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Abstract

In this paper we investigate distributed computation in dynamic networks in which the network topol-
ogy changes from round to round. We consider a worst-case model in which the communication links for
each round are chosen by an adversary, and nodes do not know who their neighbors for the current round
are before they broadcast their messages. The model allows the study of the fundamental computation
power of dynamic networks. In particular, it captures mobile networks and wireless networks, in which
mobility and interference render communication unpredictable. In contrast to much of the existing work
on dynamic networks, we do not assume that the network eventually stops changing; we require correct-
ness and termination even in networks that change continually. We introduce a stability property called
T -interval connectivity(for T ≥ 1), which stipulates that for everyT consecutive rounds there exists a
stable connected spanning subgraph. ForT = 1 this means that the graph is connected in every round,
but changes arbitrarily between rounds. Algorithms for thedynamic graph model must cope with these
unceasing changes.

We show that in 1-interval connected graphs it is possible for nodes to determine the size of the
network and compute any computable function of their initial inputs inO(n2) rounds using messages of
sizeO(log n + d), whered is the size of the input to a single node. Further, if the graphis T -interval
connected forT > 1, the computation can be sped up by a factor ofT , and any function can be computed
in O(n + n2/T ) rounds using messages of sizeO(log n + d). We also give two lower bounds on the
gossip problem, which requires the nodes to disseminatek pieces of information to all the nodes in the
network. We show anΩ(n log k) bound on gossip in 1-interval connected graphs against centralized
algorithms, and anΩ(n+ nk/T ) bound on exchangingk pieces of information inT -interval connected
graphs for a restricted class of randomized distributed algorithms.

The T-interval connected dynamic graph model is a novel model, which we believe opens new av-
enues for research in the theory of distributed computing inwireless, mobile and dynamic networks.



1 Introduction

The study of dynamic networks has gained importance and popularity over the last few years. Driven by the
growing ubiquity of the Internet and a plethora of mobile devices with communication capabilities, novel
distributed systems and applications are now within reach. The networks in which these applications must
operate are inherently dynamic; typically we think of them as being large and completely decentralized, so
that each node can have an accurate view of only its local vicinity. Such networks change over time, as
nodes join, leave, and move around, and as communication links appear anddisappear.

In some networks, e.g., peer-to-peer, nodes participate only for a short period of time, and the topology
can change at a high rate. In wireless ad-hoc networks, nodes are mobile and move around unpredictably.
Much work has gone into developing algorithms that are guaranteed to workin networks that eventually
stabilize and stop changing; this abstraction is unsuitable for reasoning about truly dynamic networks.

The objective of this paper is to make a step towards understanding the fundamental possibilities and
limitations for distributed algorithms in dynamic networks in which eventual stabilization of the network
is not assumed. We introduce a general dynamic network model, and study computability and complexity
of essential, basic distributed tasks. Under what conditions is it possible to elect a leader or to compute an
accurate estimate of the size of the system? How efficiently can information be disseminated reliably in the
network? To what extent does stability in the communication graph help solve these problems? These and
similar questions are the focus of our current work.

The dynamic graph model. In the interest of broad applicability our dynamic network model makes
few assumptions about the behavior of the network, and we study it from the worst-case perspective. In
the current paper we consider a fixed set of nodes that operate in synchronized rounds and communicate
by broadcast. In each round the communication graph is chosen adversarially, under an assumption ofT -
interval connectivity: throughout every block ofT consecutive rounds there must exist a connected spanning
subgraph that remains stable.

We consider the range from 1-interval connectivity, in which the communication graph can change com-
pletely from one round to the next, to∞-interval connectivity, in which there exists some stable connected
spanning subgraph that is not known to the nodes in advance. We note that edges that do not belong to the
stable subgraph can still change arbitrarily from one round to the next, and nodes do not know which edges
are stable and which are not. We do not assume that a neighbor-discovery mechanism is available to the
nodes; they have no means of knowing ahead of time which nodes will receive their message.

In this paper we are mostly concerned with deterministic algorithms, but our lower bounds cover random-
ized algorithms as well. The computation model is as follows. In every round, the adversary first chooses
the edges for the round; for this choice it can see the nodes’ internal states at the beginning of the round. At
the same time and independent of the adversary’s choice of edges, eachnode tosses private coins and uses
them to generate its message for the current round. Deterministic algorithms generate the message based on
the interal state alone. In both cases the nodes do not know which edges were chosen by the advesary. Each
message is then delivered to the sender’s neighbors, as chosen by the adversary; the nodes transition to new
states, and the next round begins. Communication is assumed to be bidirectional, but this is not essential.
We typically assume that nodes know nothing about the network, not even itssize, and communication is
limited toO(logn) bits per message.

To demonstrate the power of the adversary in the dynamic graph model, consider the problem oflocal
token circulation: each nodeu has a local Boolean variabletokenu, and if tokenu = 1, nodeu is said to
“have the token”. In every round exactly one node in the network has thetoken, and it can either keep the
token or pass it to one of its neighbors. The goal is for all nodes to eventually have the token in some round.
This problem is impossible to solve in 1-interval connected graphs: in everyround, the adversary can see
which nodeu has the token, and provide that node with only one edge{u, v}. Nodeu then has no choice
except to eventually pass the token tov. After v receives it, the adversary can turn around and remove all of
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v’s edges except{u, v}, so thatv has no choice except to pass the token back tou. In this way the adversary
can prevent the token from ever visiting any node exceptu, v.

Perhaps surprisingly given our powerful adversary, even in 1-interval connected graphs it is possible to
reliably compute any computable function of the initial states of the nodes, and even have all nodes output
the result at the same time (simultaneity).

The dynamic graph model we suggest can be used to model various dynamicnetworks. Perhaps the most
natural scenario is mobile networks, in which communication is unpredictable due to the mobility of the
agents. There is work on achieving continual connectivity of the communication graph in this setting (e.g.,
[12]), but currently little is known about how to take advantage of such a service. The dynamic graph model
can also serve as an abstraction for static or dynamic wireless networks, inwhich collisions and interference
make it difficult to predict which messages will be delivered, and when. Finally, dynamic graphs can be used
to model traditional communication networks, replacing the traditional assumptionof a bounded number of
failures with our connectivity assumption.

Although we assume that the node set is static, this is not a fundamental limitation. We defer in-depth
discussion to future work; however, our techniques are amenable to standard methods such as logical time,
which could be used to define the permissible outputs for a computation with a dynamic set of participants.

Contribution. In this paper we mainly study the following problems in the context of dynamic graphs.

∙ Counting, in which nodes must determine the size of the network.
∙ k-gossip, in whichk pieces of information, calledtokens, are handed out to some nodes in the network,

and all nodes must collect allk tokens.

We are especially interested in the variant ofk-gossip where the number of tokens is equal to the number of
nodes in the network, and each node starts with exactly one token. This variant of gossip allows any function
of the initial states of the nodes to be computed. However, it requires counting, since nodes do not know in
advance how many tokens they need to collect. We show that both problems can be solved inO(n2) rounds
in 1-interval connected graphs. Then we extend the algorithm forT -interval connected graphs with known
T > 1, obtaining anO(n + n2/T )-round protocol for counting or all-to-all gossip. WhenT is not known,
we show that both problems can be solved inO(min

{

n2, n+ n2 logn/T
}

) rounds.
We also give two lower bounds, both concerning token-forwarding algorithms for gossip. Atoken-

forwarding algorithmis one that does not combine or alter tokens, only stores and forwards them. First, we
give anΩ(n log k) lower bound onk-gossip in 1-interval connected graphs. This lower bound holds even
against centralized algorithms, in which each node is told which token to broadcast by some central author-
ity that can see the entire state of the network. We also give anΩ(n + nk/T ) lower bound onk-gossip in
T -interval connected graphs for a restricted class of randomized algorithms, in which the nodes’ behavior de-
pends only on the set of tokens they knew in each round up to the currentone. This includes the algorithms in
the paper, as well as other natural strategies such as round robin, choosing a token to broadcast uniformly at
random, or assigning a probability to each token that depends on the orderin which the tokens were learned.

For simplicity, the results we present here assume that all nodes start the computation in the same round.
It is generally not possible to solve any non-trivial problem if some nodesare initially asleep and do not par-
ticipate. However, if 2-interval connectivity is assumed, it becomes possible to solvek-gossip and counting
even when computation is initiated by one node and the rest of the nodes are asleep (see Appendix E.5).

Related work. For static networks, information dissemination and basic network aggregationtasks have
been extensively studied (see e.g. [5, 17, 30]). In particular, thek-gossip problem is analyzed in [36], where
it is shown thatk tokens can always be broadcast in timeO(n+ k) in a static graph. The various problems
have also been studied in the context of alternative communication models. A number of papers look at the
problem of broadcasting a single message (e.g. [8, 24]) or multiple messages [11, 27] in wireless networks.
Gossiping protocols are another style of algorithm in which it is assumed that ineach round each node com-
municates with a small number of randomly-chosen neighbors. Various information dissemination problems
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for the gossiping model have been considered [18, 20, 22]; gossipingaggregation protocols that can be used
to approximate the size of the system are described in [21, 32]. The gossiping model differs from our dy-
namic graph model in that the neighbors for each node are chosen at random and not adversarially, and in
addition, pairwise interaction is usually assumed where we assume broadcast.

A dynamic network topology can arise from node and link failures; fault tolerance, i.e., resilience to a
bounded number of faults, has been at the core of distributed computing research from its very beginning
[5, 30]. There is also a large body of previous work on general dynamic networks. However, in much of
the existing work, topology changes are restricted and assumed to be “well-behaved” in some sense. One
popular assumption is eventual stabilization (e.g., [1, 6, 7, 37, 19]), whichasserts that changes eventually
stop occuring; algorithms for this setting typically guarantee safety throughout the execution, but progress is
only guaranteed to occur after the network stabilizes. Self-stabilization is a useful property in this context:
it requires that the system converge to a valid configuration from any arbitrary starting state. We refer to
[13] for a comprehensive treatment of this topic. Another assumption, studied for example in [23, 25, 31],
requires topology changes to be infrequent and spread out over time, so that the system has enough time
to recover from a change before the next one occurs. Some of these algorithms use link-reversal [15], an
algorithm for maintaining routes in a dynamic topology, as a building block.

Protocols that work in the presence of continual dynamic changes have not been widely studied. There is
some work on handling nodes that join and leave continually in peer-to-peeroverlay networks [16, 28, 29].
Most closely related to the problems studied here is [33], where a few basicresults in a similar setting are
proved; mainly it is shown that in1-interval connected dynamic graphs (the definition in [33] is slightly
different), if nodes have unique identifiers, it is possible to globally broadcast a single message and have all
nodes eventually stop sending messages. The time complexity is at least linear in the value of the largest
node identifier. In [2], Afek and Hendler give lower bounds on the message complexity of global computa-
tion in asynchronous networks with arbitrary link failures.

A variant ofT -interval connectivity was used in [26], where two of the authors studiedclock synchro-
nization in asynchronousdynamic networks. In [26] it is assumed that the network satisfiesT -interval
connectivity for a small value ofT , which ensures that a connected subgraph exists long enough for each
node to send one message. This is analogous to 1-interval connectivity in synchronous dynamic networks.

The time required for global broadcast has been studied in a probabilistic version of the edge-dynamic
graph model, where edges are independently formed and removed according to simple Markovian processes
[9, 10]. Similar edge-dynamic graphs have also been considered in control theory literature, e.g. [34, 35].

Finally, a somewhat related computational model is population protocols, introduced in [3], where the
system is modeled as a collection of finite-state agents with pairwise interactions.Population protocols
typically (but not always) rely on a strong fairness assumption which requires every pair of agents to in-
teract infinitely often in an infinite execution. We refer to [4] for a survey.Unlike our work, population
protocols compute some function in the limit, and nodes do not know when they are done; this can make
sequential composition of protocols challenging. In our model nodes must eventually output the result of
the computation, and sequential composition is straightforward.

2 Preliminaries

We assume that nodes have unique identifiers (UIDs) drawn from a namespaceU . We usexu(r) to denote
the value of nodeu’s local variablex at the beginning of roundr.

A synchronous dynamic network is modeled as a dynamic graphG = (V,E), whereV is a static set of
nodes, andE : ℕ→ {{u, v} ∣ u, v ∈ V } is a function mapping a round numberr ∈ ℕ to a set of undirected
edgesE(r). We make the following assumption about connectivity in the network graph.

Definition 2.1 (T -Interval Connectivity). A dynamic graphG = (V,E) is said to beT -interval connected
for T ≥ 1 if for all r ∈ ℕ, the static graphGr,T := (V,

∩r+T−1
i=r E(r)) is connected. The graph is said to be

∞-interval connectedif there is a connected static graphG′ = (V,E′) such that for allr ∈ ℕ, E′ ⊆ E(r).
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For the current paper we are mainly interested in the following problems.

Counting. An algorithm is said to solve the counting problem if whenever it is executed in adynamic
graph comprisingn nodes, all nodes eventually terminate and outputn.

k-Gossip. An instance ofk-gossip is a pair(V, I), whereI : V → P (T ) assigns a set of tokens from
some token domainT to each node in the graph, and∣

∪

u∈V I(v)∣ = k. An algorithm solves gossip if for
all instances(V, I), when the algorithm is executed in any dynamic graphG = (V,E), all nodes eventu-
ally terminate and output

∪

u∈V I(u). We assume that each token in the nodes’ input is represented using
O(logn) bits. Nodes may or may not knowk, depending on the context.

All-to-All Gossip. A restricted class ofk-gossip in whichk = n and for allu ∈ V we have∣I(u)∣ = 1.
The nodes know that each node starts with a unique token, but they do notknown.

k-Committee Election. As a useful step towards solving counting and gossip we introduce a new problem
calledk-committee election. In this problem, nodes must partition themselves into sets, calledcommittees,
such that (a) the size of each committee is at mostk, and (b) ifk ≥ n, then there is just one committee
containing all nodes. Each committee has a unique committee ID, and the goal is for all nodes to eventually
output a committee ID such that the two conditions are satisfied.

3 Basic Facts

In this section we state several basic properties of the dynamic graph model,which we later use in our
algorithms. The first key fact pertains to the way information spreads in connected dynamic networks.

Proposition 3.1. It is possible to solve1-gossip in1-interval connected graphs inn − 1 rounds, if nodes
are not required to halt after they output the token.1

Proof Sketch.We simply have all nodes that know the token broadcast it in every round;when a node re-
ceives the token, it outputs it immediately, but continues broadcasting it. At any given round, consider a
cut between the nodes that already received the token and those that have not. From1-interval connectivity,
there is an edge in the cut; the token is broadcast on that edge and some newnode receives it. Since one
node initially knows the message and there aren nodes, aftern− 1 rounds all nodes have the token.

If we have an upper bound on the size of the network, we can use Proposition 3.1 to compute simple
functions which serve as building blocks for algorithms.

Proposition 3.2. Given an upper boundN on the size of the network, functions such as the minimum or
maximum of inputs to the nodes can be computed inN − 1 rounds.

Proposition 3.1 guarantees that all nodes will have the min or max value aftern−1 rounds; nodes need the
upper boundN to knowwhen they have the true min or max. One application is leader election, which canbe
implemented by choosing the node with the smallest UID as the unique leader. We also note that having an
upper bound on the size allows the use of randomized algorithms for data aggregation which rely on comput-
ing the max or the min of random variables chosen by the nodes [14, 32]. Please see Appendix E.6 for details.

The remainder of the paper focuses on counting and solving the gossip problem. The two problems are
intertwined, and both are useful as a starting point for distributed computingin dynamic networks. We re-
mark that when message sizes are not limited, both problems can be solved in linear time by having nodes
constantly broadcast all the information they have collected so far. The details are in Appendix E.1.2.

Proposition 3.3. The counting and all-to-all gossip problems can be solved inO(n) rounds in 1-interval
connected graphs, using messages of sizeO(n logn).

In the sequel we describe solutions which use onlyO(logn)-bit messages.

1Prop. 3.1 is intended only as an illustration. In the rest of our algorithms nodes can halt after they perform the output action.
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4 Counting Through k-Committee Election in1-Interval Connected Graphs

In this section we show howk-committee election can be used to solve counting and gossip.
Our counting algorithm works by successive doubling: at each point thenodes have a guessk for the size

of the network, and attempt to verify whether or notk ≥ n. If it is discovered thatk < n, the nodes double
k and repeat; ifk ≥ n, the nodes halt and output the count. We defer the problem of determining the exact
count until the end of the section, and focus for now on the problem of checking whether or notk ≥ n.

Suppose that nodes start out in a state that represents a solution tok-committee election: each node has
a committee ID, such that no more thank nodes have the same ID, and ifk ≥ n then all nodes have the
same committee ID. The problem of checking whetherk ≥ n is then equivalent to checking whether there
is more than one committee: ifk ≥ n there must be one committee only, and ifk < n there must be more
than one. Nodes can therefore check ifk ≥ n by executing a simplek-round protocol that checks if there is
more than one committee in the graph.

The k-verification protocol. Each node has a local variablex , which is initially set to1. While xu = 1,
nodeu broadcasts its committee ID. If it hears from some neighbor a different committee ID from its own,
or the special value⊥, it setsxu ← 0 and broadcasts⊥ in all subsequent rounds. Afterk rounds, all nodes
output the value of theirx variable.

Lemma 4.1. If the initial state of the execution represents a solution tok-committee election, at the end of
thek-verification protocol each node outputs 1 iffk ≥ n.

Proof Sketch.First suppose thatk ≥ n. In this case there is only one committee in the graph; no node ever
hears a different committee ID from its own. Afterk rounds all nodes still havex = 1, and all output 1.

In the case wherek < n we can show that after theith round of the protocol, at leasti nodes in each com-
mittee havex = 0. In any round of the protocol, consider a cut between the nodes that belong to a particular
committee and still havex = 1, and the rest of the nodes, which either belong to a different committee or
havex = 0. From 1-interval connectivity, there is an edge in the cut, and some node inthe committee that
still hasx = 1 hears either a different committee ID or⊥. This node then setsx ← 0. Since each committee
initially contains at mostk nodes, afterk rounds all nodes in all committees havex = 0, and all output0.

Our strategy for solving the counting problem is as follows: fork = 1, 2, 4, 8, . . ., solve thek-committee
election problem, then execute thek-verification protocol. Ifk ≥ n, terminate and output the count; else,
continue to the next value ofk. Here we use the fact that our model is amenable to sequential composition.

The strategy outlined above requires all nodes to begin thek-verification protocol in the same round (syn-
chronous start). Our protocol for solvingk-committee election ensures that this occurs. The protocol also
has the useful property that ifk ≥ n, every node knows the UIDs of all other nodes in the graph at the end
of the protocol. Thus, whenk ≥ n, nodes can determine the exact count.

5 A Protocol for k-Committee Election in1-Interval Connected Graphs

To solvek-committee election, we imagine that there is a unique leader in the network, and thisleader invites
k nodes to join its committee. Of course we do not truly have a pre-elected leaderin the network; we will
soon show how to get around this problem. The protocol proceeds ink cycles, each consisting of two phases.

∙ Polling phase: For k − 1 rounds, all nodes in the network propagate the UID of the smallest node they
have heard about that has not yet joined a committee. Initially each node broadcasts its own UID if it has
not joined a committee, or⊥ if it has; in each round nodes remember the smallest value they have sent or
received so far in the execution, and broadcast that value in the next round.
∙ Invitation phase: The leader selects the smallest UID it heard during the polling phase, and issues a

message inviting that node to join its committee. The message carries the UID of the leader and of the
invited node. The invitation is propagated by all nodes fork − 1 rounds. At the end of the invitation
phase, a node that received an invitation joins the leader’s committee.
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At the end of thek cycles, nodes that have joined the leader’s committee output the leader’s UID as their
committee ID. Any node that has not been invited to join a committee joins its own committee,using its
UID as the committee ID.

To handle the lack of a pre-elected leader,all nodes start out thinking they are the leader, and continue to
play the role of a leader until they hear a UID smaller than their own. At that point they switch to playing
the role of a non-leader; however, any invitations they already issued remain in force.

Theorem 5.1.The protocol sketched above solves thek-committee election problem inO(k2) rounds. When
used in conjunction with thek-verification protocol it yields anO(n2)-round counting protocol.

We remark that ifk ≥ n, the protocol also solves the gossip problem, if we use tokens wherever the
protocol uses node UIDs. Each token is “singled out” fork − 1 ≥ n − 1 rounds during which it is invited
to join the leader’s committee; the invitation is propagated by all nodes that receive it, and reaches all the
nodes in the graph. Nodes simply have to record the tokens attached to invitations they hear. In particular,
if node UIDs are used as tokens, nodes can collect all the UIDs they hear, and be guaranteed that ifk ≥ n
they have collected all UIDs in the network by the end of the protocol.

6 Counting and Gossip in More Stable Graphs

In this section we show that inT -interval connected graphs the computation can be sped up by a factor of
T . To do this we employ a neat pipelining effect, using the temporarily stable subgraphs thatT -interval
connectivity guarantees; this allows us to disseminate information more quickly.

For convenience we assume that the graph is2T -interval connected for someT ≥ 1.

6.1 T -Gossip in2T -Interval Connected Graphs

Proceduredisseminate gives an algorithm for exchanging at leastT pieces of information inn rounds
when the dynamic graph is2T -interval connected. The procedure takes three arguments: a set of tokensA,
the parameterT , and a guessk for the size of the graph. Ifk ≥ n, the procedure is guaranteed to provide
each node with theT smallest tokens that appeared in the input to all the nodes.

The execution of proceduredisseminate is divided into⌈k/T ⌉ phases, each consisting of2T rounds.
During each phase, each node maintains the setA of tokens it has already learned and a setS of tokens it
has already broadcast in the current phase (initially empty). In each round of the phase, the node broadcasts
the smallest token it has not yet broadcast in the current phase, then adds that token toS.

S ← ∅
for i = 0, . . . , ⌈k/T ⌉ − 1 do

for r = 0, . . . , 2T − 1 do
if S ∕= A then

t← min (A ∖ S)
broadcastt
S ← S ∪ {t}

receivet1, . . . , ts from neighbors
A← A ∪ {t1, . . . , ts}

S ← ∅
return A

Proceduredisseminate(A, T, k)

Because the graph is2T -interval connected, in each phasei there is a stable connected subgraphGi that
persists throughout the phase. We useAi

u(r), S
i
u(r) for the values of nodeu’s local variablesA,S at the

beginning of roundr of phasei. We say thatu knowstokent whenevert ∈ Au.
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Let Ki(t) denote the set of nodes that knowt at the beginning of phasei, and lettdisti(u, t) denote the
distance inGi between nodeu and any node inKi(t). Correctness hinges on the following property.

Lemma 6.1. For any nodeu ∈ V , tokent ∈
∪

v∈V Av(0) and roundr such thattdisti(u, t) ≤ r ≤ 2T ,
eithert ∈ Si

u(r + 1) or Su(r + 1) includes at least(r − tdisti(u, t)) tokens that are smaller thant.

The intuition behind Lemma 6.1 is that ifr ≥ tdisti(u, t), thenr rounds are “enough time” foru to
receivet. If u has not receivedt and sent it on, the path betweenu and the nearest node that knowst must
have been blocked by smaller tokens, which nodeu received and sent on. Using Lemma 6.1 we can show:

Lemma 6.2. If k ≥ n, then at the end of proceduredisseminate, the setAu of each nodeu contains the
T smallest tokens.

Proof Sketch.LetNd
i (t) := {u ∈ V ∣ tdisti(u, t) ≤ d}. Let t be one of theT smallest tokens.

From Lemma 6.1, for each nodeu ∈ NT
i (t), eithert ∈ Si

u(2T + 1) or Si
u(2T + 1) contains at least

2T − T = T tokens that are smaller thant. But t is one of theT smallest tokens, so the second case is im-
possible. Therefore all nodes inNT

i (t) know tokent at the end of phasei. BecauseGi is connected we have
∣NT

i (t)∣ ≥ min {n− ∣Ki(t)∣, T}; that is, in each phaseT nodes learnt, until all the nodes knowt. Since
there are no more thank nodes and we have⌈k/T ⌉ phases, at the end of the last phase all nodes knowt.

Remark. If each stable subgraphGi enjoys good expansion thendisseminate requires fewer thann
phases. For example, ifGi is alwaysf -connected for some parameterf , then each token is learned byf ⋅ T
new nodes in each phase until all nodes know it, and we only require⌈n/f⌉ phases. Similarly, ifGi is
always a vertex expander we only requireO(log n) phases.

6.2 Counting and General Gossip

To solve counting and gossip with up ton tokens, we use Proceduredisseminate to speed up the
k-committee election protocol from Section 5. Instead of inviting one node in each cycle, we can use
disseminate to have the leader learn the UIDs of theT smallest nodes in the polling phase, and use
proceduredisseminate again to extend invitations to allT smallest nodes in the selection phase. Thus,
in O(k + T ) rounds we can increase the size of the committee byT .

Theorem 6.3. It is possible to solvek-committee election inO(k + k2/T ) rounds inT -interval connected
graphs. When used in conjunction with thek-verification protocol, this approach yields anO(n + n2/T )-
round counting or gossip protocol.

6.3 Adapting to Unknown Interval Connectivity

The protocol sketched above assumes that all nodes know the degree of interval connectivity present in the
communication graph; if the graph is not2T -interval connected, invitations may not reach their destination,
and the committees formed may contain less thank nodes even whenk ≥ n. However, even when the graph
is not2T -interval connected, no committee ever containsmorethank nodes, simply because no node ever
issues more thank invitations. Thus, if nodes guess a value forT and use the protocol to check ifk ≥ n,
their error is one-sided: if their guess forT is too large they may falsely conclude thatk < n when in fact
k ≥ n, but they will never conclude thatk ≥ n whenk < n.

This one-sided error allows us to try different values fork andT without fear of mistakes. We can count
in O(n logn+ n2 log n/T ) time in graphs whereT is unknownby iterating over various combinations ofk
andT until we reach a pair(k, T ) such thatk ≥ n and the graph isT -interval connected.

In the worst case, the graph is 1-interval connected, and we need to tryall the valuesT = 1, 2, 4, . . . , k
for eachk; we pay alog n factor in the round complexity. This only improves upon the originalO(n2)
algorithm when the graph is!(log n)-interval connected. However, we can execute the original algorithm
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in parallel with the adaptive one, and terminate when the first of the two terminates. In this way we can
solve counting or gossip inO(min

{

n2, n logn+ n2 logn/T
}

) rounds whenT is unknown.
Using similar ideas we can also adapt to unknown expansion of the graph, e.g., we might guess that it is

alwaysf -connected for some initial value off , and decreasef until we find the right value.

7 Lower Bounds on Gossip with Token-Forwarding Algorithms

Our algorithms for gossip do not combine tokens or alter them in anyway, onlystore and forward them. We
call this style of algorithm atoken-forwarding algorithm. Formally, letAu(r) denote the set of messages
nodeu has received by the beginning of roundr, plus nodeu’s input I(u). A token-forwarding algorithm
satisfies: (a) for allu ∈ V andr ≥ 0, the message sent byu in roundr is a member ofAu(r)∪ {⊥}, where
⊥ denotes the empty message; and (b) nodeu cannot halt in roundr unlessAu(r) =

∪

v∈V I(v), that is,
nodeu has received all the tokens either in messages from other nodes or in its input.

In this section we give two lower bounds on gossip with token-forwarding algorithms.

7.1 Ω(n log k) Lower Bound for Centralized k-Gossip in 1-Interval Connected Graphs

For this lower bound we assume that in each roundr, some central authority provides each nodeu with a
valuetu(r) ∈ Au(r) to broadcast in that round. The centralized algorithm can see the state andhistory of
the entire network, but it does not know which edges will be scheduled in the current round. Centralized al-
gorithms are more powerful than distributed ones, since they have accessto more information. To simplify,
we begin with each of thek tokens known to exactly one node (this restriction is not essential).

We observe that while the nodes only know a small number of tokens, it is easy for the algorithm to
make progress; for example, in the first round of the algorithm at leastk nodes learn a new token, because
connectivity guarantees thatk nodes receive a token that was not in their input. As nodes learn more tokens,
it becomes harder for the algorithm to provide them with tokens they do not already know. Accordingly,
our strategy is to charge a cost of1/(k − i) for the i-th token learned by each node: the first token each
node learns comes at a cheap1/k, and the last token learned costs dearly (1). Formally, the potential of the
system in roundr is given by

Φ(r) :=
∑

u∈V

∣Au(r)∣−1
∑

i=0

1

k − i
.

In the first round we haveΦ(0) = 1, becausek nodes know one token each. If the algorithm terminates
in roundr then we must haveΦ(r) = n ⋅Hk = Θ(n log k), because alln nodes must know allk tokens. We
construct an execution in which the potential increase is bounded by a constant in every round; this gives us
anΩ(n log k) bound on the number of rounds required.

Theorem 7.1. Any centralized algorithm fork-gossip in 1-interval connected graphs requiresΩ(n log k)
rounds to complete in the worst case.

Proof. We construct the communication graph for each roundr in three stages. See Fig. 2 in the appendix
for an illustration.

Stage I: Adding the free edges. An edge{u, v} is said to befree if tu(r) ∈ Av(r) andtv(r) ∈ Au(r);
that is, if we connectu andv, neither node learns anything new. LetF (r) denote the set of free edges in
roundr; we add all of them to the graph. LetC1, . . . , Cℓ denote the connected components of the graph
(V, F (r)). Observe that any two nodes in different components must send different values, otherwise they
would be in the same component.

We choose representativesv1 ∈ C1, . . . , vℓ ∈ Cℓ from each component arbitrarily. Our task now is to
construct a connected subgraph overv1, . . . , vℓ and pay only a constant cost. We assume thatℓ ≥ 6, oth-
erwise we can connect the nodes arbitrarily for a constant cost. Letmissing(u) := k − ∣Au(r)∣ denote the
number of tokens nodeu does not know at the beginning of roundr.
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Stage II: We split the nodes into two setsTop, Bottom according to the number of tokens they know:
Top := {vi ∣missing(vi) ≤ ℓ/6} ,Bottom := {vi ∣missing(vi) > ℓ/6}.

Since top nodes know many tokens, connecting to them could be expensive. We will choose our edges
in such a way that no top node will learn a new token, and each bottom node will learn at most three new
tokens. We begin by bounding the size ofTop.

To that end, notice that
∑

u∈Top missing(u) ≥
(

∣Top∣
2

)

: for all i, j such thatu, v ∈ Top, eithertu(r) ∕∈
Av(r) or tv(r) ∕∈ Au(r), otherwise{u, v} would be a free edge andu, v would be in the same component;
therefore each pairu, v ∈ Top contributes at least one missing token to the sum. On the other hand, since
each node inTop is missing at mostℓ/6 tokens, it follows that

∑

u∈Top missing(u) ≤ ∣Top∣ ⋅(ℓ/6). Putting
the two facts together we obtain∣Top∣ ≤ ℓ/3+1, and consequently also∣Bottom∣ = ℓ−∣Top∣ ≥ 2ℓ/3−1.

Stage III: Connecting the nodes. The bottom nodes are relatively cheap to connect to, so we connect
them in an arbitrary line. In addition we want to connect each top node to a bottom node, such that no top
node learns something new, and no bottom node is connected to more than onetop node. That is, we are
looking for a matching using only the edgesP := {{u, v} ∣ u ∈ Top, v ∈ Bottom andtv ∈ Au(r)}.

Since each top node is missing at mostℓ/6 tokens, and each bottom node broadcasts a different value,
for each top node there are at least∣Bottom∣ − ℓ/6 edges inP to choose from. But∣Top∣ ≤ ℓ/3 + 1 ≤
∣Bottom∣ − ℓ/6; thus, each top node can be connected to a different bottom node usingP -edges.

What is the total cost of the graph? Top nodes learn no tokens, and bottomnodes learn at most two tokens
from other bottom nodes and at most one token from a top node. Thus, thetotal cost is bounded by

∑

u∈Bottom

min{3,missing(u)}
∑

i=1

1

missing(u)− (i− 1)
≤ ∣Bottom∣ ⋅

6
ℓ
6

≤ ℓ ⋅
36

ℓ
= 36.

7.2 Ω(n + nk/T ) Lower Bound on k-Gossip with Knowledge-Based Algorithms

A token-forwarding randomized algorithm fork-gossip isknowledge-basedif the distribution that de-
termines which token is broadcast by nodeu in round r is a function of the UID ofu, the sequence
Au(0), . . . , Au(r − 1), whereAi is the set of tokens received byu by the beginning of roundi (includ-
ing its input), and the sequence ofu’s coin tosses up to roundr (inclusive). Knowledge-based algorithms
can use the set of tokens currently known and the round in which each token was acquired; however, they
cannot rely on other factors, such as the number of times a particular tokenwas heard or the UIDs of nodes
from which a token was received. Nevertheless, the class of knowledge-based algorithms includes many
natural strategies for solving the gossip problem, and it includes the algorithms in this paper.

Knowledge-based algorithms have the property that once a node learns all the tokens, the distribution of
tokens broadcast in future rounds is fixed and does not depend on thedynamic graph. We use this property
to show the following lower bound.

Theorem 7.2.Any knowledge-based algorithm fork-gossip inT -interval connected graphs requiresΩ(n+
nk/T ) rounds to succeed with probability1/2. Further, if ∣U∣ = Ω(n2k/T ), then deterministic algorithms
requireΩ(n+ nk/T ) rounds even when each node starts with exactly one token.

Proof Sketch.An Ω(n) lower bound is trivially demonstrated in a static line graph where some token starts
at one end of the line. Thus we assume thatk > 1. For simplicity, we choose an input assignment in which
some nodeu knows all the tokens, and the other nodes have no tokens. (The bound holds for any assignment
in which one node knows all tokens and a constant fraction of nodes is missing each token; for deterministic
algorithms it holds when each node starts with one token.)

Let r1 = r0+(n− 1)(k− 1)/(4T )− 1. Sinceu knows all the tokens, its behavior is determined: regard-
less of the dynamic graph we choose for the rounds betweenr0 andr1, the distribution of tokens broadcast
by nodeu in roundsr0, . . . , r1 is fixed. In particular, since there are less than(n− 1)(k − 1)/(4T ) rounds
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betweenr0 andr1, the linearity of expectation and Markov’s inequality show that there is some tokent such
that with probability at least1/2, nodeu broadcastst less than(n− 1)/(2T ) times between the two rounds.

In roundr0, tokent is known only to nodeu; there aren − 1 nodes that still must learnt. Informally,
in the dynamic graph we construct nodeu will control the spread oft, such that after each time nodeu
broadcastst at most2T nodes learn it. Thus, with probability at least1/2, by roundr1 there will still be a
node that has not learnedt, and the algorithm will not be done.

We construct the graph in phases. Initially we arrange the nodes in a lineu0, v1, . . . , vn−1, with u0 at one
end of the line and the other nodes ordered arbitrarily (see Fig. 1(a) in theappendix). The nodes in the line
can only learnt whenu broadcasts it.

We leave the graph static until the first time nodeu broadcastst. At this point we would like to removev1
from the line and place it in the clique, to prevent it from spreadingt to other nodes in the line; however, we
must respectT -interval connectivity. We proceed by first adding an edge fromu to vn−1, closing the line
and forming a ring (see Fig. 1(b) in the appendix). A phase consists of waiting for T rounds with the graph
static. Between phases we change the graph and remove2T nodes that may have learnedt from the ring.
Next we describe how the graph changes between phases.

At the beginning of each phase the ring consists of a sequenceu, vR, . . . , vL, u. Initially R = 1 and
L = n− 1, and as the execution progresses we shrink the ring by moving nodes into the clique, increasing
R and decreasingL. At the beginning of the phase, only nodesu, vR, . . . , vR+T−1 can know tokent (and
in particular, in the first phase onlyvR knowst), and only those nodes can spread it to other nodes. We
call nodesvR, . . . , vR+2T−1 red nodes, because these nodes may learnt during the phase even ifu does not
broadcast it. NodesvL, . . . , vL−T+1 are calledyellow nodes, because they may learnt if nodeu broadcasts
it during the phase. The rest of the nodes cannot learnt during the phase.

After the phase ends, we remove the red nodes from the ring and place them in the clique (see Fig. 1(c)).
We restore the ring by adding an edge betweenu andvR+2T . If u did not broadcastt during the phase that
ended, then no node in the ring knowst, and we simply wait untilu broadcastst again. Ifu did broadcast
t, we change the direction of the ring, settingL ← R + 2T andR ← L. The nodes that were yellow now
become red (see Fig. 1(d)), and we proceed as before. Each timeu broadcastst causes us to remove at most
2T nodes from the ring, but since with high probabilityt is broadcast less than(n−1)/(2T ) times, in round
r1 = Ω(nk/T ) with probability at least1/2 the ring is not empty and the algorithm is not done.

8 Conclusion

In this work we consider a model for dynamic networks which makes very few assumptions about the
network. The model can serve as an abstraction for wireless or mobile networks, to reason about the fun-
damental unpredictability of communication in this type of system. We do not restrict the mobility of the
nodes except for retaining connectivity, and we do not assume that geographical information or neighbor
discovery are available to the nodes. Nevertheless, we show that it is possible to efficiently compute any
computable function, taking advantage of stability if it exists in the network.

We believe that theT -interval connectivity property provides a natural and general way toreason about
dynamic networks. It is easy to see that without any type of connectivity assumption no non-trivial function
can be computed, except possibly in the sense of computation in the limit (as in [3]). However, our connec-
tivity assumption is easily weakened to only require connectivity once everyconstant number of rounds, or
to only require eventual connectivity in the style of Prop. 3.1, with a known bound on the number of rounds.

There are many open problems related to the model. We hope to strengthen ourlower bounds for gossip
and obtain anΩ(nk/T ) general lower bound, and to determine whether counting is in fact as hardas gossip.
Other natural problems, such as consensus and leader election, can besolved in linear time once a (possibly
approximate) count is known, but can they be solved more quickly without first counting? Is it possible to
compute an approximate upper bound for the size of the network in less than the time required for counting
exactly? These and other questions remain intriguing open problems.

10



References
[1] Y. Afek, B. Awerbuch, and E. Gafni. Applying static network protocols to dynamic networks. InProc. of 28th

Symp. on Foundations of Computer Science (FOCS), pages 358–370, 1987.

[2] Y. Afek and D. Hendler. On the complexity of gloabl computation in the presence of link failures: The general
case.Distributed Computing, 8(3):115–120, 1995.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. Peralta. Computation in networks of passively mobile
finite-state sensors.Distributed Computing, 18(4):235–253, 2006.

[4] J. Aspnes and E. Ruppert. An introduction to population protocols. In B. Garbinato, H. Miranda, and L. Ro-
drigues, editors,Middleware for Network Eccentric and Mobile Applications, pages 97–120. Springer-Verlag,
2009.

[5] H. Attiya and J. Welch.Distributed Computing: Fundamentals, Simulations, and Advanced Topics. John Wiley
and Sons, Inc., 2nd edition, 2004.

[6] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. E. Saks. Adapting to asynchronous dynamic networks. InProc.
of the 24th Annual ACM Symposium on Theory of Computing (STOC), pages 557–570, 1992.

[7] B. Awerbuch and M. Sipser. Dynamic networks are as fast asstatic networks. InProc. of 29th Symp. on
Foundations of Computer Science (FOCS), pages 206–220, 1988.

[8] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time complexity of broadcast in radio networks: An
exponential gap between determinism and randomization.Journal of Computer and System Sciences (JCSS),
45(1):104–126, 1992.

[9] H. Baumann, P. Crescenzi, and P. Fraigniaud. Parsimonious flooding in dynamic graphs. InProc. of 28th Symp.
on Principles of Distributed Computing (PODC), pages 260–269, 2009.

[10] A. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding time in edge-markovian dynamic
graphs. InProc. of 27th Symp. on Principles of Distributed Computing (PODC), pages 213–222, 2008.

[11] A. E. G. Clementi, A. Monti, and R. Silvestri. Distributed multi-broadcast in unknown radio networks. InProc.
of 20th Symp. on Principles of Distributed Computing (PODC), pages 255–263, 2001.

[12] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. A. Lynch. Keeping mobile robot swarms connected. InProc. of 23rd
Conference on Distributed Computing (DISC), pages 496–511, 2009.

[13] S. Dolev.Self-Stabilization. MIT Press, 2000.

[14] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications.Journal of Computer
and System Sciences, 31(2):182 – 209, 1985.

[15] E. Gafni and D. Bertsekas. Distributed algorithms for generating loop-free routes in networks with frequently
changing topology.IEEE Transactions on Communication, 29(1):11–18, 1981.

[16] T. P. Hayes, J. Saia, and A. Trehan. The forgiving graph:A distributed data structure for low stretch under
adversarial attack. InProc. of 28th Symp. on Principles of Distributed Computing (PODC), pages 121–130, 2009.

[17] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. Asurvey of gossiping and broadcasting in
communication networks.Networks, 18:319–349, 1988.
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Appendix

In the following we begin with some figures to illustrate the lower bound proofs of Section 7. The re-
mainder of the appendix contains a full version of all technical parts of thepaper.

A Figures

u0 v1 v1 vn−3 vn−2

(a) The network at the beginning of the execution (only node
u0 knowst).

v2T+1

v2T

v2T−1

v2

vR = v1

u0

vL = vn−1

vn−T

(b) The network at the beginning of the first phase: the line is
closed to form a ring. The dotted line indicates the edge we
will add at the end of the phase to re-close the ring after we
remove the red nodes; double lines indicate stable edges, along
whichT -interval connectivity is preserved between phases.

u0

v3T
v2T+2

v2T+1

vn−1

vn−T

(c) The network after the end of the first phase: the
red nodes are removed from the ring and placed in
the clique, and the ring is repaired by connectingu0

to v2T+1. Double lines indicate stable edges along
whichT -interval connectivity was preserved in the
transition between the phases.

u0

v3T
v2T+2

v2T+1

vn−1

vn−T

(d) If u0 broadcastt at any point during the first
phase, we begin a new phase. The nodes that
were yellow in the first phase become red, and
the “clean” nodes onu0’s other side become yel-
low. Double lines indicate edges that will be stable
through the next two phases.

Figure 1: Illustrations for the proof of theΩ(n+ nk/T ) lower bound,T = 3
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vi1 vi2 vi3 vi4

vi5 vi6 vi7 vi8 vi1 vi2

missing≤ ℓ/6 tokens

missing> ℓ/6 tokens

Top

Bottom

Figure 2: Illustration for the proof of theΩ(n log k) lower bound
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B Network Model

B.1 Dynamic Graphs

A synchronous dynamic network is modelled by a dynamic graphG = (V,E), whereV is a static set of
nodes, andE : ℕ → V (2) is a function mapping a round numberr ∈ ℕ to a set of undirected edgesE(r).
HereV (2) := {{u, v} ∣ u, v ∈ V } is the set of all possible undirected edges overV .

Definition B.1 (T -Interval Connectivity). A dynamic graphG = (V,E) is said to beT -interval connected

for T ∈ ℕ if for all r ∈ ℕ, the static graphGr,T :=
(

V,
∩r+T−1

i=r E(r)
)

is connected. IfG is 1-interval

connected we say thatG is always connected.

Definition B.2 (∞-Interval Connectivity). A dynamic graphG = (V,E) is said to be∞-interval connected
if there exists a connected static graphG′ = (V,E′) such that for allr ∈ ℕ, E′ ⊆ E(r).

Note that even though in an∞-interval connected graph there is some stable subgraph that persists
throughout the execution, this subgraph is not known in advance to the nodes, and can be chosen by the
adversary “in hindsight”.

Although we are generally interested in the undirected case, it is also interesting to considerdirected
dynamic graphs, where the communication links are not necessarily symmetric. TheT -interval connec-
tivity assumption is then replaced byT -interval strong connectivity, which requires thatGr,T be strongly
connected (whereGr,T is defined as before). In this very weak model, not only do nodes not know who
will receive their message before they broadcast, they also do not knowwho received the messageafter it is
broadcast. Interestingly, all of our algorithms for the undirected case work in the directed case as well.

The causal order for dynamic graphs is defined in the standard way.

Definition B.3 (Causal Order). Given a dynamic graphG = (V,E), we define an order→⊆ (V × ℕ)2,
where(u, r) → (v, r′) iff r′ = r + 1 and{u, v} ∈ E(r). Thecausal order⇝⊆ (V × ℕ)2 is the reflexive
and transitive closure of→. We also writeu⇝ (v, r) if there exists somer′ ≤ r such that(u, r′)⇝ (v, r).

Definition B.4 (Influence Sets). We denote byCu(r ⇝ r′) := {v ∈ V ∣ (v, r)⇝ (u, r′)} the set of nodes
whose state in roundr causally influences nodeu in roundr′. We also use the short-handCu(r) := Cu(0⇝
r) = {v ∣ v ⇝ (u, r)}.

B.2 Communication and Adversary Model

Nodes communicate with each other usinganonymous broadcast, with message sizes limited toO(log(n)).
At the beginning of roundr, each nodeu decides what message to broadcast based on its internal state and
private coin tosses; at the same time and independently, the adversary chooses a setE(r) of edges for the
round. For this choice the adversary can see the nodes’ internal statesat the beginning of the round, but
not the results of their coin tosses or the message they have decided to broadcast. (Deterministic algorithms
choose a message based only on the internal state, and this is equivalent toletting the adversary see the
message before it chooses the edges.) The adversary then delivers toeach nodeu all messages broadcast
by nodesv such that{u, v} ∈ E(r). Based on these messages, its previous internal state, and possibly
more coin tosses, the node transitions to a new state, and the round ends. Wecall this anonymous broadcast
because nodes do not know who will receive their message prior to broadcasting it.

B.3 Sleeping Nodes

Initially all nodes in the network are asleep; computation begins when a subset of nodes, chosen by the
adversary, is woken up. Sleeping nodes remain in their initial state and do not broadcast any messages until
they receive a message from some awake node or are woken up by the adversary. Then they wake up and
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begin participating in the computation; however, since messages are delivered at the end of the round, a
node that is awakened in roundr sends its first message in roundr + 1.

We refer to the special case where all nodes are woken up at once assynchronous start.

B.4 Initial Knowledge

Each node in the network starts execution of the protocol in an initial state which contains its own ID, its
input, and possibly additional knowledge about the network. We generallyassume one of the following.

∙ No knowledge: nodes know nothing about the network, and initially cannotdistinguish it from any other
network.
∙ Upper bound on size: nodes know some upper boundN on the sizen of the network. The upper bound

is assumed to be bounded by some function of the true size, e.g.,N = O(n).
∙ Exact size: nodes know the sizen of the network.

B.5 Computation Model

We think of each node in the network as running a specialized Turing machinewhich takes the node’s UID
and input from its input tape at the beginning of the first round, and in subsequent rounds reads the messages
delivered to the node from the input tape. In each round the machine produces a message to broadcast on
an output tape. On a separate output tape, it eventually writes the final output of the node, and then enters a
halting state.

The algorithms in this paper are written in pseudo-code. We usexu(r) to denote the value of nodeu’s
local variablex at the beginning of roundr, andxu(0) to denote the input to nodeu.

C Problem Definitions

We assume that nodes have unique identifiers (UIDs) from some namespaceU . LetD be a problem domain.
Further, letA 7→ B denote the set of all partial functions fromA toB.

A problemoverD is a relationP ⊆ (U 7→ D)2, such that if(I,O) ∈ P thendomain(I) is finite and
domain(I) = domain(O). Each instanceI ∈ U 7→ D induces a setV = domain(I) of nodes, and we say
that an algorithmsolvesinstanceI if in any dynamic graphG = (V,E), when each nodeu ∈ V starts with
I(u) as its input, eventually each node outputs a valueO(u) ∈ D such that(I,O) ∈ P .

We are interested in the following problems.

Counting. In this problem the nodes must determine the size of the network. Formally, the counting
problem is given by

counting := {(V × {1} , V × {n}) ∣ V is finite andn = ∣V ∣} .

k-Verification. Closely related to counting, in thek-verification problem nodes are given an integerk and
must determine whether or notk ≥ n, eventually outputting a Boolean value. Formally,

k-verification := {(V × {k} , V × {b}) ∣ b ∈ {0, 1} andb = 1 iff k ≥ ∣V ∣} .

k-Committee. In this problem the nodes must form sets (“committees”), where each committee has a
unique identifier that is known to all its members. Each nodeu outputs a valuecommitteeu, and we require
the following properties.

1. (“Safety”) The size of each committee is at mostk, that is, for allx ∈ {committeeu ∣ u ∈ V } we have
∣ {u ∈ V ∣ committeeu = x} ∣ ≤ k.

2. (“Liveness”) Ifk ≥ n then all nodes in the graph join one committee, that is, for allu, v ∈ V we have
committeeu = committeev.
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k-Gossip. The gossip problem is defined over a token domainT . Each node receives in its input a set of
tokens, and the goal is for all nodes to output all tokens. Formally,

k-gossip := {(V → P (A) , V → A) ∣ V is finite and∣A∣ = k} .

We are particularly interested in the following variants of the problem.

∙ All-to-All gossip: instancesI wherek = n for all u ∈ V we have∣I(u)∣ = 1.
∙ k-gossip with knownk: in this variant nodes knowk, i.e., they receivek as part of the input.

Leader Election. In weak leader election all nodes must eventually output a bitb, such that exactly one
node outputsb = 1. In strong leader election, all nodes must output the same IDu ∈ V of some node in the
network.

D Relationships

A problemP1 is reducibleto P2 if whenever all nodes start the computation in initial states that represent a
solution toP2, there is an algorithm that computes a solution toP1 and requires linear time in the parameter
to the problem (k).

D.1 k-Committee≡ k-Verification

Claim D.1. k-verification reduces tok-committee.

Proof. Suppose we start from a global state that is a solution tok-committee, that is, each nodeu has a local
variablecommitteeu such that at mostk nodes belong to the same committee, and ifk ≥ n then all nodes
belong to one committee. We can verify whether or notk ≥ n as follows. Fork rounds, each node maintains
a Boolean flagb, which is initially set to1. In rounds whereb = 1, the node broadcasts its committee ID,
and whenb = 0 the node broadcasts⊥. If a node receives a committee ID different from its own, or if it
hears the special value⊥, it setsb to 0. At the end of thek rounds all nodes outputb.

First consider the case wherek ≥ n. In this case all nodes have the same committee ID, and no node
ever sets itsb flag to0. At the end of the protocol all nodes output1, as required. Next, suppose thatk < n,
and letu be some node. There are at mostk − 1 nodes inu’s committee. In every round, there is an edge
between some node inu’s committee and some node in a different committee (because the communication
graph is connected), and therefore at least one node inu’s committee sets itsb flag to0. After at mostk
rounds no nodes remain, and in particularu itself must havebu = 0. Thus, at the end of the protocol all
nodes output0.

Claim D.2. k-committee reduces tok-verification.

Proof. Again, suppose the nodes are initially in a state that represents a solution tok-verification: they have
a Boolean flagb which is set to 1 iffk ≥ n. We solvek-committee as follows: ifb = 0, then each node
outputs its own ID as its committee ID. This is a valid solution because whenk < n the only requirement is
that no committee have more thank nodes. Ifb = 1, then fork rounds all nodes broadcast the minimal ID
they have heard so far, and at the end they output this ID as their committee ID. Sinceb = 1 indicates that
k ≥ n, afterk rounds all nodes have heard the ID of the node with the minimal ID in the network, and they
will all join the same committee, as required.

D.2 Counting vs.k-Verification

Since we can solvek-verification inO(k+k2/T ) time inT -interval connected graphs, we can find an upper
bound on the size of the network by checking whetherk ≥ n for values ofk starting from 1 and doubling
with every wrong guess. We know how to verify whetherk ≥ n in O(k + k2/T ) time, and hence the time
complexity of the entire procedure isO(n+n2/T ). Once we establish thatk ≥ n for some value ofk, to get
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an actual count we can then go back and do a binary search over the rangek/2, . . . , k (recall thatk/2 < n,
otherwise we would not have reached the current value ofk).

In practice, we use a variant ofk-committee where the ID of each committee is the set containing the IDs
of all members of the committee. Thek-verification layer returns this set as well, so that after reaching a
value ofk ≥ n at nodeu, we simply return the size ofu’s committee as the size of the network. Sincek ≥ n
implies that all nodes join the same committee, nodeu will output the correct count.

D.3 Hierarchy of Problems

There is a hardness hierarchy among the problems considered in this paper as well as some other natural
problems.

1. Strong leader election / consensus (these are equivalent).
2. Decomposable functions such as Boolean AND / OR
3. Counting.
4. n-gossip (with unknownn).

The problems in every level are reducible to the ones in the next level, and we know thatn-gossip can be
solved inO(n + n2/T ) time in T -interval connected graphs forT ≥ 2, or T ≥ 1 assuming synchronous
start. Therefore all the problems can be solved inO(n + n2/T ) time, even with no prior knowledge of the
network, and even when the communication links are directed (assuming strong connectivity).

E Upper Bounds

In this section we give algorithms for some of the problems introduced in SectionC, always with the goal
of solving the counting problem. Our strategy is usually as follows:

1. Solve some variant of gossip.
2. Use (1) as a building block to solvek-committee,
3. Solvingk-committee allows us to solvek-verification and therefore also counting (see Section D).

We initially focus on the case of synchronous start. The modifications necessary to deal with asynchronous
start are described in Section E.5.

E.1 Always-Connected Graphs

E.1.1 Basic Information Dissemination

It is a basic fact that in 1-interval connected graphs, a single piece of information requires at mostn − 1
rounds to reach all the nodes in the network, provided that it is forwarded by all nodes that receive it. For-
mally, letDu(r) := {v ∈ V ∣ u⇝ (v, r)} denote the set of nodes thatu has “reached” by roundr. If u
knows a token and broadcasts it constantly, and all other nodes broadcast the token if they know it, then all
the nodes inDu(r) know the token by roundr.

Claim E.1. For any nodeu and roundr ≤ n− 1 we have∣Du(r)∣ ≥ r + 1.

Proof. By induction onr. Forr = 0 the claim is immediate. For the step, suppose that∣Du(r)∣ ≥ r+1, and
consider roundr+1 ≤ n. If Du(r) = V then the claim is trivial, becauseDu(r) ⊆ Du(r+1). Thus, suppose
thatDu(r) ∕= V . SinceG(r) is connected, there is some edge{x, y} in the cut(Du(r), V ∖Du(r)). From the
definition of the causal order we havex, y ∈ Du(r+1), and therefore∣Du(r+1)∣ ≥ ∣Du(r)∣+1 ≥ r+2.

Note that we can employ this property even when there is more than one token inthe network, provided
that tokens form a totally-ordered set and nodes forward the smallest (or biggest) token they know. It is then
guaranteed that the smallest (resp. biggest) token in the network will be known by all nodes after at most
n − 1 rounds. Note, however, that in this case nodes do not necessarilyknowwhen they know the smallest
or biggest token.
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E.1.2 Counting in linear time with Ω(n logn)-bit messages

We begin by describing a linear-time counting/n-gossip protocol which uses messages of sizeΩ(n log n).
The protocol is extremely simple, but it demonstrates some of the ideas used in some of our later algorithms,
where we eliminate the large messages using a stability assumption (T -interval connectivity) which allows
nodes to communicate with at least one of their neighbors for at leastT rounds.

In the simple protocol, all nodes maintain a setA containing all the IDs (or tokens) they have collected so
far. In every round, each node broadcastsA and adds any IDs it receives. Nodes terminate when they first
reach a roundr in which ∣A∣ < r.

A← {self }
for r = 1, 2, . . . do

broadcastA
receiveB1, . . . , Bs from neighbors
A← A ∪B1 ∪ . . . ∪Bs

if ∣A∣ < r then terminate and output∣A∣

Algorithm 2 : Counting in linear time using large messages

Claim E.2. For any nodeu and roundsr ≤ r′ ≤ n we have∣Cu(r ⇝ r′)∣ ≥ r′ − r.

Proof. By induction onr′ − r. Forr′ − r = 0 the claim is immediate.
Suppose that for all nodesu and roundsr, r′ such thatr′ ≤ n andr′ − r = i we have∣Cu(r ⇝ r′)∣ ≥ i.

Let r, r′ ≤ n be two rounds such thatr′ − r = i+ 1.
If ∣Cu((r + 1)⇝ r)∣ = n then we are done, becauser′ − r ≤ r′ ≤ n. Thus, assume thatCu((r + 1)⇝

r) ∕= V . Since the communication graph in roundr is connected, there is some edge{w,w′} ∈ E(r) such
thatw ∕∈ Cu((r+1)⇝ r) andw′ ∈ Cu((r+1)⇝ r). We have(w, r)→ (w′, r+1)⇝ (u, r′), and conse-
quently(w, r)⇝ (u, r′) andw ∈ Cu(r ⇝ r′). Also, from the induction hypothesis,∣Cu((r+1)⇝ r)∣ ≥ i.
Together we obtain∣Cu(r ⇝ r′)∣ ≥ ∣Cu((r + 1)⇝ r)∣+ 1 ≥ i+ 1, as desired.

Claim E.3. For any nodeu and roundr ≤ n we have∣Au(r)∣ ≥ r.

Proof. It is easily shown that for allv ∈ Cu(r) we havev ∈ Au(r). From the previous claim we have
∣Cu(r)∣ ≥ r for all r ≤ n, and the claim follows.

The correctness of the protocol follows from Claim E.3: suppose that for some roundr and nodeu we
have∣Au(r)∣ < r. From Claim E.3, then,r > n. Applying the claim again, we see that∣Au(n)∣ ≥ n, and
sinceAu(r) ⊆ V for all r, we obtainAu(r) = V . This shows that nodes compute the correct count. For
termination we observe that the size ofAu never exceedsn, so all nodes terminate no later than roundn+1.

E.1.3 k-committee withO(logn)-bit messages

We can solvek-committee inO(k2) rounds as follows. Each nodeu stores a local variableleaderu in addi-
tion to committeeu. A node that has not yet joined a committee is calledactive, and a node that has joined
a committee isinactive. Once nodes have joined a committee they do not change their choice.

Initially all nodes consider themselves leaders, but throughout the protocol, any node that hears an ID
smaller than its own adopts that ID as its leader. The protocol proceeds ink cycles, each consisting of two
phases,polling andselection.

1. Polling phase: fork − 1 rounds, all nodes propagate the ID of the smallest active node of which they are
aware.
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2. Selection phase: in this phase, each node that considers itself a leaderselects the smallest ID it heard
in the previous phase and invites that node to join its committee. An invitation is represented as a pair
(x, y), wherex is the ID of the leader that issued the invitation, andy is the ID of the invited node.
All nodes propagate the smallest invitation of which they are aware fork − 1 (invitations are sorted in
lexicographic order, so that invitations issued by the smallest node in the network will win out over other
invitations. It turns out, though, that this is not necessary for correctness; it is sufficient for each node to
forward an arbitrary invitation from among those it received).
At the end of the selection phase, a node that receives an invitation to join its leader’s committee does
so and becomes inactive. (Invitations issued by nodes that are not the current leader can be accepted or
ignored; this, again, does not affect correctness.)

At the end of thek cycles, any nodeu that has not been invited to join a committee outputscommitteeu = u.

leader ← self

committee ← ⊥
for i = 0, . . . , k do

// Polling phase
if committee = ⊥ then

min active ← self ; // The node nominates itself for selection
else

min active ← ⊥
for j = 0, . . . , k − 1 do

broadcastmin active

receivex1, . . . , xs from neighbors
min active ← min {min active, x1, . . . , xs}

// Update leader
leader ← min {leader ,min active}
// Selection phase
if leader = self then

// Leaders invite the smallest ID they heard
invitation ← (self ,min active)

else
// Non-leaders do not invite anybody
invitation ← ⊥

for j = 0, . . . , k − 1 do
broadcastinvitation
receivey1, . . . , ys from neighbors
invitation ← min {invitation, y1, . . . , ys} ; // (in lexicographic order)

// Join the leader’s committee, if invited
if invitation = (leader , self ) then

committee = leader

if committee = ⊥ then
committee ← self

Algorithm 3 : k-committee in always-connected graphs

Claim E.4. The protocol solves thek-committee problem.

Proof. We show that after the protocol ends, the values of the localcommitteeu variables constitute a valid
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solution tok-committee.

1. In each cycle, each node invites at most one node to join its committee. Afterk cycles at mostk nodes
have joined any committee. Note that the first node invited by a leaderu to join u’s committee is always
u itself. Thus, if afterk cycles nodeu has not been invited to join a committee, it follows thatu did
not invite any other node to join its committee; when it forms its own committee in the last lineof the
algorithm, the committee’s size is 1.

2. Suppose thatk ≥ n, and letu be the node with the smallest ID in the network. Following the polling
phase of the first cycle, all nodesv haveleaderv = u for the remainder of the protocol. Thus, throughout
the execution, only nodeu issues invitations, and all nodes propagateu’s invitations. Sincek ≥ n rounds
are sufficient foru to hear the ID of the minimal active node in the network, in every cycle nodeu success-
fully identifies this node and invites it to joinu’s committee. Afterk cycles, all nodes will have joined.

Remark. The protocol can be modified easily to solven-gossip ifk ≥ n. Lettu be the token nodeu received
in its input (or⊥ if nodeu did not receive a token). Nodes attach their tokens to their IDs, and sendpairs of
the form(u, tu) instead of justu. Likewise, invitations now contain the token of the invited node, and have
the structure(leader , (u, tu)). The min operation disregards the token and applies only to the ID. At the end
of each selection phase, nodes extract the token of the invited node, andadd it to their collection. By the end
of the protocol every node has been invited to join the committee, and thus all nodes have seen all tokens.

E.2 ∞-interval Connected Graphs

We can count in linear time in∞-interval connected graphs using the following algorithm: each node main-
tains two sets of IDs,A andS. A is the set of all IDs known to the node, andS is the set of IDs the node
has already broadcast. InitiallyA contains only the node’s ID andS is empty. In every round, each node
broadcastsmin (A ∖ S) and adds this value toS. (If A = S, the node broadcasts nothing.) Then it adds all
the IDs it receives from its neighbors toA.

While executing this protocol, nodes keep track of the current round number (starting from zero). When
a node reaches a roundr in which ∣A∣ < ⌊r/2⌋, it terminates and outputs∣A∣ as the count.

S ← ∅
A← {self }
for r = 0, . . . do

if S ∕= A then
t← min (A ∖ S)
broadcastt
S ← S ∪ {t}

receivet1, . . . , ts from neighbors
A← A ∪ {t1, . . . , ts}
if ∣A∣ < ⌊r/2⌋ then terminate and output∣A∣

return A

Algorithm 4 : Counting in∞-interval connected graphs

E.2.1 Analysis

Let dist(u, v) denote the shortest-path distance betweenu andv in the stable subgraphG′, and letNd(u)
denote thed-neighborhood ofu in G′, that is,Nd(u) = {v ∈ V ∣ dist(u, v) ≤ d}. We useAx(r) and
Sx(r) to denote the values of local variablesA andS at nodex ∈ V in the beginning of roundr. Note the
following properties:

1. Sx(r + 1) ⊆ Ax(r) ⊆ Ax(r + 1) for all x andr.
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2. If u andv are neighbors inG′, thenSu(r) ⊆ Av(r) for all r, because every value sent byu is received
by v and added toAv.

3. S andA are monotonic, that is, for allx andr we haveSx(r) ⊆ Sx(r + 1) andAx(r) ⊆ Ax(r + 1).

Claim E.5. For every two nodesx, u ∈ V and roundr such thatr ≥ dist(u, x), eitherx ∈ Su(r + 1) or
∣Su(r + 1)∣ ≥ r − dist(u, x).

Proof. By induction onr. Forr = 0 the claim is immediate.
Suppose the claim holds for roundr−1, and consider roundr. Letx, u be nodes such thatr ≥ dist(u, x);

we must show that eitherx ∈ Su(r + 1) or ∣Su(r + 1)∣ ≥ r − dist(u, x).
If x = u, then the claim holds:u is broadcast in the first round, and thereafter we haveu ∈ Su(r) for all

r ≥ 1.
Otherwise, letv be a neighbor ofu along the shortest path fromu to x in G′; that is,v is a neighbor ofu

such thatdist(v, x) = dist(u, x)− 1. Sincer ≥ dist(u, x) = dist(v, x) + 1 we haver − 1 ≥ dist(v, x).
From the induction hypothesis onv andx in roundr−1, eitherx ∈ Sv(r) or ∣Sv(r)∣ ≥ r−1−dist(v, x) =

r − dist(u, x). Applying property 2 above, this implies the following.

(★) Eitherx ∈ Au(r) or ∣Au(r)∣ ≥ r − dist(u, x).

If x ∈ Su(r) or ∣Su(r)∣ ≥ r − dist(u, x) then we are done, becauseSu(r) ⊆ Su(r + 1). Suppose then
thatx ∕∈ Su(r) and∣Su(r)∣ < r − dist(u, x). It is sufficient to prove thatAu(r) ∕= Su(r): this shows that
in roundr nodeu broadcastsmin (Au(r) ∖ Su(r)) and adds it toSu, yielding ∣Su(r + 1)∣ ≥ ∣Su(r)∣+ 1 ≥
r − dist(u, x) and proving the claim.

We show this using(★). If x ∈ Au(r), thenAu(r) ∕= Su(r), because we assumed thatx ∕∈ Su(r). Oth-
erwise(★) states that∣Au(r)∣ ≥ r − dist(u, x), and since we assumed that∣Su(r)∣ < r − dist(u, x), this
again shows thatAu(r) ∕= Su(r).

Claim E.6. If r ≤ n, then for all nodesu we have∣Au(2r)∣ ≥ r.

Proof. Let u ∈ V . For any nodex ∈ N r(u), Claim E.5 shows that eitherx ∈ Su(2r+1) or ∣Su(2r+1)∣ ≥
2r − dist(u, x) ≥ r. Thus, either∣Su(2r + 1)∣ ≥ r or N r(u) ⊆ Su(2r + 1). Sincer ≤ n andG′ is
connected we haveN r(u) ≥ r, and therefore in both cases we have∣Au(2r)∣ ≥ ∣Su(2r + 1)∣ ≥ r.

Claim E.7. The algorithm terminates in linear time and outputs the correct count at all nodes.

Proof. Termination is straightforward: the setA only contains IDs of nodes that exist in the network, so its
size cannot exceedn. All nodes terminate no later than round2n+ 2.

Correctness follows from Claim E.6. Suppose that in roundr nodeu has ∣Au(r)∣ < ⌊r/2⌋, and let
r′ = ⌊r/2⌋. We must show thatAu(r) = V .

From Claim E.6, ifr′ ≤ n then ∣Au(2r
′)∣ ≥ r′. By definition ofr′ we haver ≥ 2r′ and hence from

Property 3 we obtain∣Au(r)∣ ≥ r′, which is not the case. Thus,r′ > n andr > 2n. Applying the same
reasoning as in Claim E.6 to roundn, we see that either∣Su(2n+ 1)∣ > n or Nn(u) ⊆ Su(2n+ 1). Since
the first cannot occur it must be the case thatV = Nn(u) ⊆ Su(2n+ 1) ⊆ Au(r), and we are done.

E.3 Finite-Interval Connected Graphs

Next we generalize the protocol above, in order to solvek-committee in2T -interval connected graphs. The
general protocol requiresO(n + n2/T ) rounds (and assumes thatT is known in advance). The idea is the
same as for always-connected graphs, except that instead of selecting one node at a time to join its commit-
tee, each leader selects a batch ofT nodes and disseminates their IDs throughout the network. We generalize
and refine Claim E.5 for the case where there are initially up ton tokens, but only the smallestT tokens
need to be disseminated.
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E.3.1 T -gossip in2T -interval connected graphs

The “pipelining effect” we used in the∞-interval connected case allows us to disseminateT tokens in2n
rounds, given that the graph is2T -interval connected. The idea is to use a similar protocol to the∞-interval
connected case, except that the protocol is “restarted” every2T rounds: all nodes empty the setS (but not
A), which causes them to re-send the tokens they already sent, starting from the smallest and working up-
wards. TheT smallest tokens will thus be propagated through the network, and larger tokens will “die out”
as they are not re-sent.

This is captured formally by the following protocol. The tokens are now assumed to come from a well-
ordered set(P,<). The input at each nodeu is an initial setAu ⊆ P of tokens. In addition, it is assumed that
all nodes have a common guessk for the size of the network. The protocol guarantees that theT smallest
tokens in the network are disseminated to all nodes, provided that the graphis 2T -interval connected and
thatk ≥ n.

S ← ∅
for i = 0, . . . , ⌈k/T ⌉ − 1 do

for r = 0, . . . , 2T do
if S ∕= A then

t← min (A ∖ S)
broadcastt
S ← S ∪ {t}

receivet1, . . . , ts from neighbors
A← A ∪ {t1, . . . , ts}

S ← ∅
return A

Function disseminate(A, T, k)

We refer to each iteration of the inner loop as aphase. Since a phase lasts2T rounds and the graph
is 2T -interval connected, there is some connected subgraph that exists throughout the phase. LetG′

i be a
connected subgraph that exists throughout phasei, for i = 0, . . . , ⌈k/T ⌉ − 1. We usedisti(u, v) to denote
the distance between nodesu, v ∈ V in G′

i.
Let Kt(r) denote the set of nodes that know tokent by the beginning of roundr, that is,Kt(r) =
{u ∈ V ∣ t ∈ Au(r)}. In addition, letI be the set ofT smallest tokens in

∪

u∈V Au(0). Our goal is to show
that when the protocol terminates we haveKt(r) = V for all t ∈ I.

For a nodeu ∈ V , a tokent ∈ P , and a phasei, we definetdisti(u, t) to be the distance ofu from the
nearest node inG′

i that knowst at the beginning of phasei:

tdist(u, t) := min {disti(u, v) ∣ v ∈ Kt(2T ⋅ i)} .

Here and in the sequel, we use the convention thatmin ∅ := ∞. For convenience, we useSi
u(r) :=

Su(2T ⋅ i+ r) to denote the value ofSu in roundr of phasei. Similarly we denoteAi
u(r) := Au(2T ⋅ i+ r)

andKi
t(r) := Kt(2T ⋅ i+ r).

The following claim characterizes the spread of each token in each phase. It is a generalization of
Claim E.5, and the proof is similar.

Claim E.8. For any nodeu ∈ V , tokent ∈
∪

u∈V Au(0) and roundr ∈ {0, . . . , 2T − 1} such that
r ≥ tdisti(u, t), either t ∈ Si

u(r + 1) or Si
u(r + 1) includes at least(r − tdisti(u, t)) tokens that are

smaller thant.

Proof. By induction onr. Forr = 0 the claim is immediate.
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Suppose the claim holds for roundr−1 of phasei, and consider roundr ≥ tdisti(u, t). If r = tdisti(u, t),
then r − tdisti(u, t) = 0 and the claim holds trivially. Thus, suppose thatr > tdisti(u, t). Hence,
r − 1 ≥ tdisti(u, t), and the induction hypothesis applies: eithert ∈ Si

u(r) or Si
u(r) includes at least

(r − 1− tdisti(u, t)) tokens that are smaller thant. In the first case we are done, sinceSi
u(r) ⊆ Si

u(r+1);
thus, assume thatt ∕∈ Si

u(r), andSi
u(r) includes at least(r − 1− tdisti(u, t)) tokens smaller thant. How-

ever, ifSi
u(r) includes at least(r − tdisti(u, t)) tokens smaller thant, then so doesSi

u(r+1), and the claim
is again satisfied; thus we assume thatSi

u(r) includesexactly(r − 1− tdisti(u, t)) tokens smaller thant.
It is sufficient to prove thatmin

(

Ai
u(r) ∖ S

i
u(r)

)

≤ t: if this holds, then in roundr nodeu broadcasts
min

(

Ai
u(r) ∖ S

i
u(r)

)

, which is eithert or a token smaller thant; thus, eithert ∈ Si
u(r + 1) or Si

u(r + 1)
includes at least(r − tdisti(u, t)) tokens smaller thant, and the claim holds.

First we handle the case wheretdisti(u, t) = 0. In this case,t ∈ Ai
u(0) ⊆ Ai

u(r). Since we assumed that
t ∕∈ Si

u(r) we havet ∈ Ai
u(r) ∖ S

i
u(r), which implies thatmin

(

Ai
u(r) ∖ S

i
u(r)

)

≤ t.
Next suppose thattdisti(u, t) > 0. Let x ∈ Ki

t(0) be a node such thatdisti(u, x) = tdist(u, t) (such
a node must exist from the definition oftdisti(u, t)), and letv be a neighbor ofu along the path fromu to
x in G′

i, such thatdisti(v, x) = disti(u, x) − 1 < r. From the induction hypothesis, eithert ∈ Si
v(r) or

Si
v(r) includes at least(r − 1− tdisti(v, t)) = (r − tdisti(u, t)) tokens that are smaller thant. Since the

edge betweenu andv exists throughout phasei, nodeu receives everythingv sends in phasei, and hence
Si
v(r) ⊆ Ai

u(r). Finally, because we assumed thatSi
u(r) contains exactly(r − 1− tdisti(u, t)) tokens

smaller thant, and does not includet itself, we havemin
(

Ai
u(r) ∖ S

i
u(r)

)

≤ t, as desired.

Claim E.9. For each of theT smallest tokenst ∈ I and phasesi, we have∣Ki
t(0)∣ ≥ min {n, T ⋅ i}.

Proof. The proof is by induction oni. For i = 0 the claim is immediate. For the induction step, suppose
that∣Ki

t(0)∣ ≥ min {n, T ⋅ i}, and consider phasei+ 1.
Let N(t) denote theT -neighborhood ofKi

t(0), that is,N(t) := {u ∈ V ∣ tdisti(u, t) ≤ T}. From
Claim E.8 applied to round2T of phasei, for all u ∈ N(t), eithert ∈ Si

u(r + 1) or Si
u(r + 1) includes at

least2T − T = T tokens smaller thant. Sincet is one of theT smallest tokens in the network, this latter
case is impossible. Thus, every nodeu ∈ N(t) hast ∈ Si

u(2T + 1) ⊆ Ai
u(2T + 1), which implies that

N(t) ⊆ Ki+1
t (0). In addition,Ki

t(0) ⊆ Ki+1
t (0), because nodes never forget tokens they have learned.

SinceG′
i is connected,∣N(t) ∖ Ki

t(0)∣ ≥ T . Combining with the induction hypothesis we obtain
∣N(t) ∪Ki

t(0)∣ ≥ min {n, T ⋅ (i+ 1)}, and the claim follows.

Proceduredisseminate terminates at the end of phase⌈k/T ⌉ − 1, or, equivalently, at the beginning
of phase⌈k/T ⌉. By this time, if the guess for the size of the network was correct, all nodes have learned the
T smallest tokens.

Corollary E.10. If k ≥ n, thenK⌈k/T ⌉
t (0) = V for each of theT smallest tokenst ∈ I.

Proof. The claim follows from Claim E.9, becauseT ⋅ ⌈k/T ⌉ ≥ k ≥ n.

E.3.2 k-committee in2T -interval connected graphs

We can solve thek-committee problem inO(k + k2/T ) rounds using Algorithm 6. The idea is similar to
Algorithm 3, except that leaders inviteT nodes to join their committee in every cycle instead of just one
node. Each node begins the protocol with a unique ID which is stored in the local variableself .
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leader ← self

committee ← ⊥
for i = 0, . . . , ⌈k/T ⌉ − 1 do

if committee = ⊥ then
A← {self } ; // The node nominates itself for selection

else
A← ∅

tokens ← disseminate(A, T, k)
leader ← min ({leader} ∪ tokens)
if leader = self then

// Leaders invite the T smallest IDs they collected
// (or less in the final cycle, so that the total does not exceed k)
if i < ⌈k/T ⌉ − 1 then

A← smallest-T (tokens)
else

m← k − (⌈k/T ⌉ − 1) ⋅ T
A← smallest-T (tokens)

else
// Non-leaders do not invite anybody
A← ∅

tokens ← disseminate({self } ×A, T, k)
// Join the leader’s committee, if invited
if (leader , self ) ∈ tokens then

committee = leader

if committee = ⊥ then
committee ← self

Algorithm 6 : k-committee in2T -interval connected graphs

Claim E.11. The protocol above solvesk-committee inO(k + k2/T ) rounds.

E.3.3 Counting in Graphs with Unknown Finite-Interval Connectivity

The protocol above assumes that all nodes know the degree of intervalconnectivity present in the commu-
nication graph; if the graph is not2T -interval connected, invitations may not reach their destination, and
the committees formed may contain less thank nodes even ifk ≥ n. However, even when the graph is
not 2T -interval connected, no committee containsmorethank nodes, simply because no node ever issues
more thank invitations. Thus, if nodes guess a value forT and use thek-committee protocol above to solve
k-verification, their error is one-sided: if their guess forT is too large they may falsely conclude thatk < n
when in factk ≥ n, but they will never conclude thatk ≥ n whenk < n.

This one-sided error allows us to try different values fork andT without fear of mistakes. We can count
in O(n logn+ n2 log(n)/T ) time in graphs whereT is unknownusing the following scheme. I assume the
version ofk-verification that returns the setV of all nodes ifk ≥ n, or the special value⊥ if k < n.
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for i = 1, 2, 4, 8, . . . do
for k = 1, 2, 4, . . . , i do

if k-verification assuming⌊k2/i⌋-interval connectivity returnsV ∕= ⊥ then
return∣V ∣

Algorithm 7 : Counting inO(n logn + n2 log(n)/T ) in T -interval connected graphs whereT is
unknown

The time required fork-verification assuming⌊k2/i⌋-interval connectivity isO(k2/⌊k2/i⌋) = O(i) for
all k, and thus the total time complexity of thei-th iteration of the outer loop isO(i log i).

If the communication graph isT -interval connected, the algorithm terminates the first time we reach val-
ues ofi andk such thatk ≥ n and⌊k2/i⌋ ≤ T . LetN be the smallest power of 2 that is no smaller thann;
clearlyN < 2n. Let us show that the algorithm terminates when we reachi = max

{

N, ⌈N2/T ⌉
}

.
First consider the case wheremax

{

N, ⌈N2/T ⌉
}

= N , and henceT ≥ N . When we reach the last iter-
ation of the inner loop, wherek = i = N , we try to solveN -verification assumingN -interval connectivity.
This must succeed, and the algorithm terminates.

Next, suppose that⌈N2/T ⌉ > N . Consider the iteration of the inner loop in whichk = N . In this itera-
tion, we try to solveN -verification assuming⌊N2/⌈N2/T ⌉⌋-interval connectivity. Since⌊N2/⌈N2/T ⌉⌋ ≤
T , this again must succeed, and the algorithm terminates.

The time complexity of the algorithm is dominated by the last iteration of the outer loop,which requires
O(i log i) = O(n logn+ n2 log(n)/T ) rounds.

The asymptotic time complexity of this algorithm only improves upon the originalO(n2) algorithm
(which assumes only 1-interval connectivity) whenT = !(log n). However, it is possible to execute both
algorithms in parallel, either by doubling the message sizes or by interleaving thesteps, so that the original
algorithm is executed in even rounds and Alg. 7 is executed in odd rounds.This will lead to a time complex-
ity of O(min

{

n2, n logn+ n2 log(n)/T
}

), because we terminate when either algorithm returns a count.

E.4 Exploiting Expansion Properties of the Communication Graph

Naturally, if the communication graph is always a good expander, the algorithms presented here can be
made to terminate faster. We consider two examples of graphs with good expansion. As before, when the
expansion is not known in advance we can guess it, paying alog n factor.

E.4.1 f -Connected Graphs

Definition E.1. A static graphG is f -connectedfor f ∈ ℕ if the removal of any set of at mostf − 1 nodes
fromG does not disconnect it.

Definition E.2 (T -interval f -connectivity). A dynamic graphG = (V,E) is said to beT -interval f -

connectedfor T, f ∈ ℕ if for all r ∈ ℕ, the static graphGr,T :=
(

V,
∩r+T−1

i=r E(r)
)

is f -connected.

Definition E.3 (Neighborhoods). Given a static graphG = (V,E) and a setS ⊆ V of nodes, theneigh-
borhoodof S in G is the setΓG(S) = S ∪ {v ∈ V ∣ ∃u ∈ S : {u, v} ∈ E}. Thed-neighborhoodof S is
defined inductively, withΓ0

G(S) = S andΓd
G(S) = ΓG(Γ

d−1
G (S)) for d > 0. We omit the subscriptG when

it is obvious from the context.

In f -connected graphs the propagation speed is multiplied byf , because every neighborhood is connected
to at leastf external nodes (if there are fewer thanf remaining nodes, it is connected to all of them). This
is shown by the following lemma.

Lemma E.12(Neighborhood Growth). If G = (V,E) is a staticf -connected graph, then for any non-empty
setS ⊆ V and integerd ≥ 0, we have∣Γd(S)∣ ≥ min {∣V ∣, ∣S∣+ fd}.
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Proof. By induction ond. For d = 0 the claim is immediate. For the step, suppose that∣Γd(S)∣ ≥
min {∣V ∣, ∣S∣+ fd}. Suppose further thatΓd+1(S) ∕= V , otherwise the claim is immediate. This also
implies thatΓd(S) ∕= V , becauseΓd(S) ⊆ Γd+1(S). Thus the induction hypothesis states that∣Γd(S)∣ ≥
∣S∣+ fd.

Let Γ := Γd+1(S) ∖ Γd(S) denote the “new” nodes in the(d + 1)-neighborhood ofS. It is sufficient to
show that∣Γ∣ ≥ f , because then∣Γd+1(S)∣ = ∣Γd(S)∣+ ∣Γ∣ ≥ ∣S∣+ f(d+ 1), and we are done.

Suppose by way of contradiction that∣Γ∣ < f , and letG′ = (V ′, E′) be the subgraph obtained fromG by
removing the nodes inΓ. BecauseG is f -connected and∣Γ∣ < f , the subgraphG′ is connected. Consider
the cut(Γd(S), V ′ ∖ Γd(S)) in G′. BecauseS ∕= ∅ andS ⊆ Γd(S), we haveΓd(S) ∕= ∅, and because
Γd(S) ⊆ Γd+1(S) andΓd+1(S) ∕= V , we also haveV ′ ∖ Γd(S) ∕= ∅. However, the cut is empty: if there
were some edge{u, v} ∈ E such thatu ∈ Γd(S) andv ∈ V ′ ∖ Γd(S), then by definition ofΓd+1(S) we
would havev ∈ Γd+1(S). This in turn would imply thatv ∈ Γ, and thusv ∕∈ V ′, a contradiction. This
shows thatG′ is not connected, contradicting thef -connectivity ofG.

Now we can modify Proceduredisseminate to require only⌈k/(fT )⌉ phases. Claim E.8 still holds,
since it is only concerned with a single phase. The key change is in Claim E.9,which we now re-state as
follows.

Claim E.13. For each of theT smallest tokenst ∈ I and phasesi we have∣Ki
t(0)∣ ≥ min {n, T ⋅ f ⋅ i}.

Proof. Again by induction oni, with the base case being trivial. For the step, assume that∣Ki
t(0)∣ ≥

T ⋅ f ⋅ i. As argued in the proof of Claim E.9, at the end of phasei + 1 we haveΓT (t) ⊆ Ki+1
t (0), where

ΓT (t) := {u ∈ V ∣ tdisti(u, t) ≤ T}. From Lemma E.12,∣ΓT (t)∣ ≥ min
{

n, ∣Ki
t(0)∣+ fT

}

, and the
claim follows.

Corollary E.14. If k ≥ n, thenK⌈k/(fT )⌉
t (0) = V for each of theT smallest tokenst ∈ I.

Proof. BecausefT ⋅ ⌈k/(fT )⌉ ≥ k.

By substituting the shorteneddisseminate in Algorithm 6, we obtain an algorithm that solvesk-
Committee inO(n+ n2/(fT )) time in2T -intervalf -connected graphs.

E.4.2 Vertex Expansion

In this section, we show that if the communication graph is always an expander, thedisseminate proce-
dure requiresO(⌈log(n)/T ⌉) phases to disseminate theT smallest tokens.

Definition E.4. A static graphG = (V,E) is said to have vertex expansion� > 0 if for all S ⊆ V , if
∣S∣ ≤ ∣V ∣

2 thenΓ(S)
S ≥ 1 + �.

Definition E.5 (T -interval vertex expansion). A dynamic graphG = (V,E) is said to haveT -interval ver-

tex expansion� > 0 for T ∈ ℕ if for all r ∈ ℕ, the static graphGr,T :=
(

V,
∩r+T−1

i=r E(r)
)

has vertex

expansion�.

Lemma E.15. LetG = (V,E), ∣V ∣ = n be a fixed undirected graph. IfG has vertex expansion� > 0, for
any non-empty setS ⊆ V and integerd ≥ 0, we have

∣Γd(S)∣ ≥

{

min
{

(n+ 1)/2, ∣S∣ ⋅ (1 + �)d
}

if ∣S∣ ≤ n/2

n− ∣V ∖ S∣/(1 + �)d if ∣S∣ > n/2.
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Proof. The cased = 0 is trivial, the case∣S∣ ≤ n/2 follows directly from Definition E.4. For∣S∣ > n/2,
let A = Γd(S) ∖ S and letB = V ∖ (S ∪ A). Note that any two nodesu ∈ S andv ∈ B are at dis-
tance at leastd + 1. It therefore holds thatΓd(B) ⊆ V ∖ S. Consequently, we haveΓd(B) < n/2 and
certainly also∣B∣ < n/2 and thus by Definition E.4,Γd(B) ≥ ∣B∣(1 + �)d. Together, this implies that
n− ∣Γd(S)∣ = ∣B∣ ≤ ∣V ∖ S∣/(1 + �)d as claimed.

Analogously toT -intervalf -connected graphs, we can modify Proceduredisseminate to require only
O(1 + log1+�(n)/T ) phases. Again, Claim E.8 still holds and the key is to restate Claim E.9, which now
has to be adapted as follows.

Claim E.16. We definei0 := ⌈log1+�((n+ 1)/2)/T ⌉. For each of theT smallest tokenst ∈ I and phases
i, we have

∣Ki
t(0)∣ ≥

{

min
{

(n+ 1)/2, (1 + �)i⋅T
}

for i ≤ i0

n− (n−1)/2

(1+�)(i−i0)⋅T
for i > i0.

Proof. As in the other two cases, the proof is by induction oni, with the base case being trivial. Again, for
the step, as argued in the proof of Claim E.9, at the end of phasei + 1 we haveΓT (t) ⊆ Ki+1

t (0), where
ΓT (t) := {u ∈ V ∣ tdisti(u, t) ≤ T}. The claim now immediately follows from Lemma E.15.

Corollary E.17. If i ≥ 2i0 = O(1 + log1+�(n)), K
i
t(0) = V for each of theT smallest tokenst ∈ I.

Consequently, in dynamic graphs withT -interval vertex expansion�, n-gossip can be solved inO(n +
n log1+�(n)/T ) rounds.

E.5 Asynchronous Start

So far we assumed that all nodes begin executing the protocol in the same round. It is interesting to consider
the case where computation is initiated by some subset of nodes, while the restare asleep. We assume that
sleeping nodes wake up upon receiving a message; however, since messages are delivered at theendof each
round, nodes that are woken up in roundr send their first message in roundr+1. Thus, nodes have no way
of determining whether or not their messages were received by sleeping nodes in the current round.

Claim E.18. Counting is impossible in 1-interval connected graphs with asynchronousstart.

Proof. Suppose by way of contradiction thatA is a protocol for counting which requires at mostt(n) rounds
in 1-interval connected graphs of sizen. Let n′ = max {t(n) + 1, n+ 1}. We will show that the protocol
cannot distinguish a line of lengthn from a line of lengthn′.

Given a sequenceA = a1 ∘ . . . ∘ am, let shift(A, r) denote the cyclic left-shift ofA in which the firstr
symbols (r ≥ 0) are removed from the beginning of the sequence and appended to the end. Consider an exe-
cution in a dynamic line of lengthn′, where the line in roundr is composed of two adjacent sectionsA∘Br,
whereA = 0 ∘ . . . ∘ (n− 1) remains static throughout the execution, andB(r) = shift(n ∘ . . . ∘ (n′− 1), r)
is left-shifted by one in every round. The computation is initiated by node0 and all other nodes are initially
asleep. We claim that the execution of the protocol in the dynamic graphG = A ∘B(r) is indistinguishable
in the eyes of nodes0, . . . , n− 1 from an execution of the protocol in the static line of lengthn (that is, the
network comprising sectionA alone). This is proven by induction on the round number, using the fact that
throughout rounds0, . . . , t(n) − 1 none of the nodes in sectionA ever receives a message from a node in
sectionB: although one node in sectionB is awakened in every round, this node is immediately removed
and attached at the end of sectionB, where it cannot communicate with the nodes in sectionA. Thus, the
protocol cannot distinguish the dynamic graphA from the dynamic graphA ∘ B(r), and it produces the
wrong output in one of the two graphs.
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If 2-interval connectivity is assumed, it becomes possible to solve gossip under asynchronous start. We
begin by defining a version of thek-committee andk-verification problems that explicitly address sleeping
nodes.

k-Commitee with Wakeup. In the modifiedk-committee problem we require, as before, that no commit-
tee have more thank nodes. Sleeping nodes are not counted as belonging to any committee. In addition, if
k ≥ n, we require all nodes to be awake and to be in the same committee.

k-Verification with Wakeup. In the modifiedk-verification problem, all awake nodes must eventually
output 1 iff k ≥ n. Sleeping nodes do not have to output anything. (Nodes that are awakened during the
execution are counted as awake and must output a correct value; however, there is no requirement for the
algorithm to wake up all the nodes.)

E.5.1 k-Verification with Wakeup

We modify thek-verification protocol as follows. First, each node that is awake at the beginning of the
computation maintains a round counterc which is initialized to 0 and incremented after every round. Each
message sent by the protocol carries the round counter of the sender,as well as a tag indicating that it is a
k-verification protocol message (so that sleeping nodes can tell which protocol they need to join).

As before, each nodeu has a variablexu which is initially set to its committee ID. In every round node
u broadcasts the message⟨k-ver, cu, xu⟩. If u hears a different committee ID or the special value⊥, it sets
xu ← ⊥; if it hears a round counter greater than its own, it adopts the greater value as its own round counter.
When a nodeu is awakened by receiving a message carrying thek-ver tag, it setsxu ← ⊥ and adopts the
round counter from the message (if there is more than one message, it usesthe largest one).

All awake nodes execute the protocol until their round counter reaches2k. At that point they halt and
output1 iff x ∕= ⊥.

x ← committee

c ← 0
while c < 2k do

broadcast⟨k-verif, c, x⟩
receive⟨k-verif, c1, x1, ⟩, . . . ,⟨k-verif, cs, xs, ⟩ from neighbors
if xi ∕= x for some1 ≤ i ≤ s then

x← ⊥
c← max {c, c1, . . . , cs}+ 1

if x = ⊥ then
output 0

else
output 1

upon awakening by receipt of messages⟨k-verif, c1, x1, ⟩, . . . ,⟨k-verif, cs, xs, ⟩:
x← ⊥
c← max {c1, . . . , cs}+ 1

upon awakening spontaneously (by the adversary):
x← ⊥
c← 0

Algorithm 8 : k-verification protocol with wakeup

Claim E.19. Algorithm 8 solves thek-verification with wakeup problem if all nodes start in a state that
represents a solution tok-committee with wakeup, and the graph is 2-interval connected.

Proof. The case wherek ≥ n is immediate: as in the synchronous start case, all nodes are awake at the
beginning of the protocol, and no node ever hears a committee ID differentfrom its own.
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Suppose thatk < n. Nodes that are awakened during the protocol set theirx variable to⊥, so they will
output 0; we only need to concern ourselves with nodes that are awake at the beginning and have a commit-
tee ID. We show that the size of each committee shrinks by at least one node every two rounds, so that at
the end of the2k rounds, all nodes havex = ⊥.

Consider a cut between the nodes that belong to some committeeC and still havex = C, and the rest of
the nodes, which are either sleeping or havex ∕= C. From 2-interval connectivity, some edge{u, v} in the
cut exists for the next two rounds. Assume thatxu = C. If v is asleep in the first round, wakes up when
it receivesu’s message, and broadcasts⊥ in the second round. Ifv is awake in the first round it broadcasts
xu ∕= xv in the first round. In both cases nodeu will changexu to⊥ by the end of the second round.

It remains to show that we can solvek-committee with asynchronous start. We can do this using the same
approach as before, with one minor modification: as withk-verification, we maintain a round counterc at
every node, and now each nodeu uses the pair⟨cu, u⟩ as its UID, instead ofu alone. The pairs are ordered
lexicographically, withlarger round counters winning out over smaller ones; that is,⟨cu, u⟩ < ⟨cv, v⟩ iff
cu > cv, or cu = cv andu < v.

When a node receives a larger round counter than its own in a message, itadopts that value as its own
round counter, and jumps to the appropriate part of the protocol (e.g., if the round counter it receives is
k + 3, in the next round it will execute the fifth round of the invitation phase, because it knows that the first
k−1 rounds were taken up by the polling phase and the first four rounds of the invitation phase have passed
already). We use round counters so that nodes that awaken during theexecution of the protocol will know
what the current round is, and to have the eventual leader be one of thenodes that woke up first.

Claim E.20. Algorithm 6, when run with round counters and using pairs of the form⟨cu, u⟩ instead of UIDs,
solves thek-committee with wakeup problem.

Proof. First consider the case wherek ≥ n, and letu be the node with the smallest UID among the nodes
that initiate the computation. The first polling phase executed byu lastsk ≥ n rounds, during which all
nodes receiveu’s polling message and forward it, setting their round counter to matchu’s if it does not
already. At the end ofu’s polling phase, all nodes are awake, all have the same round counter asu, and all
haveu as their leader. From this point on the execution proceeds as in the case ofsynchronous wakeup.

Next suppose thatk < n. In this case we only need to show that no committee contains more thank mem-
bers. But this, as always, is guaranteed by the fact that each committee contains only nodes invited by the
node whose UID is the committee ID, and no node ever invites more thank nodes to join its committee.

When nodes execute the full counting algorithm with asynchronous wakeup, different parts of the graph
may be testing different values fork at the same time. However, the round counter serves to bring any
lagging nodes up-to-date. When some nodeu first reachesk ≥ n, even if other nodes are still testing smaller
values fork, the first polling phase ofu’s k-committee instance will reach all nodes and cause them to join
u’s computation. (In fact they will joinu’s computation sooner, because to reachk ≥ n it had already had to
go through at leastn−1 rounds testing smaller values, so all nodes will have seen its current round already.)

E.6 Randomized Approximate Counting

We next show that under certain restrictions on the adversary providingthe sequence of graphs, by using
randomization, it is possible to obtain an approximation to the number of nodes in timealmost linear inn
with high probability, even if the dynamic graph is only1-interval connected. The techniques we use are
based on a gossiping protocol described in [32]. We assume that the nodes know some potentially loose up-
per boundN onn. When arguing about randomized algorithms, we need to specify which random choices
the dynamic graphG = (V,E) can depend on. We assume an adversary that is oblivious to all random
choices of the algorithm.
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Definition E.6 (Oblivious Adversary). Consider an execution of a randomized algorithmA. The dynamic
graphG = (V,E) provided by an oblivious adversary has to be independent of all random choices ofA.

In the sequel, we show that in the case of an oblivious adversary, it is possible to use randomization to
efficiently compute an arbitrarily good estimate ofn. In particular, we show that for any" > 0, it is possible
to compute an(1 + ")-approximation ofn with high probability (inN ) in time

∙ O(n) when using messages of sizeO(logN ⋅ (log logN + log(1/"))/"2)
∙ O(n ⋅ (log logN + log(1/"))/"2) if the maximal message size is restricted toO(logN) bits.

For simplicity, we only describe the algorithm with slightly larger message sizes in detail and merely
sketch how to adapt the algorithm if messages are restricted toO(logN) bits. For parameters" ∈ (0, 1/2)
andc > 0, we define

ℓ := ⌈(2 + 2c) ⋅ 27 ln(N)/"2⌉. (1)

Initially, each nodev ∈ V , computesℓ independent exponential random variablesY
(v)
1 , . . . , Y

(v)
ℓ with

rate1. Following the aggregation scheme described in [32], we define

∀S ⊆ V : n̂(S) :=
ℓ

∑ℓ
i=1minv∈S Y

(v)
i

. (2)

If we choose a setS independently of the exponential random variables of the nodes,n̂(S) is a good
estimate for the size ofS as shown by the following lemma, which is proven in [32].

Lemma E.21([32]). For everyS ⊆ V that is chosen independently of the random variablesY
(v)
i for i ∈ [ℓ]

andv ∈ V , we have

Pr

(

∣

∣n̂(S)− ∣S∣
∣

∣ >
2

3
⋅ "∣S∣

)

≤ 2e−"2ℓ/27.

Before describing the algorithm in detail, we give a brief overview. In order to obtain a good estimate
for the total number of nodesn, the objective of each node will be to computen̂(V ) and thusminv∈V Y

(v)
i

for eachi ∈ [ℓ]. In each round, every node broadcasts the minimalYi value it has heard for everyi ∈ [ℓ].
If we assume that the sequence of graphs is chosen by an oblivious adversary, for each nodev ∈ V and
roundr > 0, Cv(r) is independent of all the exponential random variablesY

(u)
i chosen by nodesu ∈ V .

Hence, as a consequence of Lemma E.21,n̂(Cv(r)) is a good estimate of∣Cv(r)∣ for all r andv. Because
∣Cv(r)∣ ≥ r for all r andv (Claim E.2), each node can stop forwarding minimalYi values as soon as the
value ofn̂(Cv(r)) exceeds the round number by a sufficient amount.

Executing the algorithm as described above would require the nodes to send exact values of exponential
random variables, i.e., real values that cannot a priori be sent using abounded number of bits. Therefore,
each nodev ∈ V computes a rounded valuẽY (v)

i of Y (v)
i for eachi ∈ [ℓ] as follows.

Ỹ
(v)
i := min

{

1

4ℓN1+c
,max

{

ln(4ℓN1+c),
(

1 +
"

4

)⌊log1+"/4(Y
(v)
i )⌋

}}

. (3)

Hence,Y (v)
i is rounded to the next smaller integer power of1 + "/4. Further, we restrict̃Y (v)

i to be within

the range[1/(4ℓN1+c), ln(4ℓN1+c)]. We will show that with high probability, all variablesY (v)
i will be in

this range and thus restricting the range only has an effect with negligible probability. AsỸ (v)
i is an integer
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power of1 + "/4, it can be stored usingO(log log1+"/4(ℓN)) = O(log logN + log(1/")) bits. The details
of the algorithm are given by Algorithm 9.

Z(v) ← (Ỹ
(v)
1 , . . . , Ỹ

(v)
ℓ )

for r = 1, 2, . . . do
broadcastZ(v)

receiveZ(v1), . . . , Z(vs) from neighbors
for i = 1, . . . , ℓ do

Z
(v)
i ← min

{

Z
(v)
i , Z

(v1)
i , . . . , Z

(vs)
i

}

ñv(r)← ℓ/
∑ℓ

i=1 Z
(v)
i

if (1− ")r > ñv(r) then terminate and output̃nv(r)

Algorithm 9 : Randomized approximate counting in linear time, code for nodev

Theorem E.22. For " ∈ (0, 1/2) andc > 0, with probability at least1− 1/N c, every node of Algorithm 9
computes the same valueñv(r) =: ñ. Further ∣ñ− n∣ ≤ "n.

Proof. LetA be the event that the exponential random variablesY
(v)
i for all i ∈ [ℓ] andv ∈ V are within

the range[1/(4ℓN1+c), ln(4ℓN1+c)]. For eachY (v)
i , we have

Pr

(

Y
(v)
i <

1

4ℓN1+c

)

= 1− e−
1

4ℓN1+c <
1

4ℓN1+c

and

Pr
(

Y
(v)
i > ln(4ℓN1+c)

)

= eln(4ℓN
1+c) =

1

4ℓN1+c
.

As the number of random variablesY (v)
i is ℓn, we obtainPr(A) ≥ 1− 1/(2N c) by a union bound.

Consider the state of some nodev ∈ V afterr > 0 rounds. Because all minimalZi values are always for-
warded, for alli ∈ [ℓ], it holds thatZ(v)

i = minu∈Cv(r) Ỹ
(u)
i . In case of the eventA, for all i andv, we have

Ỹ
(v)
i ≤ Y

(v)
i ≤

(

1 +
"

4

)

⋅ Ỹ
(v)
i and thus ñv(r) ≥ n̂(Cv(r)) ≥

ñv(r)

1 + "/4
. (4)

We thus get
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(Lemma E.21)
≤ 2e−"2ℓ/27 ≤ 2e−2−(2+c) lnN) <

1

2N2+c
.

In order to be able to apply Lemma E.21, we use that with an oblivious adversary, for all r andv, Cv(r) is

independent of all random variablesY (u)
i . By applying a union bound, we obtain that with probability at
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least1− 1/(2N c) eventA occurs or

∀v ∈ V, ∀r > 0 :
∣

∣ñv(r)− ∣Cv(r)∣
∣

∣ ≤ " ⋅ ∣Cv(r)∣. (5)

Note thatCv(r) = V for all r ≥ n − 1 and that the union bound therefore is overn(n − 1) < N2 events.
If (5) holds, we have

ñv(r) ≥ (1− ") ⋅ ∣Cv(r)∣ ≥ (1− ") ⋅ r

for all r ≤ n − 1 andv ∈ V . Therefore, in this case no node terminates before roundn − 1. Hence, all
nodes get the same final valueñ for ñv(r) and by (5), it holds that∣ñ − n∣ ≤ "n as required. Because
Pr(A) < 1/(2N c), (5) holds with probability at least1− 1/N c which completes the proof.

F Lower Bounds for Token-Forwarding Algorithms

A token-forwarding algorithm for solving the gossip problem is an algorithmthat does not manipulate the
tokens in any way except storing and forwarding them. Specifically, the algorithm must satisfy the following
conditions. LetsGu (r) denote the message broadcast by nodeu in roundr, when the algorithm is executed
in dynamic graphG = (V,E).

1. sGu (r) ∈ T ∪ {⊥} for all roundr and nodesu.
2. Nodes can only learn new tokens by receiving them, either in their input or in a message from another

node. Formally, letRG
u (r) :=

{

sGv (r) ∣ {u, v} ∈ E(r)
}

denote the set of messagesu receives in round
r, and let

AG
u (r) := I(u) ∪

(

r−1
∪

r′=0

RG
u (r

′)

)

.

We require the following.

∙ sGu (r) ∈ AG
u (r) ∪ {⊥} for all nodesu and roundsr, and

∙ If nodeu terminates in roundr, thenAG
u (r) = I.

We omit the superscriptG when it is obvious from the context.

F.1 Ω(n log k) Lower Bound for Centralized k-Gossip in 1-Interval Connected Graphs

For this lower bound we assume that in each roundr, some central authority provides each nodeu with a
valuetu(r) ∈ Au(r) to broadcast in that round. The centralized algorithm can see the state andhistory of
the entire network, but it does not know which edges will be scheduled in the current round. Centralized al-
gorithms are more powerful than distributed ones, since they have accessto more information. To simplify,
we begin with each of thek tokens known to exactly one node. This restriction is not essential. The lower
bound holds as long as there is constant fraction of the nodes that still need to learnk� tokens for some
positive constant�.

We observe that while the nodes only know a small number of tokens, it is easy for the algorithm to
make progress; for example, in the first round of the algorithm at leastk nodes learn a new token, because
connectivity guarantees thatk nodes receive a token that was not in their input. As nodes learn more tokens,
it becomes harder for the algorithm to provide them with tokens they do not already know. Accordingly,
our strategy is to charge a cost of1/(k − i) for the i-th token learned by each node: the first token each
node learns comes at a cheap1/k, and the last token learned costs dearly (1). Formally, the potential of the
system in roundr is given by

Φ(r) :=
∑

u∈V

∣Au(r)∣−1
∑

i=0

1

k − i
.
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In the first round we haveΦ(0) = 1, becausek nodes know one token each. If the algorithm terminates
in roundr then we must haveΦ(r) = n ⋅Hk = Θ(n log k), because alln nodes must know allk tokens. We
construct an execution in which the potential increase is bounded by a constant in every round; this gives us
anΩ(n log k) bound on the number of rounds required.

Theorem F.1. Any centralized algorithm fork-gossip in 1-interval connected graphs requiresΩ(n log k)
rounds to complete in the worst case.

Proof. We construct the communication graph for each roundr in three stages.

Stage I: Adding the free edges. An edge{u, v} is said to befreeif tu(r) ∈ Av(r) andtv(r) ∈ Au(r); that
is, if we connectu andv, neither node learns anything new. LetF (r) denote the set of free edges in round
r; we add all of them to the graph. LetC1, . . . , Cℓ denote the connected components of the graph(V, F (r)).
Observe that any two nodesu andv in different components must send different values, otherwise we would
clearly havetu(r) ∈ Av(r) andtv(r) ∈ Au(r) andu andv would be in the same component.

We choose representativesv1 ∈ C1, . . . , vℓ ∈ Cℓ from each component arbitrarily. Our task now is to
construct a connected subgraph overv1, . . . , vℓ and pay only a constant cost. We assume thatℓ ≥ 6, oth-
erwise we can connect the nodes arbitrarily for a constant cost. Letmissing(u) := k − ∣Au(r)∣ denote the
number of tokens nodeu does not know at the beginning of roundr.

Stage II: We split the nodes into two setsTop,Bottom according to the number of tokens they know, with
nodes that know many tokens “on top”:Top := {vi ∣missing(vi) ≤ ℓ/6} and consequentlyBottom :=
{vi ∣missing(vi) > ℓ/6}.

Since top nodes know many tokens, connecting to them could be expensive. We will choose our edges
in such a way that no top node will learn a new token, and each bottom node will learn at most three new
tokens. We begin by bounding the size ofTop.

To that end, notice that
∑

u∈Top missing(u) ≥
(

∣Top∣
2

)

: for all i, j such thatu, v ∈ Top, eithertu(r) ∕∈
Av(r) or tv(r) ∕∈ Au(r), otherwise{u, v} would be a free edge andu, v would be in the same component;
therefore each pairu, v ∈ Top contributes at least one missing token to the sum. On the other hand, since
each node inTop is missing at mostℓ/6 tokens, it follows that

∑

u∈Top missing(u) ≤ ∣Top∣ ⋅(ℓ/6). Putting
the two facts together we obtain∣Top∣ ≤ ℓ/3+1, and consequently also∣Bottom∣ = ℓ−∣Top∣ ≥ 2ℓ/3−1.

Stage III: Connecting the nodes. The bottom nodes are relatively cheap to connect to, so we connect
them in an arbitrary line. In addition we want to connect each top node to a bottom node, such that no top
node learns something new, and no bottom node is connected to more than onetop node. That is, we are
looking for a matching using only the edgesP := {{u, v} ∣ u ∈ Top, v ∈ Bottom andtv ∈ Au(r)}.

Since each top node is missing at mostℓ/6 tokens, and each bottom node broadcasts a different value, for
each top node there are at least∣Bottom∣ − ℓ/6 edges inP to choose from. But since we assumeℓ ≥ 6,
∣Top∣ ≤ ℓ/3 + 1 ≤ ∣Bottom∣ − ℓ/6; thus, each top node can be connected to a different bottom node using
P -edges.

What is the total cost of the graph? Top nodes learn no tokens, and bottomnodes learn at most two tokens
from other bottom nodes and at most one token from a top node. Thus, thetotal cost is bounded by

∑

u∈Bottom

min{3,missing(u)}
∑

i=1

1

missing(u)− (i− 1)
≤ ∣Bottom∣ ⋅

6
ℓ
6

≤ ℓ ⋅
36

ℓ
= 36.

F.2 Ω(n + n2/T ) lower bound against knowledge-based token-forwarding algorithms

In this section we describe a lower bound against a restricted class of randomized token-forwarding algo-
rithms. We represent randomness as a random binary string provided to each node at the beginning of the
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execution. In every round, the nodes may consume a finite number of random bits, and use them to deter-
mine their message for that round and their next state. In every execution nodes only use finitely many coin
tosses; we use an infinite string when modelling the algorithm in order to avoid

A token-forwarding algorithm is said to beknowledge-basedif it can be represented as a collection of
functions{fu ∣ u ∈ U} ⊆ P (T )∗ × {0, 1}∗ → D(T ), such that in every roundr, if R is the sequence of
coin-tosses for nodeu up to roundr (inclusive), the distribution according to which nodeu decides which
token to broadcast is given byfu(Au(0) . . . , Au(r), R).

We say that two dynamic graphsG = (V,E) andG′ = (V ′, E′) areequal up to roundr if V = V ′ and
for all r′ < r we haveE(r′) = E′(r′). LetDu(r) denote the probability distribution for nodeu in roundr.
Knowledge-based algorithms have the following property.

Lemma F.2. LetG,G′ be two dynamic graphs that are equal up to roundr, and let(V, I) be an instance
of gossip. Ifu is a node such thatAG

u (r) = I, then for any roundr′ ≥ 0 and stringR ∈ {0, 1}! we have
DG

u (r
′, R) = DG′

u (r′, R).

Proof. SinceG andG′ are equal up to roundr, the sequencesAG
u (0) . . . A

G
u (r) andAG′

u (0) . . . AG′

u (r) are
equal, and in particularAG

u (r) = AG′

u (r) = I.
By definition, for all r′ ≥ r we haveAG

u (r) ⊆ AG
u (r

′) andAG′

u (r) ⊆ AG′

u (r′); therefore,AG
u (r

′) =
AG′

u (r′) = I for all r′ ≥ r. Consequently, for allr′ ≥ 0, the sequencesAG
u (0) . . . A

G
u (r

′) andAG′

u (0) . . . AG′

u (r′)
are equal, and the claim follows.

Theorem F.3. Any knowledge-based token-forwarding algorithm fork-input gossip inT -interval connected
graphs overn nodes requiresΩ(n + nk/T ) rounds to succeed with probability at least1/2. Further, if
∣U∣ = Ω(n2k/T ), then for sufficiently largen, deterministic algorithms requireΩ(n+ nk/T ) rounds even
when each node begins with at most one token.

Proof. A lower bound ofΩ(n) is demonstrated trivially in a static line network where at least one token
starts at one end of the line. In the sequel we assume thatk > 1.

Let {fu} be an knowledge-based token-forwarding algorithm fork-gossip. We use the UID space as the
token domain, and choose nodesu1, . . . , un: for randomized algorithms we choose the UIDs arbitrarily, but
for deterministic algorithms we must choose them carefully (see the last part of the proof). If the algorithm is
randomized, we choose an input assignment where some nodeu1 starts with allk tokens, and all other nodes
ui ∕= u1 start with a setI(ui) ⊆ {u1, ui}. For deterministic algorithms, we later show that we can reach this
state from some input assignment where each node starts with at most one token. For now let us suppose
that we have reached some roundr0 in whichAu1(r0) = I and for allui ∕= u1 we haveAui ⊆ {u1, ui}. In
this starting state there aren − 2 nodes that do not know each tokent ∕= u1. We abuse notation by usingI
to denote the set of all tokensu1, . . . , uk as well as the input assignmentI(ui) to each nodeui.

Let r1 := r0 + (n− 2)(k − 2)/(4T ). For a tokent ∈ I, letE [#t] denote the expected number of times
tokent is broadcast byu between roundsr0 andr1 (exclusive). We have

∑

t∈I

E [#t] =
∑

t∈I

r1−1
∑

r=r0+1

Pr [t is broadcast in roundr] = r1 − r0 − 2 < (n− 2)(k − 2)/(4T ).

Thus, there are at least two tokenst ∕= t′ such thatE [#t] ,E [#t′] < (n − 2)/(4T ). Assume w.l.o.g. that
t ∕= u1. From Markov’s inequality, nodeu1 broadcastst less than(n − 2)/(2T ) times with probability at
least1/2 in any execution fragment starting from roundr0 and ending before roundr1, regardless of the
dynamic graph we choose. The idea in the proof is to useu1 as a buffer between the nodes that have already
learnedt and those that have not; sinceu1 broadcastst infrequently with high probability, in this manner
we can limit the number of nodes that learnt.
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We divide the rounds betweenr0 andr1 into segments�1, . . . , �m. The graph remains static during each
segment, but changes between segments. For each segment�i we define two sets of nodes,Ci andDi,
whereCi∩Di = {u1}. The nodes inDi are “contaminated nodes” that might know tokent at the beginning
of the segment; we connect them in a clique. The nodes inCi are “clean”: initially, except foru1, these
nodes do not knowt (some of them might learnt during the segment). The only way the nodes inCi can
learnt is if u1 broadcasts it. In the first segmentCi is arranged in a line withu1 at one end; in subsequent
segments we “close”Ci to form a ring. InitiallyD1 = {u1, t} andC1 = V ∖ {t} (recall thatt, in addition
to being a token, is also the UID of a node).

There are two types of segments in our construction.

∙ Quietsegments are ones in whichu1 does not broadcastt until the last round in the segment. In the last
round of a quiet segment,u1 broadcastst, and some nodes in the ring become contaminated. The first
segment�1 is a quiet segment.
∙ After every quiet segment there follows one or moreactivesegments, in which we clean up the ring and

move contaminated nodes fromCi to Di. We have to do this in a way that preservesT -interval connec-
tivity. Each active segment is triggered byu1 broadcastingt in the previous segment; if in some active
segmentu1 does not broadcastt, the next segment will be quiet.

An active segment lasts exactlyT rounds, and a quiet segment lasts until the first timeu1 broadcastst
(including that round).

Next we define in detail the construction of the communication graph in each segment. We maintain the
following property:

(★) At the beginning of each active segment�i, of all the nodes inCi, only u1 and at mostT nodes in the
T -neighborhood ofu1 in the ring know tokent. Further, all the nodes that knowt are on the same side of
u1. We refer to the side ofu1 where these nodes are located as thecontaminated side ofu1.

(★★) At the beginning of each quiet segment�i, nodeu1 is the only node in the ring that knows tokent.

Let v1, . . . , vn−2 be some ordering of the nodes inC1 ∖ {u1} (nodes that initially do not knowt). In
each segmenti the nodes inCi will be some contiguous subsetvLi , . . . , vRi , whereLi+1 ≥ Li ≥ 1 and
Ri+1 ≤ Ri ≤ n−2 for all i. We placeu1 betweenvLi andvRi in the ring. Formally, the edges in any round
r ∈ �i wherei > 1 are given by

E(r) := D
(2)
i ∪ {{vj , vj+1} ∣ Li ≤ j < Ri} ∪ {{u1, vLi} , {u1, vRi}} .

In the first segment, the edges areE(r) := D
(2)
1 ∪ {{vj , vj1} ∣ 1 ≤ j < n− 2} ∪ {{u1, v1}} (we do not

close the ring; this is to ensure that (★) holds for the first active segment).
If �i is a quiet segment, then we defineCi+1 := Ci (and consequentlyDi+1 := Di); that is, the network

does not change between�i and�i+1 (except possibly for the closing of the ring after the first segment).
However, if�i is an active session, thenu1 has some neighbors in the ring that knowst, and they might
spreadt to other nodes even whenu1 does not broadcastt. We divide the nodes inCi ∖ {u1} into three
subsets.

∙ The red nodesredi comprise the2T nodes adjacent tou1 on the contaminated side. The firstT of these
(the ones closer tou1) may knowt at the beginning of the segment; the otherT may become contaminated
if some of the firstT broadcast tokent. To be safe, we treat all red nodes as though they knowt by the
end of the session.
∙ Theyellow nodesyellowi comprise theT nodes adjacent tou1 on the uncontaminated side. These nodes

may learnt during the segment, but only ifu1 broadcasts it.
∙ The green nodesgreeni are all the other nodes in the ring. These nodes cannot become contaminated

during the segment, because their distance from any node that knowst is greater thanT .
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Our cleanup between segments�i and�i+1 consists of moving all the red nodes intoDi+1. Formally, if
vLi ∈ redi, then we definevLi+1 := vLi + 2T andvRi+1 := vRi ; otherwise, ifvRi ∈ redi, then we define
vRi+1 := vRi+2T andvLi+1 := vLi . This satisfies (★) and (★★): if u1 does not broadcastt during segment�i,
then only the red nodes can knowt at the end, and since we removed them from the ring, at the beginning of
�i+1 no node knowst exceptu1. The next segment will be quiet. Otherwise, ifu1 does broadcastt during
�i, then at the beginning of the next session (which is active) only the yellow nodesyellowi can knowt.
These nodes then become red nodes in segment�i+1, and there areT of them, as required.

The cleanup step preservesT -interval connectivity: assume thatredi = {vLi , . . . , vLi+2T } (the other
case is similar). Then the linevLi+2T , vLi+2T−1, . . . , u1, vRi , vRi+1, . . . , vLi+2T−1 exists throughout both
segment�i and segment�i+1: in segment�i it exists as part of the ring, and in segment�i+1, after we
moved the red nodes into the cliqueDi+1, the first part of the linevLi+2T , vLi+2T−1, . . . , u1 exists in the
clique and the second partu1, vRi , vRi+1, . . . , vLi+2T−1 exists in the ring. The nodes inDi are all connected
to each other in both segments; thus, there is a static connected graph that persists throughout both segments
�i, �i+1, and in particular it exists in anyT rounds that start in�i. (Note that�i+1 may be quiet, and in
this case it can be shorter thanT rounds. But in this case it will be followed by an active segment which has
exactly the same edges and lastsT rounds.)

Notice that the number of uncontaminated nodes at the beginning of every active segment is at most2T
less than in the previous active session. Therefore the total number of nodes that knowt by roundr1 is at
most2T times the number of active sessions, and this in turn is bounded by2T times the number of rounds
in whichu1 broadcastst. Sinceu1 broadcastst less than(n− 2)/(2T ) times with probability at least1/2,
the algorithm is not finished by roundr1 with probability at least1/2.

Deterministic algorithms. If the algorithm is deterministic, we first show that there exists an input as-
signment in which each node begins with at most one token, from which either

1. the algorithm runs forΩ(nk/T ) rounds, or
2. we reach a roundr0 in which some nodeu1 hasAu1(r0) = I and for all i ∕= 1 we haveAui(r0) ⊆
{u1, ui}.

In the case of (2), we then continue with the same proof as for the input assignment where some node starts
with all tokens and the rest of the nodes have no tokens (see above). Since we are free to choose the input
assignment, we restrict attention to instances in which the inputs tok nodes are their own UIDs, and the
inputs to the other tokens are∅.

For deterministic algorithms the functionfu representing nodeu’s behavior must return a distribution in
which one token has probability 1. We abuse notation slightly by usingfu(Au(0) . . . , Au(r− 1)) to denote
this token.

We say that a processu ∈ U fires in roundr if when processu receives{u} as its input and hears nothing
in the firstr − 1 rounds, it will stay silent in those rounds and then spontaneously broadcast its token in
roundr. Formally, processu fires in roundr if

1. For allr′ < r we havefu({⊥}
r′) = ⊥, and

2. fu({u}
r) = u.

If processu does not fire in any roundr′ ≤ r, we say thatu is passive until roundr. (Note that nodes
that receive no tokens in their input have no choice but to broadcast nothing until they receive a token from
someone.)

Since∣U∣ = Ω(n2k/T ), there exist constantsc, n0 such that for alln ≥ n0 we have∣U∣ ≥ cn2k+ n− 1.
Let n ≥ n0. We divide into two cases.

Case I. There existu1, . . . , un ∈ U that are all passive until roundcnk/T . In this case we construct the
static clique overu1, . . . , un and let the algorithm run. During the firstcnk/T rounds, all nodes send only
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⊥, and no node learns new tokens. Consequently all nodesui haveAui(nk/T ) = in(ui) ∕= I, and the
algorithm cannot terminate by roundcnk/T .

Case II. All but n− 1 processes fire no later than roundcnk/T .
Since∣U∣ ≥ c(n2k/T + n − 1), by the pigeonhole principle there must exist a roundr0 ≤ cnk/T such

that at leastn processes fire in roundr0. Letu1, . . . , un ben such processes. We choose the instance where
each nodeui receives as input{ui} if i ≤ k, or ∅ if i > k.

Let S be the static star withu1 at the center:S = (V,ES), whereES(r) = {{u1, ui} ∣ i > 1} for all r.
Because all nodes fire in roundr0, when the algorithm is executed inS, the network is silent until roundr0.
In roundr0 all nodes that have a token broadcast it. Following roundr0 we haveAu1(r0 + 1) = I, and for
all i > 1, Aui(r0 + 1) = I(ui) ∪ {u1} ⊆ {u1, ui}. This is the state from which we start the main body of
the proof above.
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