Communication complexity lower bounds are often used t@iobbwer bounds
in distributed computing. The textbook reduction techeidsee [10]) partitions the
network into two parts, such that the total bandwidth of thges crossing the cut
is small. Any distributed algorithm can be simulated by hgveach player locally
simulate the nodes on one side of the cut; the players negdsent each other those
messages of the algorithm that cross the cut, so the comatioriccomplexity of the
resulting protocol is determined by the round complexityhaf distributed algorithm
and the bandwidth crossing the cut. For example, in [13]tddlnique is used to bound
the round complexity of finding the number of distinct elertsan the input.



The reductions we give in this paper differ from the cladsiggproach; instead of
partitioning the network, we have the players simulate disint sets of nodes, and
the neighborhoods of some nodes are affected by both plagprds. Nevertheless,
we ensure that the players can still independently simutetst of the network nodes
without communicating with each other about the states esémodes, otherwise the
communication complexity of the resulting protocol will tuo large.

3 Preliminaries

Network model. We model a synchronous directed network as a strongly coedeé
rected grapte; = (V, E), whereE C V2. We useN¢(v) = {u € V | dist(u,v) < d}
to denote thel-in-neighborhood of v, that is, the set of nodes whose distance o at
mostd. Nodes communicate by local broadcast: in each round, exaslgv sends a
single message of size at mdstwhereB = {2(logn), and this message is delivered
to all nodesv such that(u,v) € E. (Each node does not know which nodes receive
its message, i.e., it does not know its set of out-neighp@/s.assume that nodes and
communication links are reliable and do not fail during an@xion.

In the sequel we often refer to algorithms whose correctiessily guaranteed
in networks that satisfy some fixed bound on the size or dianadtthe network. In
this case we say that the bounckizown a priori (or known in advance). Our lower
bounds assume that each node has a unique identifier (UIRndram some UID
spacel, ..., N, whereN is an upper bound on the size of the network that is known in
advance. For convenience, we assume the existence of ttuogdished UIDsa, b ¢
[N]; our reductions “embed” the two players in the graph as nadeslb respectively.
Some of our lower bounds allow for the case whare= n, i.e., the exact size of the
network is known to all nodes and the UID space,is. ., n. In contrast, the algorithm
in Section 5.2 requires only a loose upper boid n and does not use UIDs at all.

Problem statements. We are interested in the following distributed problems.

— e-approximate counting: nodes are initially provided with some loose upper bound
N on the sizen of the network, and each nodemust eventually output an approx-
imate countz, satisfying|n, — n| < e-n.

— Computingglobally-sensitive functions of the input: a function is said to lgob-
ally sengitive if there exists an input assignmentsuch that changing any single
coordinate ofr yields a different function value. For example, the all-omeut
assignment witnesses the global sensitivity of computingramum.

— Computinge-sensitive functions of the input: a function issensitive if there is an
input assignment such that changing arnjyn] coordinates of yields a different
function value. For example, the function that returns atifeast 25% of the inputs
are 1is(1/4)-sensitive, as witnessed by the all-zero input assignment.

Communication complexity lower bounds. Our results rely on several celebrated lower
bounds in communication complexity. Perhaps the best knowar bound concerns
the Set Disjointness problem, €3, in which the players are given sel§ Y C [n]
(respectively) and must determine whethen Y = (.

Theorem 1 ([5, 14]).The randomized communication complexity of DiSJ, is 2(n).



We are also interested in a relaxed variant called Gap S@ibtisess, GQP-DisJ, 4
here the players are given séfsY C [n], with thepromise that eitherX NY = () or

|X NY| > g. The players must determine which of these cases holds. \tfieegap

g is large with respect ta, GAP-DIsJ, , is quite easy for randomized algorithms (one
can use random sampling to find an element of the interseittiis large). However,
for deterministic protocols the problem remains hard eviéh alinear gap. (This fact
appears to be folklore in the communication complexity camity; we include a proof
in the full version of this paper.)

Theorem 2. For any constant e € (0, 1/2), the deter ministic communication complex-
ity of GAP-DISJ, (1/2—e)n 1S £2(n).

The final problem is @GP-HAMMING -DISTANCE, denoted GHL) ,, where the
players receive vectots y € {0,1}" and must determine whether the Hamming dis-
tanceA(x, y) satisfiesA(z,y) > n/2 + g or whetherA(z,y) < n/2 — g. (If neither
holds, any answer is allowed.) Characterizing the randediommunication complex-
ity of GHD remained an open problem for a long time after itsdduction in [4] (for
the casegy = /n, which is in some sense the most interesting setting), im{i],
Chakrabarti and Regev proved the following lower bound.

Theorem 3 ([2]).For any g < n, therandomized communication complexity of GHD,, ,
is 2(min {n,n?/g?}).

The reductions in this paper apablic-coin protocols: they assume that Alice and
Bob have access to a shared random string (of unboundedh)eiigie lower bounds
above are stated farivate-coin protocols, where each player has its own private ran-
domness. However, any public-coin protocol can be transfdrinto a private-coin
protocol at the cost aP (log n) additional bits [10], so the distinction is mostly imma-
terial for our purposes.

4 Approximate and Exact Counting

We begin by describing a lower bound feapproximate counting or exact counting. In
this setting we assume that nodes know some loose upper Bound. on the size of
the network, and must determine the exact or approximage Since exact counting is
a special case of approximate counting, we describe therloand for approximate
counting, and later discuss exact counting.

The lower bound is obtained by reduction from GKPy. Suppose we are given
an e-approximate counting algorithmd. Given an instancéz, y) of GHDy v, We
construct a networks,, ,,, in which Alice and Bob jointly simulate the execution.df
WhenA terminates, Alice and Bob use the outputdfo determine the correct answer
to GHD on the instancer, y). Since Alice knows only her inputand Bob knows only
y, neither player knows the complete topology of the netw@gk,, which depends on
bothx andy. The players therefore cooperate to simulate the execafighin G, ,,.

Let X, Y C [N] be the sets whose characteristic vectorsiaaedy, respectively.
The networkG,, , is given byG,. , = (V, 4, Ex ), WhereV, , = X UY U {a, b} (for
a,b & [N]),andE, , = ({a} x V) U ({b} x V) U (X x {a}) U (Y x {b}). See
Fig. 1 for an illustration.



Fig. 1. The networkG,,, for x = 110000100,y = 010100101 (i.e., X = {1,2,7},Y =
{2,4,7,9})

The Hamming distancé(z, y) is closely related to the size 6f, ,:

Lemma 1. For all (z,y) € ({0, l}N)Q,thegraph G,y isstrongly connected, its diam-
eter is2, anditssizeis |V, | = (||z|, + [|yll; + A(z,v))/2 + 2.

Next we show that an efficient algorithm for approximating #lize of diameter 2 net-
works leads to an efficient protocol for GHR .

Lemma 2. Given an e-approximate counting algorithm .4 which outputs a correct an-
swer after ¢ rounds with probability at least 1 — ¢, one can construct a public-coin
protocol for GHDy . n Which exchanges a total of O(Bt + log N) bits and succeeds
with probability 1 — 6.

Proof. Given an instancéz, y), Alice and Bob simulate the execution @f in G,
as follows. Alice locally simulates the nodes ¥ U {a}, and Bob locally simulates
the nodes int” U {b}. The shared random string is used to provide the randomness
of all nodes in the network. (Since Alice and Bob do not itigi&know which of the
nodes{1,..., N} are present, we interpret the shared random string as corgahe
randomness of each node . ., N regardless of whether or not the node iskinu Y'.)
Notice that there can be some overld,N Y, which is simulated by both players
independently.

The initial states of all nodes i U{a} and inY U{b} are known to Alice and Bob,
respectively, because they depend only on the UIDs of thedesand on the shared
randomness. Each round dfis simulated as follows:

— Based on the states of their local simulations, Alice and Bwhpute the messages
sent by the nodes iX U {a} and inY U {b}, respectively.

— Alice sends to Bob the message sent by nadend Bob sends to Alice the message
sent byb. Following this exchange, Alice and Bob have all the messageeived
by each node they need to simulate.

— The players update the states of their local simulationebygihg to each node the
messages it receives @, ,,: the nodes ofX U Y receive the messages sentdy
andb; nodea receives the messages sent by nodes in {b}; and node receives
the messages sent by noded'inv {a}. (Note that Alice knowsX and Bob knows
Y, so the two players know which messages are supposed todiee@dy nodes
a, b, respectively.)

Although Alice and Bob do not directly exchange informatadyout the states of nodes
in XNY —indeed, they do ndnow which nodes are itX NY, and this is what makes
the problem difficult — still their local simulations agree the states of these nodes.



With probability at leasti — §, after¢ rounds of the simulation node halts and
outputs an approximate coufitwhich satisfie§n — n| < en. When noden halts,
Alice sendsn to Bob, and in addition Alice and Bob send each otéf = ||z||, and
Y| = |ly||, (respectively). LetA = 2(7 — 2) — ||z||, — ||y||,. Both players output O if
A < N/2,and 1ifA > N/2. (If nodea fails to halt aftert rounds, the players output
an arbitrary answer.)

If |2 — n| < en then Lemma 1 shows thaf\ — A(z,y)| = 2|7 — n| < 2en <
2eN. Hence, with probability at leadt — §, the players output the correct answer: if
A(z,y) > N/2 4 2N thenA > N/2,and if A(x,y) < N/2 — 2¢N thenA < N/2.

The total number of bits sent during the protocd 8t + 2 log(N). In addition, to
transform the protocol into a private-coin protocol we rieg® (log V) additional bits.
The communication complexity is therefaf¥ Bt + log V). O

Although our reduction is stated in terms of the upper boddwe reduce from
GHDy n), the “hard” instances are the ones wherés roughly linear inNV; it is
always possible to solve GHD by exchanging the coordinatesdices: such that
x; = 1 ory; = 1, and hence whejiX U Y| = n the problem can easily be solved in
O(nlog N) bits. It is therefore more informative to state our lower bdin terms of
the actual sizer of the network. From Theorem 3 and the reduction above, wairobt
the following lower bound.

Theorem 4. If B = (2(log N), arandomized algorithmfor computing an e-approximate
count requires £2((min {n,1/¢?} /B) rounds to succeed with probability 2/3 in net-
works of diameter 2.

Remarks. The deterministic communication complexity of GHR , is £2(N) even
wheng = ¢ - N for a sufficiently small constant [2]; therefore deterministically
computing are-approximate count for a sufficiently small constant requiréXn/B)
rounds. As folexact counting (deterministic or randomized), computing theotgaunt
is as hard as computing(&/n)-approximate count, s€(n/B) rounds are required.

The lower bound of Theorem 4 is nearly tight if the diametethed network is
known. An algorithm foe-approximate counting is given in [11]; the algorithm of [11
sends messages containing real numbers, but using a rgusaiame to bound the size
of messages (see [9]), one obtainsfD + min {n,1/¢*} /B)-round algorithm for
networks of known diametdp. For the case where the diameter is unknown, we obtain
a stronger lower bound in the next section.

Finally, the reduction from Lemma 2 also shows that finding@ed spanning tree
in directed networks is hard even when the diameter of thear&tis knowna priori to
be 2. In the networks, ,,, the nodes o UY" are not connected to each other; therefore
any rooted spanning tree 6f, , has diameter at most 3, as each nod&'ef ¥ except
possibly the root must have eitheror b as its parent in the tree. If one can find a
rooted spanning tree @, ,, in ¢ rounds, then an exact count can be computedtirs
rounds by finding such a tree and then “summing up the tregivi@gecast). Since
exact counting requireQ(n/B) rounds, so does computing a rooted spanning tree. In
the full version of this paper we show that this lower boundtswes to hold when the
size of the network is knowa priori, provided that the UID space is of size at least
(1 4 ¢)n for some arbitrarily small constant



5 Computing Sensitive Functions

In this section we study the complexity of computing semsifunctions, such as the
minimum or maximum input value. In contrast to the previoast®n, here we are
interested in instances where the diameter of the netwanktiknowna priori to be
small, but the algorithm is deployed in a network tlaes in practice have a small
diameter. We will show that in such cases it is not possibéxfdoit the small diameter
of the network; the worst-case running time of the algorithost be2(D + /n/B).
We also give a nearly-matching algorithm for computing dergensitive functions.

Let f be a globally-sensitive function, and lebe an input assignment under which
changing any node’s input changes the valug ¢ite., for allj # = we havef(z) #
f(@)). In any execution where the inputisat timet, a nodev can only know the value
of fif Nt(v) = V, that s, ift rounds are sufficient for a message from any node in
the network to reach node otherwise there is some node whose input nedannot
know at timet, and this node’s input may determine the valuefoSimilarly, if f is
e-sensitive, there exists an input assignment under whiahmagke can know the value
of f at timet unless|Nt(v)| > (1 — ¢)n. This motivates us to study the following
problem:

Definition 1 (Hearing from m nodes).In the Hear-fromsn-nodesproblem, denoted
HF,,, each node v in the network must halt at some time ¢ such that [Nt (v)| > m.

The worst-case time complexity of computing a globallysstve function is at least
the worst-case time complexity of solving HFand similarly fore-sensitive functions
and HR;_.),. (In fact, computing are-sensitive function can require hearing from
strictly more than(1 — ¢)n nodes.) Of course, Hfcan easily be solved by having all
nodes wait until timex — 1; however, we are interested here in efficient solutions¢tvhi
terminate faster in networks with smaller diameter (red¢aivever, that the diameter is
not known in advance).

5.1 Lower Bounds on Computing a Sensitive Function

In this section we show that even when the diameter of thear&tis 2, learning that
the diameter is 2 requirg3(,/n/B) rounds in the worst case. More formally, we show
that when the size of the network is known, the UID spack is., n, and noa priori
bound on the diameter is known,

(a) Any randomized algorithm for HFrequiresf2(,/n/B) rounds to succeed with
constant probability, even when executed in a network ahdigr 2; and

(b) Foranye € (0,1/2), any deterministic algorithm for HF_,),, requires2(y/n/B)
rounds, again when executed in networks of diameter 2.

(Of course, in networks of diameter 2 we hd¥€* (v)| = n for all nodesv, sot = 2 is
sufficient; however, this fact is not known to the algorithmadvance.)

Fix an algorithmA for HF,,, and a network size > m. We describe a reduction
from Set Disjointness or Gap Set Disjointness, which wewsg# to show both the hard-
ness of HF, for randomized algorithms and the hardness of HE,, for deterministic
algorithms.



As in Section 4, in the reduction we construct a netw@rkased on the instance of
Set Disjointness given to Alice and Bob. The two players thiemulate the execution
of Ain G, and output an answer to Set Disjointness (or Gap Set Digjess) based on
the behavior of4 in G — in this case, based on the time whdrterminates. We now
describe the construction of the network and the simulatg®ed by Alice and Bob.

The construction has several parameters. First,Jdte the number of rounds such
that whenA is executed in a network of sizewith node UIDsl, ..., n, a, b (as before
we add UlDsa, b for convenience), with probability at least3 all nodes halt by time
t 4. Based ort 4 and onm, we choose aegment length s > ¢ 4 + 1 which will be fixed
later. Informally, in the reduction nodes must distingutBameter 2 networks from
diameters + 2, and we will show that this requirg8(n/s) rounds in the worst-case.

Assume for simplicity that dividesn. We divide the nodes, . . ., n into segments
S1,...,8n/s, €ach of sizes, whereS; := {(i —1)-s+1,(i —1)-s4+2,...,i-s}.
Each segment; is further subdivided into two parts:mack end SZ containing nodes
(i—1)---+1,...,i-s—tu, and afront-end S containing the remaining nodes,
i-s—taqa+1,...,i-s. Inthe sequel we implicitly use wrap-around (i.eapd n
arithmetic) for node indices, so thatl = n, —2 =n — 1, and so on.

We are now ready to describe the reduction itself. The réolues from DisJ, /,
that is, Set Disjointness (or Gap Set Disjointness) with werse ofn/s elements;
each segmerfi; represents a single element of the universe. Given an cestany) of
Disy, /s, we define a networks, . , := ({1,...,n,a,b}, E, . ,) (See Fig. 2), where
Nodesa, b have edges to all nodes of the graph.

Nodesl, ..., n are connected in a directed cycle: for each [n] we have(i, i +
1) € Espy-

In each segment;, the last node (nodé- s) is connected to node. (This is to
ensure strong connectivity and a boundef 2 on the diameter.)

Foralli ¢ X and for allv € S; we have(v,a) € E; , ,; similarly, for alli ¢ Y
and for allv € S; we have(v,b) € E; .

Here,X andY are the sets whose characteristic vectorscagerespectively.

Fig. 2. The networkGs ., from Thm. 5, withn = 12,t4 = 2, s = t 4+ 1 = 3. Edges fronu, b
to nodesl, . . ., 12 are omitted for clarity. The By instance shown here i¥ = {2,4},Y =
{1,2,3}. Since2 € X NY, all Sz nodes except the last (node 6) are not connectedoioto b.
Thereforet ¢ NtA(a), i.e., two rounds are not sufficient for nodeo hear from node 4.



With the exception of the last node in each segment (whiclwiays connected to
nodea), the nodes in segmes}; are connected to nodeiff Alice did not receivei
in her input, and connected to notldf Bob did not receive in his input. Therefore,

if there exists an elemeritin the intersection N Y = X UY, the nodes of the
corresponding segmeAt, with the exception of the last node, will not be connected to
either node: or nodeb. These nodes are only connected to the rest of the graph by the
cycleedgegi —1)-s+1— (i—1)-s+2— ... — i-s. Consequently the diameter
of the graph iss + 2 > t 4 in this case. It 4 rounds, nodes andb can only hear from
the lastt 4 nodes of segmerf;, i.e., only from the front-end?’; for each segmers;
such that € X NY, |SZ| = s — t4 nodes are missing frodv4 (a).

Onthe other hand, ik NY = () (or equivalentlyX UY = {1,...,n/s}), allnodes
in all segments are connected to either noae nodeb, and the diameter of the graph
is 2.

Lemma 3. For any z,y € {0,1}",

(a) Thegraph G .., isstrongly connected,

(b) Foralli € X NY andfor all v € SP wehavev ¢ Nt4(a) andv ¢ N*A(b),
(c) If X NY = 0, the diameter of G, , , is2, and

(d) IN*4(a)] <n—|XNY]|-(s—ta) (and similarly for b).

Alice and Bob simulate the execution dfin G, .. , in a slightly different manner
than in Lemma 2; here both players simulate nodes. , n regardless of the input in-
stance, and in addition Alice simulates nadend Bob simulates node The remainder
of the simulation is the same as in Lemma 2, and we omit thelsi&ire.

Proposition 1. Given inputs =z and y respectively, and a shared string representing
the randomness of all nodes, Alice and Bob can each simulate nodes {a, 1, ...,n} and
{b,1,...,n} (respectively) throughout rounds1, . . ., t 4 of theexecutionof Ain G, ; .

It remains only to put the pieces together to obtain the ¥alhg lower bounds.

Theorem 5. If the diameter of the network is not known initially, any randomized al-
gorithm for computing a globally-sensitive function requires 2(1/n/B) rounds with
probability at least 2/3 when executed in networks of diameter 2.

Proof. As explained above, it is sufficient to show the correspog8iound for HE,.

Fix an algorithmA, and lett 4 be defined as above. Fix a segment length of
t4 + 1 (so that the back-end of each segment contains exactly aied.no

Given an instancéz,y) of DisJ,/,, Alice and Bob jointly simulate the firsty
rounds in the execution ofl in G, , , as in Proposition 1. Aftet 4 rounds, Alice
informs Bob whether or not nodehas halted in the simulation. If nodehas halted,
the players outputX N'Y = (”; otherwise they outputX N'Y # ("

As we saw in Lemma 3, i NY = 0 then the diameter of/; , 1.,y iS 2, SO
with probability at leas®/3 all nodes halt aftet 4 rounds and Alice and Bob output
“XNY = (". Onthe other hand, i NY # @, then by timef 4 nodea has not heard
from all nodes, as Lemma 3 shows that atl€astt4)- | X NY| = | X NY]| > 0 nodes
are missing fromV’4 (a). Consequently, with probability at lea&t3, nodea does not
halt by timet_4 and the players outputX N'Y = ().



The total number of bits exchanged by the players in the pobdtabove is2B -
t4 + 1, because Alice and Bob only send each other the messagas tytpodes
a andb, plus one bit needed for Alice to inform Bob whether nadkas halted. An
additionalO(log(n/t 4)) bits are required to obtain a private-coin protocol. Sirfee t
randomized communication complexity of€|,, /¢ ,+1) IS 2(n/t4), we must have

2B -ta+ 1= 982(n/ta), orinotherwordst 4 = 2(y/n/B). O

Theorem 6. If the diameter of the network is initially unknown, any deterministic al-
gorithm for computing an e-sensitive function, where e € (0,1/2) is constant, requires
£2(y/n/ B) rounds when executed in networks of diameter 2.

Proof (sketch). We prove that?(./n/B) rounds are required to solve HE,), deter-
ministically for anye € (0, 1/2), even in networks of diameter 2. The proofis similar to
that of Thm. 5, except that we now reduce frommEDISJ| . /e /) fOr an appropri-
ately chosen constante (0,1/2), and the segment lengttis also chosen differently.
Fix a deterministic algorithrA for HF(;_,),,, and lett 4 be the maximal time at
which the algorithm halts in any network of diameter 2. We tmasv choose a segment
lengths = ©(t 4) so that the following conditions hold:
(@) If XNY = 0, then the diameter @ .., is 2. This ensures that in “yes” instances,
all nodes halt by time 4.
(b) If [ X NY| > €'|n/s| then we haveN4(a)| < (1 — €)(n + 2). This ensures that
in “no” instances, node cannot halt by timet 4.
These conditions suffice for the protocol from Thm. 5 to s@BP-DISJ|,, /5| e/ [n/s)
as well. From Lemma 3 we see that condition (a) holds regssdé our choice of.
As for condition (b), from part (d) of Lemma 3, it is sufficietit chooses := at 4, €
so that
n—¢ {LJ o= 1)tg < (1—e)(n+2).
at g
There exist constants > 1, ¢’ € (0, 1/2) satisfying this constraint (we omit the details
for lack of space). For this choice ef¢’, the reduction from Thm. 5 yields a protocol
with communication complexitg Bt 4 + 1 for GAP-DISJ, ¢/, Wheren’ = |n/s| =
O(n/t4). Because @Gp-DisJis linearly hard for deterministic protocols even when the
gap is linear in the universe size (Theorem 2), we must By + 1 = Q2(n/ta),

et = Q(/n/B). 0

Remarks. The construction in this section can be modified to show a &ated results.

In Theorems 5 and 6 we assumed that no upper bound on the dianfethe
network is known in advance. Suppose now that some upperchbuan the diam-
eter is known in advance. We can show that any randomizeditdgofor comput-
ing a globally-sensitive function, and any deterministigogithm for computing an

e-sensitive function foe € (0, 1/2), requiresf2(min {D, \/n/B}) rounds when exe-
cuted in networks of diameter 2.

To see this, observe that the diameteqf, , never exceeds + 2. Suppose that
D = o(y/n/B) and we are given an Hfalgorithm (or similarly, a deterministic
HF 1 _¢)n-algorithm)A with ¢ 4 < D —2.1fwe use asegmentlengthef=t4 +1 <
D—2,asin Thm. 5, the diameter upper bound is not violate@Jn .. For this choice of



s, the reduction from Thm. 5 allows us to solvesD),, |, where|n/s| > |n/(D—-2)],
using less tha(D — 2)B + 1 bits. We must havé(D — 2)B + 1 = 2(n/D), that s,
D = 2(y/n/B), contradicting our assumption thAt= o(/n/B).

Next, consider the problem of finding an approximate courgmthe diameter is
not known in advance. (Our lower bound from Section 4 allolae diameter to be
known in advance, but the following requires it to be unkngwret N be the best
upper bound known in advance on the count. We will show thatder to distinguish
a network of sizex from a network of sizeV, nodesz, b must solve a Set Disjointness
instance of sizé&(n/t 4), so that again 4 = {2(/n/B) rounds are required.

Recall that inG, ., the distance from any nodé— 1) - s + 1 wherei € X NY
to nodesa andb is s > t4. Thus, whenX N'Y # (), we can choose a node:=
(t—1)-s+1wherei € XNY, and “hide” nodes + 1, ..., N behind it, adding edges
from nodes: + 1,..., N tov and from nodeg, b to nodes» + 1,..., N. LetGy ,
be the resulting network. Since the distance from netlenodes:, b exceeds 4, and
the new nodes + 1,..., N are connected only to node t 4 rounds are insufficient
for nodesa, b to distinguishG, ;,, from G’S’I’y. Therefore, ifX NY # (), an algorithm
for distinguishing networks of size + 2 from networks of sizeV cannot terminate
by timet 4 in Gs ., (except with small probability). This is sufficient to cawut the
reduction from Thm. 5 exactly as before, obtaining2f,/n/B) lower bound on any
non-trivial approximation of the count.

5.2 A(D + O(y/n/B))-Round Algorithm for HF ,,

We now give an algorithm that solves Hn nearly-optimal time. If, for example, the
minimum input value heard so far is forwarded alongside teesages of our algorithm,
this allows nodes to compute the global minimum. The algaritioes not use UIDs,
and it only requires an polynomially loose upper bouh@> n on the count.

High-level overview of the algorithm. Initially, each node computes a sequence of in-
dependent Bernoulli variables, and stores the indiceseofdiniables that turned up one.
These indices are callédkens. The tokens are then forwarded throughout the network
by all nodes. If a node does not receive any new tokens forfeigmitly long period of
time, it concludes that it has heard from all nodes, and h#ltts waiting period is long
enough so that if at the enif the period we do not haw*(v) = V, then during the
waiting period the tokens of many new nodes are receivad bynd the probability that
none of these nodes generated a token that was not previoashn is very small.

Detailed description. Since nodes do not know the exact sizeve use exponentially-
increasing guesseX for k = [loglog N7, ..., [log N]. We refer to each value df
as alevel. On levelk, each node computés independent Bernoulli variables; with
Pr[X; = 1] = 1/2"+2, wherel;, = O(V/2* B) (the exact value will be fixed later). We
denote byL;, := Zle ¢; the total number of variables computed on levéls< k.

At the beginning of the algorithm, the indices of the var&sthat turned up one on
each level are collected in a s&bkens = {(k,7) | X\ = 1}. The tokens are ordered
lexicographically — first by level and then by index. Eachdnlkcan be represented
usinglogn + loglog N bits; for simplicity we assume that each message ca# fit



for k = [loglog N1, [loglog N| +1,...,[log N| do
Compute independeti}, ..., X * ~ Bernoulli(2~(v+2))
| last_update, 0

Tokens + {(k,i) € N* | X}, = 1}, Sent + 0

forr=1,2,...do

X + select thed smallest tokens iffokens \ Sent

broadcastX and setSent < Sent U X

receive token&” from neighbors

forall y = (k,i) € Y \ Tokens do Vk' > k : last_update,, + r

Tokens <— Tokens UY

if 3k : (| {(k,7) € Tokens}| < 20,/3) A (r — last_update, > 273) then halt

Algorithm 1: A (D + O(+/n/B))-round algorithm for HE;

tokens, that isB = S(logn + loglog N) whereg is an integer. Pseudocode for the
algorithm is given by Algorithm 1. In the sequel, tgt:= [Ly/f].

After generating an initial set of tokens, the tokens arsatisinated in batches gf
tokens each, with lower-level tokens taking precedence loigher-level tokens. Each
node halts as soon as on some leyelewer thar2¢, /3 tokens have been received in
total, and in the pastr;, = 2[ Ly /5] rounds no new token was received.

The algorithm relies opipelining [18] to quickly disseminate small tokens through-
out the network. Because we forward small tokens beforelangs, the progress of a
token(k, i) can only be impeded by tokens on its own levgldr lower levels ' < k);
there are at most;, = Ele £; such tokens, an@ of them can be sent per message.
Thus the “latency” of tokerik, ) is at most[ L, /S| = 7. More formally, for a set
S C V of nodes, letd(S) := U,cq {(k.4) | (k,i) € Tokens,(0)} be the levelk
tokens generated by the nodes%flLet Tokens, (t) stand for the value of the local
variable Tokens at nodev and timet. The latency of levek tokens is bounded by the
following lemma.

Lemma4. Forallv e Vandt > 7, Ax(N'"7(v)) C Tokens,(t) C A(N*(v)).

We can now bound the round complexity of the algorithm in eohthe “correct”
value ofk, which is roughlylog(n).

Lemma 5. Let k& := min {[loglog N1, [logn]}. In graphs of diameter D, the algo-
rithm terminatesin D + 3[L; /3] rounds with probability at least 1 — e ~%+/°.

Proof (sketch). It is not difficult to show that the expected number of lekeaiokens
generated by all the nodes together is at igss. A Chernoff bound shows that w.h.p.,
the total number of levet-tokens does not exce¢d/3)(;, so the second part of the

termination condition is satisfied fér= k. For the first part of the condition we rely on
pipelining: Lemma 4 shows that; (N? (v)) C Tokens, (D + 1) for all nodes; since
NP(v) = V, attime D + 7, each node has already received all tokens generated
anywhere in the network. After this time no node can receiwergew tokens, so all
nodes halt no later than tim®e + 37. O



Next we show that w.h.p., nodes do not halt before they haaedHeom alln nodes.

Lemma 6. If the level-k termination condition holds at node v at time ¢, then with
probability at least 1 — e =44/ (32""?8) we have N't(v) = V.

Proof (sketch). The level% termination condition asserts that no new lexdbkens

are received during the time intervidl — 27, ¢]. Assume thatVt(v) # V, and set

S = Nt=27(v), S’ := N'="(v). From Lemma 4 we see that

(@) Ar(S") C Tokens,(t), that is, all tokens generated by the nodes$oére known
to v at timet; and

(b) Tokens,(t—27;;) C Ar(S),1.e., attime—27; nodev only knows tokens generated
by the nodes of.

Since no new tokens were addedfokens, between time — 27, and timet, we must

haveA,(S’) = Ak (S); in other words, the nodes 6f \ S did not generate any tokens

that were not already generated by the nodeS. /e will show that this is unlikely.
From the levelk termination criterion, at least; /3 tokens were not generated

by the nodes of5S. Each of these tokens is generated by each nod# §fS with

probability 1/2%+2. Because we assumed thiit(v) # V' and the graph is strongly

connected|S’ \ S| > 7. Hence, for each toke(k,i) ¢ Ax(S), we can show that

Pr[(k,i) € Ax(S"\ S)] > 71./28*2 independently of the other tokens. It follows that

Pr[A,(S") = Ax(S)] < (1 - Tk/zk—B)‘*k/3 < e R/(32"42p) O

Combining the two lemmas, we see that choodip@as©(y/2%31n N) yields a
polynomially small probability of any node not halting ang D + O(L;/3) = D +
O(+/n/B), or halting before it has heard from allnodes.

Theorem 7. For any constant ¢, if £, > /3(c + 2)3 - 2¥+3 In N, then with probability
atleast 1 — 1/N° each node v haltsat atimet = D + O(Ly /) = O(D + /n/B)
such that Nt(v) = V.

6 Conclusion

Data aggregation problems are traditionally studied in e®that feature symmetric
point-to-point communication. However, wireless netwsckn havasymmetric com-
munication topologies, due to the effects of local intexfere and heterogeneous power
assignments. This motivates our interest in directed nétswaith communication by
local broadcast.

Our results show that the traditional strategy of first cotimgua spanning tree,
and then solving various distributed tasks using the treenot always optimal for
directed networks; for example, while computing a rootednsying tree can require
2(D + n/B) rounds (as we saw in Section 4), certain data aggregatesecaanb-
puted or approximated i®(D + /n/B) rounds. Our lower bounds also imply that
it is not possible to quickly compute a small-diameter syrrmespanning subgraph
of a directed network with diameter 2. In general it seems ‘fogpology-oblivious”
algorithms, such as the algorithm in Section 5.2 and godggrithms [6, 11], may be
better suited for directed networks.



We leave open the question of finding a tight bound on the ohétéstic time com-
plexity of computing a sensitive function; is therdaerministic algorithm that matches
the2(D++/n/B) lower bound, or can the lower bound be strengthened? Famitzdh
reasons, it seems unlikely that a two-party reduction ofstigke we used in this paper
will yield a stronger lower bound, but perhaps multi-partyranunication complexity
lower bounds could be used.
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