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Abstract

In this paper we investigate distributed computation inadgit networks in which the network topol-
ogy changes from round to round. We consider a worst-caselmoahich the communication links for
each round are chosen by an adversary, and nodes do not krmth&ihneighbors for the current round
are before they broadcast their messages. The model abhenstudy of the fundamental computation
power of dynamic networks. In particular, it captures melietworks and wireless networks, in which
mobility and interference render communication unpredits. In contrast to much of the existing work
on dynamic networks, we do not assume that the network eaynsiops changing; we require correct-
ness and termination even in networks that change conlynsé introduce a stability property called
T-interval connectivityfor T > 1), which stipulates that for eveflj consecutive rounds there exists a
stable connected spanning subgraph. Fet 1 this means that the graph is connected in every round,
but changes arbitrarily between rounds. Algorithms fordiieamic graph model must cope with these
unceasing changes.

We show that in 1-interval connected graphs it is possibienfiles to determine the size of the
network and compute any computable function of their ihitiputs inO(n?) rounds using messages of
sizeO(logn + d), whered is the size of the input to a single node. Further, if the gragh-interval
connected fofl" > 1, the computation can be sped up by a factdf pand any function can be computed
in O(n + n?/T) rounds using messages of si2¢logn + d). We also give two lower bounds on the
gossip problem, which requires the nodes to dissemihaieces of information to all the nodes in the
network. We show afi)(n log k) bound on gossip in 1-interval connected graphs againstatized
algorithms, and af(n + nk/T") bound on exchanging pieces of information ifT-interval connected
graphs for a restricted class of randomized distributedrityns.

The T-interval connected dynamic graph model is a novel iaddch we believe opens new av-
enues for research in the theory of distributed computingiialess, mobile and dynamic networks.



1 Introduction

The study of dynamic networks has gained importance and popularity ev/irdtfew years. Driven by the
growing ubiquity of the Internet and a plethora of mobile devices with commtioicaapabilities, novel
distributed systems and applications are now within reach. The networkddh tese applications must
operate are inherently dynamic; typically we think of them as being large @ngletely decentralized, so
that each node can have an accurate view of only its local vicinity. Susfories change over time, as
nodes join, leave, and move around, and as communication links appedisappear.

In some networks, e.g., peer-to-peer, nodes participate only for apmood of time, and the topology
can change at a high rate. In wireless ad-hoc networks, nodes ailke math move around unpredictably.
Much work has gone into developing algorithms that are guaranteed toiwortworks that eventually
stabilize and stop changing; this abstraction is unsuitable for reasoningtally dynamic networks.

The objective of this paper is to make a step towards understanding thanfiental possibilities and
limitations for distributed algorithms in dynamic networks in which eventual stabilizaifahe network
is not assumed. We introduce a general dynamic network model, and stomhutability and complexity
of essential, basic distributed tasks. Under what conditions is it possibledivaeleader or to compute an
accurate estimate of the size of the system? How efficiently can informationdsdisated reliably in the
network? To what extent does stability in the communication graph help solse gneblems? These and
similar questions are the focus of our current work.

The dynamic graph model. In the interest of broad applicability our dynamic network model makes
few assumptions about the behavior of the network, and we study it frenwtinst-case perspective. In
the current paper we consider a fixed set of nodes that operate éhrsyized rounds and communicate
by broadcast. In each round the communication graph is chosen atsigrsander an assumption @f-
interval connectivitythroughout every block ¢f' consecutive rounds there must exist a connected spanning
subgraph that remains stable.

We consider the range from 1-interval connectivity, in which the commtioicgraph can change com-
pletely from one round to the next, te-interval connectivity, in which there exists some stable connected
spanning subgraph that is not known to the nodes in advance. We nb&zltfes that do not belong to the
stable subgraph can still change arbitrarily from one round to the nek@stes do not know which edges
are stable and which are not. We do not assume that a neighbor-discogehanism is available to the
nodes; they have no means of knowing ahead of time which nodes wilvestbaiir message.

In this paper we are mostly concerned with deterministic algorithms, but our lmymds cover random-
ized algorithms as well. The computation model is as follows. In every rourdidizersary first chooses
the edges for the round; for this choice it can see the nodes’ interited stiethe beginning of the round. At
the same time and independent of the adversary’s choice of edgeq)alnsses private coins and uses
them to generate its message for the current round. Deterministic algoritmestgethe message based on
the interal state alone. In both cases the nodes do not know which edgeshwsen by the advesary. Each
message is then delivered to the sender’s neighbors, as chosen byéhgaay; the nodes transition to new
states, and the next round begins. Communication is assumed to be bidirdettitrihis is not essential.
We typically assume that nodes know nothing about the network, not eveimeétsand communication is
limited to O(log n) bits per message.

To demonstrate the power of the adversary in the dynamic graph modeigeotise problem ofocal
token circulation each node: has a local Boolean variabt®ken,,, and if token,, = 1, nodeu is said to
“have the token”. In every round exactly one node in the network hasol®n, and it can either keep the
token or pass it to one of its neighbors. The goal is for all nodes to eadgnhave the token in some round.
This problem is impossible to solve in 1-interval connected graphs: in egend, the adversary can see
which nodeu has the token, and provide that node with only one edge}. Nodew then has no choice
except to eventually pass the tokentoAfter v receives it, the adversary can turn around and remove all of



v’s edges excepiu, v}, so that has no choice except to pass the token back 1o this way the adversary
can prevent the token from ever visiting any node exegpt

Perhaps surprisingly given our powerful adversary, even in IMateonnected graphs it is possible to
reliably compute any computable function of the initial states of the nodes,vendhave all nodes output
the result at the same time (simultaneity).

The dynamic graph model we suggest can be used to model various dymetmarks. Perhaps the most
natural scenario is mobile networks, in which communication is unpredictalelécdtne mobility of the
agents. There is work on achieving continual connectivity of the commitimicgraph in this setting (e.g.,
[12]), but currently little is known about how to take advantage of sudnace. The dynamic graph model
can also serve as an abstraction for static or dynamic wireless netwovldsicimcollisions and interference
make it difficult to predict which messages will be delivered, and wherallyjrdynamic graphs can be used
to model traditional communication networks, replacing the traditional assungiftaobounded number of
failures with our connectivity assumption.

Although we assume that the node set is static, this is not a fundamental limitateodeMf in-depth
discussion to future work; however, our techniques are amenable ttastmethods such as logical time,
which could be used to define the permissible outputs for a computation witheanityset of participants.

Contribution.  In this paper we mainly study the following problems in the context of dynamisigra

e Counting in which nodes must determine the size of the network.
e k-gossip in which k pieces of information, calletbkens are handed out to some nodes in the network,
and all nodes must collect altokens.

We are especially interested in the variankejossip where the number of tokens is equal to the number of
nodes in the network, and each node starts with exactly one token. Tiasistwafrgossip allows any function

of the initial states of the nodes to be computed. However, it requires cousititg nodes do not know in
advance how many tokens they need to collect. We show that both problarhe salved irO(n?) rounds

in 1-interval connected graphs. Then we extend the algorithrif'fmnterval connected graphs with known

T > 1, obtaining anO(n + n?/T)-round protocol for counting or all-to-all gossip. Whenis not known,

we show that both problems can be solvedifmin {n? n + n*logn/T'}) rounds.

We also give two lower bounds, both concerning token-forwardingraltgos for gossip. Atoken-
forwarding algorithmis one that does not combine or alter tokens, only stores and forwards Hiest, we
give anQ)(n log k) lower bound ork-gossip in 1-interval connected graphs. This lower bound holds even
against centralized algorithms, in which each node is told which token to ¢astldy some central author-
ity that can see the entire state of the network. We also give(art- nk/T") lower bound ork-gossip in
T-interval connected graphs for a restricted class of randomized algwrith which the nodes’ behavior de-
pends only on the set of tokens they knew in each round up to the carrenthis includes the algorithms in
the paper, as well as other natural strategies such as round robisjripa token to broadcast uniformly at
random, or assigning a probability to each token that depends on tharowdaich the tokens were learned.

For simplicity, the results we present here assume that all nodes starntipgitation in the same round.
Itis generally not possible to solve any non-trivial problem if some nagdenitially asleep and do not par-
ticipate. However, if 2-interval connectivity is assumed, it becomes pedsilsolvek-gossip and counting
even when computation is initiated by one node and the rest of the nodesdesap gsee Appendix E.5).

Related work. For static networks, information dissemination and basic network aggredatks have
been extensively studied (see e.q. [5, 17, 30]). In particulakthessip problem is analyzed in [36], where
it is shown that: tokens can always be broadcast in tiMé: + k) in a static graph. The various problems
have also been studied in the context of alternative communication modelsnBenwf papers look at the
problem of broadcasting a single message (e.g. [8, 24]) or multiple madddge7] in wireless networks.
Gossiping protocols are another style of algorithm in which it is assumed teatmround each node com-
municates with a small number of randomly-chosen neighbors. Variousriafimn dissemination problems
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for the gossiping model have been considered [18, 20, 22]; gossipoyggation protocols that can be used
to approximate the size of the system are described in [21, 32]. The owseipdel differs from our dy-
namic graph model in that the neighbors for each node are choserdatmamnd not adversarially, and in
addition, pairwise interaction is usually assumed where we assume brbadcas

A dynamic network topology can arise from node and link failures; faultramlee, i.e., resilience to a
bounded number of faults, has been at the core of distributed compusiegrod from its very beginning
[5, 30]. There is also a large body of previous work on general mijnaetworks. However, in much of
the existing work, topology changes are restricted and assumed to bebehell-ed” in some sense. One
popular assumption is eventual stabilization (e.g., [1, 6, 7, 37, 19]), wdsshrts that changes eventually
stop occuring; algorithms for this setting typically guarantee safety thrauighe execution, but progress is
only guaranteed to occur after the network stabilizes. Self-stabilizationgefalyproperty in this context:
it requires that the system converge to a valid configuration from aniraspstarting state. We refer to
[13] for a comprehensive treatment of this topic. Another assumptioniestdiok example in [23, 25, 31],
requires topology changes to be infrequent and spread out over tintlkeatsthe system has enough time
to recover from a change before the next one occurs. Some of tlggs@hans use link-reversal [15], an
algorithm for maintaining routes in a dynamic topology, as a building block.

Protocols that work in the presence of continual dynamic changes babeen widely studied. There is
some work on handling nodes that join and leave continually in peer-toepeday networks [16, 28, 29].
Most closely related to the problems studied here is [33], where a few teessitts in a similar setting are
proved; mainly it is shown that it-interval connected dynamic graphs (the definition in [33] is slightly
different), if nodes have unique identifiers, it is possible to globally braatia single message and have all
nodes eventually stop sending messages. The time complexity is at least lineavaiud of the largest
node identifier. In [2], Afek and Hendler give lower bounds on the mgssomplexity of global computa-
tion in asynchronous networks with arbitrary link failures.

A variant of T-interval connectivity was used in [26], where two of the authors studieck synchro-
nization inasynchronouslynamic networks. In [26] it is assumed that the network satigfiesterval
connectivity for a small value df’, which ensures that a connected subgraph exists long enough for eac
node to send one message. This is analogous to 1-interval connectiwtycirenous dynamic networks.

The time required for global broadcast has been studied in a probabikssiom of the edge-dynamic
graph model, where edges are independently formed and removediagdorsimple Markovian processes
[9, 10]. Similar edge-dynamic graphs have also been considered irotthaory literature, e.g. [34, 35].

Finally, a somewhat related computational model is population protocols, uteddn [3], where the
system is modeled as a collection of finite-state agents with pairwise interactmmulation protocols
typically (but not always) rely on a strong fairness assumption whichireg| every pair of agents to in-
teract infinitely often in an infinite execution. We refer to [4] for a survenlike our work, population
protocols compute some function in the limit, and nodes do not know when teejoae; this can make
sequential composition of protocols challenging. In our model nodes mestwally output the result of
the computation, and sequential composition is straightforward.

2 Preliminaries

We assume that nodes have unique identifiers (UIDs) drawn from a paoe2s. We user,,(r) to denote
the value of noder’s local variabler at the beginning of round.

A synchronous dynamic network is modeled as a dynamic gfaph (V, E), whereV is a static set of
nodes, and® : N — {{u,v} | u,v € V} is afunction mapping a round numbee N to a set of undirected
edgesE(r). We make the following assumption about connectivity in the network graph.

Definition 2.1 (T-Interval Connectivity) A dynamic graph= = (V, E) is said to beT-interval connected
for T > 1iffor all » € N, the static graplds, r := (V, ﬂ{;T_l E(r)) is connected. The graph is said to be
oo-interval connectedf there is a connected static graph = (V, E’) such that for alr € N, E’ C E(r).
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For the current paper we are mainly interested in the following problems.

Counting. An algorithm is said to solve the counting problem if whenever it is executeddiynamic
graph comprising: nodes, all nodes eventually terminate and output

k-Gossip. An instance ofk-gossip is a paifV, I), wherel : V' — P (T) assigns a set of tokens from
some token domaiff” to each node in the graph, ahld) .- I(v)| = k. An algorithm solves gossip if for

all instanceqV, I'), when the algorithm is executed in any dynamic gréphk- (V, E), all nodes eventu-

ally terminate and outpuy),,.,- I (u). We assume that each token in the nodes’ input is represented using
O(logn) bits. Nodes may or may not knoky depending on the context.

All-to-All Gossip. A restricted class ok-gossip in whichk = n and for allu € V' we have|I(u)| = 1.
The nodes know that each node starts with a unique token, but they &nawt..

k-Committee Election. As a useful step towards solving counting and gossip we introduce anoblem
calledk-committee election. In this problem, nodes must partition themselves into sets,aatedittees
such that (a) the size of each committee is at migpsind (b) if& > n, then there is just one committee
containing all nodes. Each committee has a unique committee 1D, and the goaliswades to eventually
output a committee ID such that the two conditions are satisfied.

3 Basic Facts

In this section we state several basic properties of the dynamic graph mddeh we later use in our
algorithms. The first key fact pertains to the way information spreads inezxted dynamic networks.

Proposition 3.1. It is possible to solva-gossip inl-interval connected graphs in — 1 rounds, if nodes
are not required to halt after they output the token.

Proof Sketch.We simply have all nodes that know the token broadcast it in every romnein a node re-
ceives the token, it outputs it immediately, but continues broadcasting it. yAgi&en round, consider a
cut between the nodes that already received the token and thosewbaidbtaFroml-interval connectivity,
there is an edge in the cut; the token is broadcast on that edge and somedeveceives it. Since one
node initially knows the message and thererar®des, after, — 1 rounds all nodes have the token. [J

If we have an upper bound on the size of the network, we can use $tiopo3.1 to compute simple
functions which serve as building blocks for algorithms.

Proposition 3.2. Given an upper bound on the size of the network, functions such as the minimum or
maximum of inputs to the nodes can be computed in 1 rounds.

Proposition 3.1 guarantees that all nodes will have the min or max valuewafterounds; nodes need the
upper boundV to knowwhen they have the true min or max. One application is leader election, whidtecan
implemented by choosing the node with the smallest UID as the unique leadelsVege that having an
upper bound on the size allows the use of randomized algorithms for datgatjgn which rely on comput-
ing the max or the min of random variables chosen by the nodes [14, 3akePee Appendix E.6 for detalils.

The remainder of the paper focuses on counting and solving the gossileipr. The two problems are
intertwined, and both are useful as a starting point for distributed compintidighamic networks. We re-
mark that when message sizes are not limited, both problems can be solveairifimeby having nodes
constantly broadcast all the information they have collected so far. Ttagsdare in Appendix E.1.2.

Proposition 3.3. The counting and all-to-all gossip problems can be solve@{n) rounds in 1-interval
connected graphs, using messages of Gigelog n).

In the sequel we describe solutions which use @nfiog n)-bit messages.

'Prop. 3.1 is intended only as an illustration. In the rest of our algorithrdesioan halt after they perform the output action.
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4 Counting Through k-Committee Election in1-Interval Connected Graphs

In this section we show howcommittee election can be used to solve counting and gossip.
Our counting algorithm works by successive doubling: at each pointddes have a guegdor the size
of the network, and attempt to verify whether or ot n. If it is discovered thak < n, the nodes double
k and repeat; it > n, the nodes halt and output the count. We defer the problem of determirmirexdct
count until the end of the section, and focus for now on the problemexfléhg whether or nat > n.
Suppose that nodes start out in a state that represents a soluti@otomittee election: each node has
a committee ID, such that no more thamodes have the same ID, andkif> n then all nodes have the
same committee ID. The problem of checking whethér n is then equivalent to checking whether there
is more than one committee: Af > n there must be one committee only, and ik n there must be more
than one. Nodes can therefore check if n by executing a simplé-round protocol that checks if there is
more than one committee in the graph.

The k-verification protocol. Each node has a local varialbtewhich is initially set tol. While z, = 1,
nodeu broadcasts its committee ID. If it hears from some neighbor a different conentidtérom its own,
or the special value, it setsz,, < 0 and broadcasts in all subsequent rounds. Aftérrounds, all nodes
output the value of theit variable.

Lemma 4.1. If the initial state of the execution represents a solutioktwommittee election, at the end of
the k-verification protocol each node outputs 14> n.

Proof Sketch.First suppose that > n. In this case there is only one committee in the graph; no node ever
hears a different committee ID from its own. Afterounds all nodes still have = 1, and all output 1.

In the case wherk < n we can show that after thi¢h round of the protocol, at leashodes in each com-
mittee haver = 0. In any round of the protocol, consider a cut between the nodes tioaigo® a particular
committee and still have = 1, and the rest of the nodes, which either belong to a different committee or
haver = 0. From l-interval connectivity, there is an edge in the cut, and some ndte scommittee that
still hasz = 1 hears either a different committee ID or This node then sets + 0. Since each committee
initially contains at most nodes, aftek rounds all nodes in all committees hawe- 0, and all outpu®. [

Our strategy for solving the counting problem is as follows: et 1,2,4,8, .. ., solve thek-committee
election problem, then execute theverification protocol. Ifk > n, terminate and output the count; else,
continue to the next value & Here we use the fact that our model is amenable to sequential composition.

The strategy outlined above requires all nodes to begik-trification protocol in the same round (syn-
chronous start). Our protocol for solvikgcommittee election ensures that this occurs. The protocol also
has the useful property that/f > n, every node knows the UIDs of all other nodes in the graph at the end
of the protocol. Thus, wheh > n, nodes can determine the exact count.

5 A Protocol for k-Committee Election in 1-Interval Connected Graphs

To solvek-committee election, we imagine that there is a unique leader in the network, aleties invites
k nodes to join its committee. Of course we do not truly have a pre-elected ligatther network; we will
soon show how to get around this problem. The protocol proceddsyidles, each consisting of two phases.

e Polling phase: For k — 1 rounds, all nodes in the network propagate the UID of the smallest noge the
have heard about that has not yet joined a committee. Initially each nodédasts its own UID if it has
not joined a committee, at if it has; in each round nodes remember the smallest value they have sent or
received so far in the execution, and broadcast that value in theowend r

¢ Invitation phase: The leader selects the smallest UID it heard during the polling phase, arebias
message inviting that node to join its committee. The message carries the UID oades snd of the
invited node. The invitation is propagated by all nodeskor 1 rounds. At the end of the invitation
phase, a node that received an invitation joins the leader's committee.
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At the end of thek cycles, nodes that have joined the leader’'s committee output the leadBr'adtheir
committee ID. Any node that has not been invited to join a committee joins its own comnuitieg, its
UID as the committee ID.

To handle the lack of a pre-elected leaddirnodes start out thinking they are the leader, and continue to
play the role of a leader until they hear a UID smaller than their own. At thiait pleey switch to playing
the role of a non-leader; however, any invitations they already issueaiman force.

Theorem 5.1. The protocol sketched above solvesithsmmittee election problem @ (k2) rounds. When
used in conjunction with the-verification protocol it yields ad(n?)-round counting protocol. O

We remark that ift > n, the protocol also solves the gossip problem, if we use tokens wherever th
protocol uses node UIDs. Each token is “singled out’#or 1 > n — 1 rounds during which it is invited
to join the leader's committee; the invitation is propagated by all nodes thaveeiteand reaches all the
nodes in the graph. Nodes simply have to record the tokens attached to ingitdiey hear. In particular,
if node UIDs are used as tokens, nodes can collect all the UIDs theyarehbe guaranteed thatkif> n
they have collected all UIDs in the network by the end of the protocol.

6 Counting and Gossip in More Stable Graphs

In this section we show that if-interval connected graphs the computation can be sped up by a factor of
T. To do this we employ a neat pipelining effect, using the temporarily stableragpifig) thatl-interval
connectivity guarantees; this allows us to disseminate information more quickly.

For convenience we assume that the gra@¥isnterval connected for somg > 1.

6.1 T-Gossip in2T-Interval Connected Graphs

Procedurali ssem nat e gives an algorithm for exchanging at ledspieces of information im rounds
when the dynamic graph &/ -interval connected. The procedure takes three arguments: a skenstb,

the parametel’, and a guess for the size of the graph. > n, the procedure is guaranteed to provide
each node with th& smallest tokens that appeared in the input to all the nodes.

The execution of procedudd ssemi nat e is divided into[k/T"] phases, each consisting2if rounds.
During each phase, each node maintains thedsefttokens it has already learned and a Setdf tokens it
has already broadcast in the current phase (initially empty). In eacll mfithe phase, the node broadcasts
the smallest token it has not yet broadcast in the current phase, ttiethad token tcb'.

S0
fori=0,...,[k/T] —1do
forr=0,...,2T"—1do
if S # Athen
t < min(A\Y95)
broadcast
S+ Su{t}
receivety, ..., ts from neighbors
A(—AU{t1,...,tS}
S0
return A

Proceduredi ssem nate( A, T, k)

Because the graph & -interval connected, in each phasthere is a stable connected subgragfthat
persists throughout the phase. We uggr), S!,(r) for the values of node’s local variablesA, S at the
beginning of round- of phase. We say that. knowstokent whenever € A,,.



Let K;(t) denote the set of nodes that knowt the beginning of phase and lettdist;(u, t) denote the
distance inG; between node and any node ir;(t). Correctness hinges on the following property.

Lemma 6.1. For any nodeu € V, tokent < |,y A,(0) and roundr such thattdist;(u,t) < r < 27T,
eithert € Si(r + 1) or S, (r + 1) includes at leastr — tdist;(u, t)) tokens that are smaller than

The intuition behind Lemma 6.1 is that+f > tdist;(u,t), thenr rounds are “enough time” fon to
receivet. If u has not received and sent it on, the path betweerand the nearest node that knotsust
have been blocked by smaller tokens, which nedeceived and sent on. Using Lemma 6.1 we can show:

Lemma 6.2. If k > n, then at the end of procedud? ssem nat e, the set4,, of each node: contains the
T smallest tokens.

Proof Sketch.Let N{(t) := {u € V | tdist;(u,t) < d}. Lett be one of thel’ smallest tokens.

From Lemma 6.1, for each nodec N '(t), eithert € Si (2T + 1) or Si(2T + 1) contains at least
2T — T = T tokens that are smaller thanBut ¢ is one of thel' smallest tokens, so the second case is im-
possible. Therefore all nodes M (t) know tokent at the end of phase Because; is connected we have
INI(t)| > min{n — |K;(t)|, T}; that is, in each phasE nodes learrt, until all the nodes know. Since
there are no more thannodes and we havig:/T'| phases, at the end of the last phase all nodes know!

Remark. If each stable subgrapfi; enjoys good expansion theh ssem nat e requires fewer tham
phases. For example,(; is alwaysf-connected for some paramejérthen each token is learned iy T
new nodes in each phase until all nodes know it, and we only redquif¢| phases. Similarly, if7; is
always a vertex expander we only requi?€log ) phases.

6.2 Counting and General Gossip

To solve counting and gossip with up totokens, we use Proceducdk ssermi nat e to speed up the
k-committee election protocol from Section 5. Instead of inviting one node ih epcle, we can use
di sseni nat e to have the leader learn the UIDs of tiiesmallest nodes in the polling phase, and use
proceduradi ssem nat e again to extend invitations to &ll smallest nodes in the selection phase. Thus,
in O(k + T') rounds we can increase the size of the committe& by

Theorem 6.3. It is possible to solvé-committee election i®)(k + k?/T') rounds inT-interval connected
graphs. When used in conjunction with theverification protocol, this approach yields @i(n + n?/T)-
round counting or gossip protocol.

6.3 Adapting to Unknown Interval Connectivity

The protocol sketched above assumes that all nodes know the dégmen@l connectivity present in the
communication graph; if the graph is riif-interval connected, invitations may not reach their destination,
and the committees formed may contain less thandes even wheh > n. However, even when the graph
is not2T-interval connected, no committee ever contaimwethank nodes, simply because no node ever
issues more thah invitations. Thus, if nodes guess a value Toand use the protocol to checkif> n,
their error is one-sided: if their guess foris too large they may falsely conclude thak n when in fact

k > n, but they will never conclude th&t> n whenk < n.

This one-sided error allows us to try different values¥@andT without fear of mistakes. We can count
in O(nlogn + n?logn/T) time in graphs wher@ is unknownby iterating over various combinations fof
andT until we reach a paifk, T') such that > n and the graph ig-interval connected.

In the worst case, the graph is 1-interval connected, and we needdbh ting valuesl” = 1,2,4, ...,k
for eachk; we pay alogn factor in the round complexity. This only improves upon the origifgh?)
algorithm when the graph is(log n)-interval connected. However, we can execute the original algorithm
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in parallel with the adaptive one, and terminate when the first of the two terminatehis way we can
solve counting or gossip i (min {n?, nlogn + n?logn/T'}) rounds wher{ is unknown.

Using similar ideas we can also adapt to unknown expansion of the grgphwe might guess that it is
always f-connected for some initial value ¢f and decreasg¢ until we find the right value.

7 Lower Bounds on Gossip with Token-Forwarding Algorithms

Our algorithms for gossip do not combine tokens or alter them in anywaystorlg and forward them. We
call this style of algorithm @oken-forwarding algorithm Formally, letA, (r) denote the set of messages
nodeu has received by the beginning of roundplus nodeu’s input I(u). A token-forwarding algorithm
satisfies: (a) for all. € V andr > 0, the message sent kyin roundr is a member ofd,,(r) U { L}, where
L denotes the empty message; and (b) nedannot halt in round unlessA, (r) = U,cy I(v), that is,
nodeu has received all the tokens either in messages from other nodes or irits inp

In this section we give two lower bounds on gossip with token-forwardiggrahms.

7.1 Q(nlog k) Lower Bound for Centralized k-Gossip in 1-Interval Connected Graphs

For this lower bound we assume that in each rounsome central authority provides each nadeith a
valuet, (r) € A,(r) to broadcast in that round. The centralized algorithm can see the stakéssony of
the entire network, but it does not know which edges will be scheduleaioutrent round. Centralized al-
gorithms are more powerful than distributed ones, since they have @oaasse information. To simplify,
we begin with each of thg tokens known to exactly one node (this restriction is not essential).

We observe that while the nodes only know a small number of tokens, it ysfeathe algorithm to
make progress; for example, in the first round of the algorithm at leastles learn a new token, because
connectivity guarantees thaihodes receive a token that was not in their input. As nodes learn morestoke
it becomes harder for the algorithm to provide them with tokens they do resdiirknow. Accordingly,
our strategy is to charge a cost bf(k — i) for thei-th token learned by each node: the first token each
node learns comes at a chelgfk, and the last token learned costs deatly Formally, the potential of the
system in round is given by

Aum)l=1
O(r) := Z Z R
ueV =0

In the first round we havé(0) = 1, becausé nodes know one token each. If the algorithm terminates
in roundr then we must havé(r) = n- H;, = ©(nlog k), because ath nodes must know alt tokens. We
construct an execution in which the potential increase is bounded bystatwin every round; this gives us
an)(nlog k) bound on the number of rounds required.

Theorem 7.1. Any centralized algorithm fok-gossip in 1-interval connected graphs requife&: log k)
rounds to complete in the worst case.

Proof. We construct the communication graph for each roumdthree stages. See Fig. 2 in the appendix
for an illustration.

Stage I: Adding the free edges. An edge{u, v} is said to bdreeif ¢, (r) € A,(r) andt,(r) € A,(r);

that is, if we connect: andv, neither node learns anything new. Létr) denote the set of free edges in
roundr; we add all of them to the graph. Lét,...,C, denote the connected components of the graph
(V, F(r)). Observe that any two nodes in different components must send diffeakies, otherwise they
would be in the same component.

We choose representatives € C4,...,v, € Cp, from each component arbitrarily. Our task now is to
construct a connected subgraph owver. .., v, and pay only a constant cost. We assume £hat6, oth-
erwise we can connect the nodes arbitrarily for a constant costnissing(u) := k — | A, (r)| denote the
number of tokens node does not know at the beginning of round
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Stage II: We split the nodes into two setéop, Bottom according to the number of tokens they know:
Top = {v; | missing(v;) < €/6}, Bottom := {v; | missing(v;) > £/6}.

Since top nodes know many tokens, connecting to them could be expel¢eveill choose our edges
in such a way that no top node will learn a new token, and each bottom nildeasn at most three new
tokens. We begin by bounding the sizeZTfp.

To that end, notice thal . 5,,, missing(u) > (I"57)): for all i, j such thatu,v € Top, eithert,(r) ¢
Ay(r) ort,(r) & A,(r), otherwise{u, v} would be a free edge and v would be in the same component;
therefore each pait,v € Top contributes at least one missing token to the sum. On the other hand, since
each node irfop is missing at most/6 tokens, it follows thad _, c ,,,, missing(u) < |Top|-(£/6). Putting
the two facts together we obtdiiop| < ¢/3+ 1, and consequently al§Bottom| = £ —| Top| > 2¢/3 — 1.

Stage lll: Connecting the nodes. The bottom nodes are relatively cheap to connect to, so we connect
them in an arbitrary line. In addition we want to connect each top node ttt@nb@ode, such that no top
node learns something new, and no bottom node is connected to more theopomae. That is, we are
looking for a matching using only the edgBs= {{u,v} |u € Top,v € Bottom andt, € A, (r)}.

Since each top node is missing at m@gi tokens, and each bottom node broadcasts a different value,
for each top node there are at ledBbttom| — £/6 edges inP to choose from. ButTop| < ¢/3 +1 <
| Bottom| — £/6; thus, each top node can be connected to a different bottom nodeRsdges.

What is the total cost of the graph? Top nodes learn no tokens, and hodtbes learn at most two tokens
from other bottom nodes and at most one token from a top node. Thusjdheost is bounded by

min{3,missing(u)}

Z Z L <|Bott0m|-6<£-%
; missing(u) — (i — 1) — -/

u€ Bottom =1

= 36. O

oles|

7.2 Q(n + nk/T) Lower Bound on k-Gossip with Knowledge-Based Algorithms

A token-forwarding randomized algorithm férgossip isknowledge-based the distribution that de-
termines which token is broadcast by nodén round r is a function of the UID ofu, the sequence
Ay(0),..., Ay(r — 1), where 4, is the set of tokens received hyby the beginning of round (includ-
ing its input), and the sequence @& coin tosses up to round(inclusive). Knowledge-based algorithms
can use the set of tokens currently known and the round in which eaeh w&s acquired; however, they
cannot rely on other factors, such as the number of times a particularw@seheard or the UIDs of nodes
from which a token was received. Nevertheless, the class of knoededged algorithms includes many
natural strategies for solving the gossip problem, and it includes the algariththis paper.

Knowledge-based algorithms have the property that once a node |daimstakens, the distribution of
tokens broadcast in future rounds is fixed and does not depend dgriaeic graph. We use this property
to show the following lower bound.

Theorem 7.2. Any knowledge-based algorithm flergossip inT-interval connected graphs requir€gn +
nk/T) rounds to succeed with probability’2. Further, if /| = Q(n?k/T), then deterministic algorithms
requireQ2(n + nk/T) rounds even when each node starts with exactly one token.

Proof Sketch.An Q(n) lower bound is trivially demonstrated in a static line graph where some tokes star
at one end of the line. Thus we assume that 1. For simplicity, we choose an input assignment in which
some node: knows all the tokens, and the other nodes have no tokens. (The boldsddr any assignment
in which one node knows all tokens and a constant fraction of nodes isxgnesach token; for deterministic
algorithms it holds when each node starts with one token.)

Letr; =ro+ (n—1)(k—1)/(4T) — 1. Sinceu knows all the tokens, its behavior is determined: regard-
less of the dynamic graph we choose for the rounds betwgandr, the distribution of tokens broadcast
by nodeu in roundsry, ..., r; is fixed. In particular, since there are less tffan- 1)(k — 1) /(47 rounds
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between, andr, the linearity of expectation and Markov's inequality show that there is sokemtasuch
that with probability at least/2, nodeu broadcasts less thar(n — 1)/(27") times between the two rounds.

In roundrg, tokent is known only to nodes; there aren — 1 nodes that still must learhr Informally,
in the dynamic graph we construct nodewill control the spread ot, such that after each time node
broadcasts$ at most27' nodes learn it. Thus, with probability at ledst2, by roundr; there will still be a
node that has not learnedand the algorithm will not be done.

We construct the graph in phases. Initially we arrange the nodes ina&lineg, . . . , v,_1, with uy at one
end of the line and the other nodes ordered arbitrarily (see Fig. 1(a) apfrendix). The nodes in the line
can only learrt whenw broadcasts it.

We leave the graph static until the first time naderoadcasts. At this point we would like to remove,
from the line and place it in the clique, to prevent it from spreaditoyother nodes in the line; however, we
must respect -interval connectivity. We proceed by first adding an edge fioto v,,_1, closing the line
and forming a ring (see Fig. 1(b) in the appendix). A phase consistsitthgvéor 1" rounds with the graph
static. Between phases we change the graph and rediowedes that may have learnedrom the ring.
Next we describe how the graph changes between phases.

At the beginning of each phase the ring consists of a sequengg ...,vr,u. Initially R = 1 and
L = n — 1, and as the execution progresses we shrink the ring by moving nodesertfiqihe, increasing
R and decreasing. At the beginning of the phase, only nodes, ..., vrir_1 can know tokert (and
in particular, in the first phase onlyz knowst), and only those nodes can spread it to other nodes. We
call nodesvg, ..., vr+or—1 red nodesbecause these nodes may leaduring the phase evenifdoes not
broadcast it. Nodes;, . .., v; 1.1 are calledyellow nodesbecause they may leatiif node » broadcasts
it during the phase. The rest of the nodes cannot leduring the phase.

After the phase ends, we remove the red nodes from the ring and placéntiiee clique (see Fig. 1(c)).
We restore the ring by adding an edge betweemdvg op. If v did not broadcast during the phase that
ended, then no node in the ring knotysand we simply wait untit; broadcasts again. Ifu did broadcast
t, we change the direction of the ring, settihg— R + 27 andR «+ L. The nodes that were yellow now
become red (see Fig. 1(d)), and we proceed as before. Each timoadcasts causes us to remove at most
2T nodes from the ring, but since with high probabilitis broadcast less thgn — 1) /(27") times, in round
r1 = Q(nk/T') with probability at least /2 the ring is not empty and the algorithm is not done. O

8 Conclusion

In this work we consider a model for dynamic networks which makes vesyagsumptions about the
network. The model can serve as an abstraction for wireless or mobilenkstvto reason about the fun-
damental unpredictability of communication in this type of system. We do not rtetsteienobility of the
nodes except for retaining connectivity, and we do not assume thgtapocal information or neighbor
discovery are available to the nodes. Nevertheless, we show that itsibieo® efficiently compute any
computable function, taking advantage of stability if it exists in the network.

We believe that th@-interval connectivity property provides a natural and general wagdson about
dynamic networks. It is easy to see that without any type of connectivstynagtion no non-trivial function
can be computed, except possibly in the sense of computation in the limit (3% iH¢8vever, our connec-
tivity assumption is easily weakened to only require connectivity once earstant number of rounds, or
to only require eventual connectivity in the style of Prop. 3.1, with a knosumib on the number of rounds.

There are many open problems related to the model. We hope to strengtHeweubounds for gossip
and obtain aif2(nk/T") general lower bound, and to determine whether counting is in fact asbauossip.
Other natural problems, such as consensus and leader election, saadukin linear time once a (possibly
approximate) count is known, but can they be solved more quickly withiitcounting? Is it possible to
compute an approximate upper bound for the size of the network in less théimt#required for counting
exactly? These and other questions remain intriguing open problems.
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Appendix

In the following we begin with some figures to illustrate the lower bound probfseation 7. The re-
mainder of the appendix contains a full version of all technical parts ghiper.

A Figures
UQ U1 V1 Un—3 Un—2
®e—O—0O o—=O

(a) The network at the beginning of the execution (only node
uo Knowst).

(c) The network after the end of the first phase: the
red nodes are removed from the ring and placed in
the clique, and the ring is repaired by connectiigg

to ver+1. Double lines indicate stable edges along
which T-interval connectivity was preserved in the
transition between the phases.

(b) The network at the beginning of the first phase: the line is
closed to form a ring. The dotted line indicates the edge we
will add at the end of the phase to re-close the ring after we
remove the red nodes; double lines indicate stable edges, along
which T-interval connectivity is preserved between phases.

(d) If up broadcast at any point during the first
phase, we begin a new phase. The nodes that
were yellow in the first phase become red, and
the “clean” nodes om’s other side become yel-
low. Double lines indicate edges that will be stable
through the next two phases.

Figure 1: Illustrations for the proof of thé(n + nk/T") lower bound,I" = 3
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Top

Figure 2: lllustration for the proof of th@(n log k) lower bound
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B Network Model
B.1 Dynamic Graphs

A synchronous dynamic network is modelled by a dynamic gi@p# (V, E), whereV is a static set of
nodes, andZ : N — V() is a function mapping a round numbee N to a set of undirected edgé{(r).
HereV® := {{u,v} |u,v € V} is the set of all possible undirected edges dver

Definition B.1 (7-Interval Connectivity) A dynamic graphZ = (V, E) is said to bel'-interval connected
for T e N if for all » € N, the static grapt@,. := <V, Ntrt E(r)) is connected. 15 is 1-interval
connected we say thét is always connected

Definition B.2 (co-Interval Connectivity) A dynamic graphG = (V, E) is said to bex-interval connected
if there exists a connected static gragh= (V, E’) such that for ali- € N, E’ C E(r).

Note that even though in amc-interval connected graph there is some stable subgraph that persists
throughout the execution, this subgraph is not known in advance to ttespand can be chosen by the
adversary “in hindsight”.

Although we are generally interested in the undirected case, it is also imgrés considerdirected
dynamic graphswhere the communication links are not necessarily symmetric. THerval connec-
tivity assumption is then replaced ly-interval strong connectivitywhich requires thats, r be strongly
connected (wheré€/,. 7 is defined as before). In this very weak model, not only do nodes raw kvho
will receive their message before they broadcast, they also do notwhoweceived the messagéerit is
broadcast. Interestingly, all of our algorithms for the undirected cask wahe directed case as well.

The causal order for dynamic graphs is defined in the standard way.

Definition B.3 (Causal Order) Given a dynamic grapliy = (V, E), we define an order>C (V' x N)Q,
where(u,r) — (v,7') iff #/ = r + 1 and{u, v} € E(r). Thecausal order~C (V x N)? is the reflexive
and transitive closure of>. We also writeu ~~ (v, r) if there exists some’ < r such thaf(u, ') ~ (v, 7).

Definition B.4 (Influence Sets)We denote byC,,(r ~~ 7/) := {v € V | (v,7) ~ (u,r’)} the set of nodes
whose state in roundcausally influences nodein roundr’. We also use the short-hatt} (r) := C, (0 ~

r)={v|v~ (u,r)}.
B.2 Communication and Adversary Model

Nodes communicate with each other usmpnymous broadcastith message sizes limited @(log(n)).

At the beginning of rouna, each node: decides what message to broadcast based on its internal state and
private coin tosses; at the same time and independently, the adversasestaset’(r) of edges for the
round. For this choice the adversary can see the nodes’ internal atdtes beginning of the round, but

not the results of their coin tosses or the message they have decideddodwsingdDeterministic algorithms
choose a message based only on the internal state, and this is equivd&tihgothe adversary see the
message before it chooses the edges.) The adversary then deligahtoode: all messages broadcast

by nodesv such that{u,v} € E(r). Based on these messages, its previous internal state, and possibly
more coin tosses, the node transitions to a new state, and the round enc! ¥es anonymous broadcast
because nodes do not know who will receive their message prior tddasgng it.

B.3 Sleeping Nodes

Initially all nodes in the network are asleep; computation begins when atsobsedes, chosen by the
adversary, is woken up. Sleeping nodes remain in their initial state andt ¢boasalcast any messages until
they receive a message from some awake node or are woken up bywtrsaag. Then they wake up and
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begin participating in the computation; however, since messages are éélatthe end of the round, a
node that is awakened in roundends its first message in round- 1.
We refer to the special case where all nodes are woken up at osga@sonous start

B.4 Initial Knowledge

Each node in the network starts execution of the protocol in an initial statdhwbiatains its own ID, its
input, and possibly additional knowledge about the network. We genasdlyme one of the following.

¢ No knowledge: nodes know nothing about the network, and initially cagistihguish it from any other
network.

e Upper bound on size: nodes know some upper badirmh the sizen of the network. The upper bound
is assumed to be bounded by some function of the true sizeeg.0O(n).

e Exact size: nodes know the sizeof the network.

B.5 Computation Model

We think of each node in the network as running a specialized Turing maathiicl takes the node’s UID
and input from its input tape at the beginning of the first round, and isesgueent rounds reads the messages
delivered to the node from the input tape. In each round the machineqes@ message to broadcast on
an output tape. On a separate output tape, it eventually writes the finat ofithe node, and then enters a
halting state.

The algorithms in this paper are written in pseudo-code. Weryée) to denote the value of nodes
local variabler at the beginning of round, andzx,(0) to denote the input to node

C Problem Definitions

We assume that nodes have unique identifiers (UIDs) from some naméépaet D be a problem domain.
Further, letA — B denote the set of all partial functions framto B.

A problemover D is a relationP C (U — D)?, such that if(1,0) € P thendomain([) is finite and
domain(J) = domain(O). Each instancé € U/ — D induces a set’ = domain(/) of nodes, and we say
that an algorithnsolvesinstance/ if in any dynamic graplz = (V, E'), when each node € V' starts with
I(u) as its input, eventually each node outputs a vélge) € D such thai(7,0) € P.

We are interested in the following problems.

Counting. In this problem the nodes must determine the size of the network. Formallyothirtg
problem is given by

counting := {(V x {1},V x {n}) | Visfinite andn = |V|}.

k-Verification. Closely related to counting, in theverification problem nodes are given an integend
must determine whether or nbt> n, eventually outputting a Boolean value. Formally,

k-verification := {(V x {k},V x {b}) | b€ {0,1} andb = 1iff k > |V|}.

k-Committee. In this problem the nodes must form sets (“committees”), where each committea h
unique identifier that is known to all its members. Each nedeitputs a valueommittee,,, and we require
the following properties.

1. (“Safety”) The size of each committee is at mbsthat is, for allx € {committee,, | v € V'} we have
|{u € V| committee, = x}| < k.

2. (“Liveness”) Ifk > n then all nodes in the graph join one committee, that is, fornall € VV we have
committee, = committee,,.
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k-Gossip. The gossip problem is defined over a token donfairEach node receives in its input a set of
tokens, and the goal is for all nodes to output all tokens. Formally,

k-gossip := {(V — P (4),V — A) | Visfinite and|A| = k} .

We are particularly interested in the following variants of the problem.

o All-to-All gossip: instanced wherek = n for all w € V we have|I(u)| = 1.
e k-gossip with knowrk: in this variant nodes know, i.e., they receivé as part of the input.

Leader Election. In weak leader election all nodes must eventually output &,stich that exactly one
node output$ = 1. In strong leader election, all nodes must output the samed4D/ of some node in the
network.

D Relationships

A problem P; is reducibleto P, if whenever all nodes start the computation in initial states that represent a
solution toP;, there is an algorithm that computes a solutio’t@nd requires linear time in the parameter
to the problemKk).

D.1 k-Committee = k-Verification
Claim D.1. k-verification reduces té-committee.

Proof. Suppose we start from a global state that is a solutidgncommittee, that is, each nodehas a local
variable committee,, such that at most nodes belong to the same committee, anid i n then all nodes
belong to one committee. We can verify whether oringt n as follows. Folk rounds, each node maintains
a Boolean flag, which is initially set tol. In rounds wheré = 1, the node broadcasts its committee 1D,
and whenb = 0 the node broadcasts. If a node receives a committee ID different from its own, or if it
hears the special valuk, it setsb to 0. At the end of the: rounds all nodes outpit

First consider the case wheke> n. In this case all nodes have the same committee ID, and no node
ever sets it$ flag to0. At the end of the protocol all nodes outgytas required. Next, suppose that n,
and letu be some node. There are at mbst 1 nodes inu's committee. In every round, there is an edge
between some node iris committee and some node in a different committee (because the communication
graph is connected), and therefore at least one nodésioommittee sets ité flag to0. After at mostk
rounds no nodes remain, and in particulaitself must haveh, = 0. Thus, at the end of the protocol all
nodes outpud. Ol

Claim D.2. k-committee reduces to-verification.

Proof. Again, suppose the nodes are initially in a state that represents a solutiaetification: they have
a Boolean flag which is set to 1 iffk > n. We solvek-committee as follows: ib = 0, then each node
outputs its own ID as its committee ID. This is a valid solution because whem the only requirement is
that no committee have more thamodes. Ifb = 1, then fork rounds all nodes broadcast the minimal ID
they have heard so far, and at the end they output this ID as their committ&niézb = 1 indicates that

k > n, afterk rounds all nodes have heard the ID of the node with the minimal ID in the nietand they
will all join the same committee, as required. O

D.2 Counting vs. k-Verification

Since we can solve-verification inO(k + k2 /T) time in T-interval connected graphs, we can find an upper
bound on the size of the network by checking whethér n for values ofk starting from 1 and doubling
with every wrong guess. We know how to verify whettier n in O(k + k% /T') time, and hence the time
complexity of the entire procedured®(n+n?/T). Once we establish that> n for some value ok, to get
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an actual count we can then go back and do a binary search ovenger, . . ., k (recall thatk /2 < n,
otherwise we would not have reached the current valué.of

In practice, we use a variant fcommittee where the ID of each committee is the set containing the IDs
of all members of the committee. Tleverification layer returns this set as well, so that after reaching a
value ofk > n at nodeu, we simply return the size afs committee as the size of the network. Sice n
implies that all nodes join the same committee, noddll output the correct count.

D.3 Hierarchy of Problems

There is a hardness hierarchy among the problems considered in thisagsapell as some other natural
problems.

1. Strong leader election / consensus (these are equivalent).
2. Decomposable functions such as Boolean AND / OR

3. Counting.

4. n-gossip (with unknowm).

The problems in every level are reducible to the ones in the next level, addhew thatn-gossip can be
solved inO(n + n?/T) time in T-interval connected graphs f@ > 2, or T > 1 assuming synchronous
start. Therefore all the problems can be solve®{m + n?/T) time, even with no prior knowledge of the
network, and even when the communication links are directed (assuming stvonectivity).

E Upper Bounds

In this section we give algorithms for some of the problems introduced in SeCtiatways with the goal
of solving the counting problem. Our strategy is usually as follows:

1. Solve some variant of gossip.
2. Use (1) as a building block to solkecommittee,
3. Solvingk-committee allows us to solveverification and therefore also counting (see Section D).

We initially focus on the case of synchronous start. The modifications sage® deal with asynchronous
start are described in Section E.5.

E.1 Always-Connected Graphs
E.1.1 Basic Information Dissemination

It is a basic fact that in 1-interval connected graphs, a single piecdafnation requires at most — 1
rounds to reach all the nodes in the network, provided that it is forwlangieall nodes that receive it. For-
mally, let D,,(r) := {v € V |u ~» (v,7)} denote the set of nodes thathas “reached” by round. If «
knows a token and broadcasts it constantly, and all other nodes bstdle token if they know it, then all
the nodes inD,,(r) know the token by round.

Claim E.1. For any nodeu and roundr < n — 1 we have D, (r)| > r + 1.

Proof. By induction onr. Forr = 0 the claim is immediate. For the step, suppose tba{r)| > r+1, and
consider rouna+1 < n. If D, (r) = V thenthe claim s trivial, becaude,(r) C D, (r+1). Thus, suppose
thatD, (r) # V. SinceG(r) is connected, there is some edgey} in the cut(D,,(r), V\ D, (r)). From the
definition of the causal order we havey € D, (r+1), and thereforéD,, (r+1)| > |Dy(r)|+1 > r+2. O

Note that we can employ this property even when there is more than one toltennietwork, provided
that tokens form a totally-ordered set and nodes forward the smalidsg(gest) token they know. It is then
guaranteed that the smallest (resp. biggest) token in the network will tvenkioy all nodes after at most
n — 1 rounds. Note, however, that in this case nodes do not necedsamilywhen they know the smallest
or biggest token.
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E.1.2 Counting in linear time with 2(n log n)-bit messages

We begin by describing a linear-time countingjossip protocol which uses messages of §izelogn).
The protocol is extremely simple, but it demonstrates some of the ideas usedero$our later algorithms,
where we eliminate the large messages using a stability assumptioetval connectivity) which allows
nodes to communicate with at least one of their neighbors for atTéssinds.

In the simple protocol, all nodes maintain a getontaining all the IDs (or tokens) they have collected so
far. In every round, each node broadcastand adds any IDs it receives. Nodes terminate when they first
reach a rouna in which |A| < 7.

A« {self}
forr=1,2,...do
broadcast4
receiveBy, ..., B, from neighbors
A+ AUB;U...UB;
if |A| < r then terminate and outpyt|

Algorithm 2: Counting in linear time using large messages

Claim E.2. For any nodeu and rounds” < r' < n we haveC,(r ~ ') > 1" —r.

Proof. By induction oy’ — r. Forr’ — r = 0 the claim is immediate.

Suppose that for all nodesand rounds:, »’ such that’ < n andr’ — r = i we have|C,(r ~ 7')| > i.
Letr, v’ < n be two rounds such that —r =4 + 1.

If |Cu((r + 1) ~ r)] = nthen we are done, because- r < ' < n. Thus, assume that, ((r + 1) ~
r) # V. Since the communication graph in rouné connected, there is some edge, w'} € E(r) such
thatw & Cy,((r+1) ~ r) andw’ € Cy((r+1) ~ r). We have(w,r) — (w',r+1) ~ (u,r’), and conse-
quently(w, r) ~ (u,r’) andw € C,(r ~ r’). Also, from the induction hypothesi&}, ((r +1) ~ r)| > i.
Together we obtaifC, (r ~ )| > |Cy,((r + 1) ~ r)| +1 > i + 1, as desired. O

Claim E.3. For any nodeu and roundr < n we havd A, (r)| > .

Proof. It is easily shown that for alb € C,(r) we havev € A,(r). From the previous claim we have
|Cu(r)| > rforall » < n, and the claim follows. O

The correctness of the protocol follows from Claim E.3: suppose thatdime round- and nodeu we
have|A,(r)| < r. From Claim E.3, then; > n. Applying the claim again, we see that,(n)| > n, and
sinceA,(r) C V for all r, we obtainA,(r) = V. This shows that nodes compute the correct count. For
termination we observe that the size4f never exceeds, so all nodes terminate no later than round 1.

E.1.3 k-committee with O(log n)-bit messages

We can solve:-committee inO(k?) rounds as follows. Each nodestores a local variableader, in addi-
tion to committee,,. A node that has not yet joined a committee is calletive and a node that has joined
a committee isnactive Once nodes have joined a committee they do not change their choice.

Initially all nodes consider themselves leaders, but throughout the pitptmty node that hears an ID
smaller than its own adopts that ID as its leader. The protocol proceédsyiries, each consisting of two
phasespolling andselection

1. Polling phase: fok — 1 rounds, all nodes propagate the ID of the smallest active node of whaghatke
aware.
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2. Selection phase: in this phase, each node that considers itself a $eéatts the smallest ID it heard
in the previous phase and invites that node to join its committee. An invitation isseagiesl as a pair
(z,y), wherez is the ID of the leader that issued the invitation, antg the ID of the invited node.
All nodes propagate the smallest invitation of which they are awarg forl (invitations are sorted in
lexicographic order, so that invitations issued by the smallest node in themkeill win out over other
invitations. It turns out, though, that this is not necessary for corrsstiigs sufficient for each node to
forward an arbitrary invitation from among those it received).

At the end of the selection phase, a node that receives an invitation to joidksrie committee does
so and becomes inactive. (Invitations issued by nodes that are notrtkatdeader can be accepted or
ignored; this, again, does not affect correctness.)

Atthe end of the: cycles, any node that has not been invited to join a committee outputamittee, = u.

leader + self
committee <— L
fori=0,...,kdo
/1 Polling phase
if committee = L then
\ min_active < self ; /1 The node nominates itself for selection

else
| min_active <+ L

forj=0,...,k—1do
broadcasinin_active
receivexy, ..., zs from neighbors
min_active < min {min_active, z1,...,Ts}
/1 Update |eader
leader < min {leader, min_active}
/'l Sel ection phase
if leader = self then
/'l Leaders invite the smallest ID they heard
invitation < (self, min_active)
else
// Non-leaders do not invite anybody
mwitation < L
for j=0,...,k—1do
broadcastnvitation
receiveyy, ..., ys from neighbors
invitation < min {invitation, y1,...,Ys} ; /1 (in |exicographic order)
/1 Join the leader’s conmittee, if invited

if invitation = (leader, self) then
| committee = leader

if committee = L then
| committee < self

Algorithm 3: k-committee in always-connected graphs

Claim E.4. The protocol solves the-committee problem.

Proof. We show that after the protocol ends, the values of the lagalnittee, variables constitute a valid
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solution tok-committee.

1. In each cycle, each node invites at most one node to join its committee. kAdtales at mosk nodes
have joined any committee. Note that the first node invited by a leattejoin «’'s committee is always
u itself. Thus, if afterk cycles nodeu has not been invited to join a committee, it follows thadid
not invite any other node to join its committee; when it forms its own committee in the lasbflite
algorithm, the committee’s size is 1.

2. Suppose that > n, and letu be the node with the smallest ID in the network. Following the polling
phase of the first cycle, all nodeshaveleader, = u for the remainder of the protocol. Thus, throughout
the execution, only nodeissues invitations, and all nodes propagédsdnvitations. Sincé: > n rounds
are sufficient for: to hear the ID of the minimal active node in the network, in every cycle nmlecess-
fully identifies this node and invites it to joil's committee. Afterk cycles, all nodes will have joined.

O]

Remark. The protocol can be modified easily to sohsgossip ifk > n. Lett, be the token node received

in its input (or L if node« did not receive a token). Nodes attach their tokens to their IDs, andosersdof

the form(u, t,,) instead of just. Likewise, invitations now contain the token of the invited node, and have
the structurd leader, (u, t,,)). The min operation disregards the token and applies only to the ID. At the end
of each selection phase, nodes extract the token of the invited nodagldiitdo their collection. By the end

of the protocol every node has been invited to join the committee, and thusiak iave seen all tokens.

E.2 oo-interval Connected Graphs

We can count in linear time ito-interval connected graphs using the following algorithm: each node main-
tains two sets of IDsA andS. A is the set of all IDs known to the node, afds the set of IDs the node
has already broadcast. Initially contains only the node’s ID anfl is empty. In every round, each node
broadcastsnin (A \ S) and adds this value t6. (If A = S, the node broadcasts nothing.) Then it adds all
the IDs it receives from its neighbors

While executing this protocol, nodes keep track of the current round nufstageting from zero). When
a node reaches a roundn which |A| < |r/2], it terminates and outputs!| as the count.

S0
A« {self}
forr=0,...do
if S # Athen
t < min(A\S)
broadcast
S+ SuU{t}
receivety, .. ., ts from neighbors
A(—AU{tl,...,tS}
if |[A] < |r/2] then terminate and output|
return A

Algorithm 4: Counting inoo-interval connected graphs

E.2.1 Analysis

Let dist(u, v) denote the shortest-path distance betweandv in the stable subgrapti’, and letN%(u)

denote thed-neighborhood ofu in G’, that is, N%(u) = {v € V| dist(u,v) < d}. We useA,(r) and
Sz (r) to denote the values of local variabldsand .S at noder € V' in the beginning of round. Note the
following properties:

1. Sp(r+1) C Ay(r) C Ay(r + 1) for all z andr.
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2. If w andv are neighbors ii?’, thenS, (r) € A,(r) for all r, because every value sent bys received
by v and added to!,,.
3. S and A are monotonic, that is, for all andr we haveS,.(r) C S,(r + 1) andA,(r) C A, (r + 1).

Claim E.5. For every two nodes,« € V and roundr such that- > dist(u, =), eitherx € S, (r + 1) or
|Su(r + 1) > r — dist(u, x).

Proof. By induction onr. Forr = 0 the claim is immediate.

Suppose the claim holds for round- 1, and consider round Letx, u be nodes such that> dist(u, z);
we must show that either € S, (r + 1) or |S,(r +1)| > r — dist(u, x).

If x = u, then the claim holdsi is broadcast in the first round, and thereafter we haeesS,,(r) for all
r>1.

Otherwise, lety be a neighbor ofi along the shortest path fromto  in G’; that is,v is a neighbor of:
such thadist(v, z) = dist(u,z) — 1. Sincer > dist(u, z) = dist(v, z) + 1 we haver — 1 > dist(v, x).

From the induction hypothesis erandz in roundr—1, eitherz € S, (r) or[S,(r)| > r—1—dist(v,z) =
r — dist(u, z). Applying property 2 above, this implies the following.

(x) Eitherz € A, (r) or |A,(r)| > r — dist(u, z).

If z € Syu(r) or|Syu(r)| > r — dist(u, z) then we are done, becauSg(r) C S, (r + 1). Suppose then
thate ¢ S, (r) and|S,(r)| < r — dist(u, z). Itis sufficient to prove thatl, (r) # S, (r): this shows that
in roundr nodeu broadcastsain (A4, (r) \ S, (r)) and adds it ta&5,,, yielding | S, (r + 1)| > [Su(r)| + 1 >
r — dist(u, z) and proving the claim.

We show this usingx). If x € A,(r), thenA,(r) # S,(r), because we assumed tha¢ S, (r). Oth-
erwise(x) states thatA,(r)| > r — dist(u, ), and since we assumed that,(r)| < r — dist(u, x), this
again shows thatl,, () # S, (r). O

Claim E.6. If » < n, then for all nodes. we havg A, (2r)| > r.

Proof. Letu € V. For any node: € N"(u), Claim E.5 shows that eithere S,,(2r +1) or |S,,(2r +1)| >
2r — dist(u,x) > r. Thus, eithefS,(2r + 1)| > r or N"(u) C S,(2r + 1). Sincer < n andG’ is
connected we hav& " (u) > r, and therefore in both cases we ha¥g (2r)| > | S, (2r + 1)| > r. O

Claim E.7. The algorithm terminates in linear time and outputs the correct count at aéao

Proof. Termination is straightforward: the sdtonly contains IDs of nodes that exist in the network, so its
size cannot exceed All nodes terminate no later than roud + 2.

Correctness follows from Claim E.6. Suppose that in roumibde« has|A,(r)| < [r/2], and let
r’ = |r/2]. We must show that,, (r) = V.

From Claim E.6, ifr’ < n then|A,(27")| > /. By definition of’ we haver > 2/ and hence from
Property 3 we obtainAd, ()| > /, which is not the case. Thus, > n andr > 2n. Applying the same
reasoning as in Claim E.6 to roumg we see that eithéiS,,(2n + 1)| > n or N"(u) C S,(2n + 1). Since
the first cannot occur it must be the case tHat N (u) C S,(2n + 1) C A,(r), and we are done. [

E.3 Finite-Interval Connected Graphs

Next we generalize the protocol above, in order to séhsmmmittee irR7-interval connected graphs. The
general protocol require@(n + n?/T) rounds (and assumes thatis known in advance). The idea is the
same as for always-connected graphs, except that instead of spleatimode at a time to join its commit-
tee, each leader selects a batcli'afodes and disseminates their IDs throughout the network. We generalize
and refine Claim E.5 for the case where there are initially up tokens, but only the smallegt tokens

need to be disseminated.
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E.3.1 T-gossip in2T-interval connected graphs

The “pipelining effect” we used in theo-interval connected case allows us to dissemifiatekens in2n
rounds, given that the graph2§-interval connected. The idea is to use a similar protocol tethiaterval
connected case, except that the protocol is “restarted” eEmpunds: all nodes empty the sg€t(but not
A), which causes them to re-send the tokens they already sent, startimghigcsmallest and working up-
wards. Thel' smallest tokens will thus be propagated through the network, and largersokll “die out”
as they are not re-sent.

This is captured formally by the following protocol. The tokens are nowrassito come from a well-
ordered setP, <). The input at each nodeis an initial set4,, C P of tokens. In addition, it is assumed that
all nodes have a common gudstor the size of the network. The protocol guarantees thafftisenallest
tokens in the network are disseminated to all nodes, provided that the igrapkinterval connected and
thatk > n.

S0
fori=0,...,[k/T] —1do
forr=0,...,2T do
if S # Athen
t < min(A\YS5)
broadcast
S <+ Su{t}
receivety, ..., ts from neighbors
A(*AU{tl,...,ts}
S0
return A

Functiondi ssem nate( A,7, k)

We refer to each iteration of the inner loop aplease Since a phase las®l” rounds and the graph
is 2T -interval connected, there is some connected subgraph that existghbrutuhe phase. L&t be a
connected subgraph that exists throughout phafee i = 0, ..., [k/T] — 1. We usedist;(u, v) to denote
the distance between nodesy € V in G7.

Let K,(r) denote the set of nodes that know tokehy the beginning of round, that is, K;(r) =
{ueV|te Ay(r)}. Inaddition, letl be the set of” smallest tokens ity . A, (0). Our goal is to show
that when the protocol terminates we havgr) =V forall ¢ € 1.

For a nodeu € V, atokent € P, and a phasé we definetdist;(u, t) to be the distance af from the
nearest node i, that knowst at the beginning of phase

tdist(u, t) := min {dist;(u,v) |v € K¢ (2T - i)} .

Here and in the sequel, we use the convention that() := co. For convenience, we US§ (r) :=
S.(2T i+ r) to denote the value df,, in roundr of phase. Similarly we denoted’,(r) := A, (2T i +r)
andKj(r) := K,(2T -i + 7).

The following claim characterizes the spread of each token in each .phtase a generalization of
Claim E.5, and the proof is similar.

Claim E.8. For any nodeu € V, tokent € J,cy 44(0) and roundr € {0,...,27 — 1} such that
r > tdist;(u,t), eithert € Si(r + 1) or Si(r + 1) includes at leastr — tdist;(u, t)) tokens that are
smaller thant.

Proof. By induction onr. Forr = 0 the claim is immediate.
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Suppose the claim holds for round 1 of phase, and consider round > tdist; (u, t). If r = tdist;(u, t),
thenr — tdist;(u,t) = 0 and the claim holds trivially. Thus, suppose that> tdist;(u,t). Hence,
r — 1 > tdist;(u,t), and the induction hypothesis applies: eithee S:(r) or Si(r) includes at least
(r — 1 — tdist;(u, t)) tokens that are smaller thanin the first case we are done, singgr) C S%(r + 1);
thus, assume thatg S¢ (r), andS:(r) includes at leastr — 1 — tdist;(u, t)) tokens smaller thah How-
ever, if S () includes at leastr — tdist;(u, t)) tokens smaller that then so does’: (r + 1), and the claim
is again satisfied; thus we assume thigfr) includesexactly(r — 1 — tdist;(u, t)) tokens smaller thah

It is sufficient to prove thatnin (A% (r) \ S.(r)) < t: if this holds, then in round nodeu broadcasts
min (A (r) \ S4(r)), which is eithert or a token smaller thaty thus, eithett € S, (r + 1) or S, (r + 1)
includes at leastr — tdist;(u, t)) tokens smaller thaty and the claim holds.

First we handle the case whexdist; (u, t) = 0. In this caset € A (0) C A% (r). Since we assumed that
t ¢ Si(r) we havet € A (r)\ S.(r), which implies thatnin (A% (r) \ Si(r)) < t.

Next suppose thatdist;(u,t) > 0. Letz € K}(0) be a node such thalist;(u,z) = tdist(u,t) (such
a node must exist from the definition afist,(u, t)), and letv be a neighbor of;, along the path fromu to
x in G, such thatist; (v, z) = dist;(u, ) — 1 < r. From the induction hypothesis, eithee S:(r) or
Si(r) includes at leastr — 1 — tdist;(v,t)) = (r — tdist;(u,t)) tokens that are smaller than Since the
edge between andv exists throughout phasenodeu receives everything sends in phasg and hence
Si(r) C Al(r). Finally, because we assumed ti$4t(r) contains exactlyr — 1 — tdist;(u,t)) tokens
smaller thart, and does not includeitself, we havemin (A (r) \ Si(r)) < t, as desired. O

Claim E.9. For each of thel’ smallest tokens € I and phases, we have K} (0)| > min {n, T - i}.

Proof. The proof is by induction on. Fori = 0 the claim is immediate. For the induction step, suppose
that|K}(0)| > min {n,T - i}, and consider phaser 1.

Let N(t) denote theT-neighborhood ofK}(0), that is, N(t) := {u € V| tdist;(u,t) < T}. From
Claim E.8 applied to round@T of phasei, for allu € N(t), eithert € Si(r + 1) or S, (r + 1) includes at
least2T — T' = T tokens smaller than Sincet is one of thel’ smallest tokens in the network, this latter
case is impossible. Thus, every nodes N(t) hast € Si(2T + 1) C A% (2T + 1), which implies that
N(t) € K;T(0). In addition,K}(0) € K;7'(0), because nodes never forget tokens they have learned.

Since G, is connected|N(¢) \ K;(0)] > T. Combining with the induction hypothesis we obtain
IN(t) U K}(0)| > min{n, T - (i + 1)}, and the claim follows. O

Procedurali sseni nat e terminates at the end of phage/T'| — 1, or, equivalently, at the beginning
of phase/k/T']. By this time, if the guess for the size of the network was correct, all noaleslearned the
T smallest tokens.

Corollary E.10. If k > n, thenKtWﬂ (0) = V for each of thel’ smallest tokens € I.
Proof. The claim follows from Claim E.9, becaugeé: [k/T| > k > n. O

E.3.2 k-committee in 2T -interval connected graphs

We can solve thé-committee problem iO(k + k%/T) rounds using Algorithm 6. The idea is similar to
Algorithm 3, except that leaders invifé nodes to join their committee in every cycle instead of just one
node. Each node begins the protocol with a unique ID which is stored in¢hevariableself.
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leader <+ self
committee < L
fori=0,...,[k/T] —1do
if committee = 1 then
| A {self}; /'l The node nominates itself for selection
else
| A+ 0
tokens <— di ssem nat e(A,T,k)
leader < min ({leader} U tokens)
if leader = self then
/| Leaders invite the T smallest IDs they collected
/!l (or less in the final cycle, so that the total does not exceed k)
if i < [k/T] —1then
| A« smallest?(tokens)
else
m<+—k—([k/T]-1)-T
A « smallest? (tokens)

else

/1 Non-leaders do not invite anybody
A0

tokens < di ssem nat e({self} x A, T,k)

/[l Join the leader’s conmmittee, if invited

if (leader, self) € tokens then
| committee = leader

if committee = 1 then
| committee < self

Algorithm 6 : k-committee i27-interval connected graphs

Claim E.11. The protocol above solvéscommittee irO(k + k2/T) rounds.

E.3.3 Counting in Graphs with Unknown Finite-Interval Connectivity

The protocol above assumes that all nodes know the degree of intervadctivity present in the commu-
nication graph; if the graph is n@-interval connected, invitations may not reach their destination, and
the committees formed may contain less thhanodes even ik > n. However, even when the graph is
not 27-interval connected, no committee contamerethank nodes, simply because no node ever issues
more thark invitations. Thus, if nodes guess a valueToand use thé&-committee protocol above to solve
k-verification, their error is one-sided: if their guess Tois too large they may falsely conclude thak n
when in factk > n, but they will never conclude that> n whenk < n.

This one-sided error allows us to try different valuesk@andT without fear of mistakes. We can count
in O(nlogn + n%log(n)/T) time in graphs wher& is unknownusing the following scheme. | assume the
version ofk-verification that returns the sét of all nodes ifk > n, or the special valug. if k£ < n.
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fori=1,2,4,8,...do
fork=1,2,4,...,ido
if k-verification assumingk? /i |-interval connectivity returny” = 1 then
return|V/|

Algorithm 7: Counting inO(nlogn + n?log(n)/T) in T-interval connected graphs whefeis
unknown

The time required fok-verification assumingk? /i |-interval connectivity isO(k?/|k2/i]) = O(i) for
all k£, and thus the total time complexity of tlh iteration of the outer loop i©(: log ).

If the communication graph i-interval connected, the algorithm terminates the first time we reach val-
ues ofi andk such thatc > n and|k?/i| < T. Let N be the smallest power of 2 that is no smaller than
clearly N < 2n. Let us show that the algorithm terminates when we reaghmax { N, [N?/T}.

First consider the case whetewx { N, [N?/T} = N, and hencd” > N. When we reach the last iter-
ation of the inner loop, wherk = i = N, we try to solveN-verification assumingv-interval connectivity.
This must succeed, and the algorithm terminates.

Next, suppose thgtN? /71 > N. Consider the iteration of the inner loop in whikh= N. In this itera-
tion, we try to solveN-verification assumingN?/[ N2 /T |-interval connectivity. SinceN?/[N?/T1]| <
T, this again must succeed, and the algorithm terminates.

The time complexity of the algorithm is dominated by the last iteration of the outer Vaduiph requires
O(ilogi) = O(nlogn + n?log(n)/T) rounds.

The asymptotic time complexity of this algorithm only improves upon the original?) algorithm
(which assumes only 1-interval connectivity) whHen= w(logn). However, it is possible to execute both
algorithms in parallel, either by doubling the message sizes or by interleavistei®e so that the original
algorithm is executed in even rounds and Alg. 7 is executed in odd rotthdswill lead to a time complex-
ity of O(min {n? nlogn + n*log(n)/T}), because we terminate when either algorithm returns a count.

E.4 Exploiting Expansion Properties of the Communication Graph

Naturally, if the communication graph is always a good expander, the algwrigiesented here can be
made to terminate faster. We consider two examples of graphs with goodsexpaAs before, when the
expansion is not known in advance we can guess it, payingafactor.

E.4.1 f-Connected Graphs

Definition E.1. A static graphG is f-connectedor f € N if the removal of any set of at mogt— 1 nodes
from G does not disconnect it.

Definition E.2 (T-interval f-connectivity) A dynamic graphG = (V, E) is said to beT-interval f-
connectedor T', f € Nif for all » € N, the static graplds, r := (V, ﬂ;jf’l E(r)) is f-connected.

Definition E.3 (Neighborhoods) Given a static grapli: = (V, E) and a setS C V of nodes, theneigh-
borhoodof S in G is the sel'¢(S) = SU{v eV |Jue S: {u,v} € E}. Thed-neighborhoodof S is
defined inductively, witt'%,(S) = S andT',(S) = FG(F‘é‘l(S)) for d > 0. We omit the subscrip when
it is obvious from the context.

In f-connected graphs the propagation speed is multiplietl bgcause every neighborhood is connected
to at leastf external nodes (if there are fewer thAmemaining nodes, it is connected to all of them). This
is shown by the following lemma.

Lemma E.12(Neighborhood Growth)If G = (V, E) is a staticf-connected graph, then for any non-empty
setS C V and integerd > 0, we havel'?(S)| > min {|V], |S| + fd}.
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Proof. By induction ond. Ford = 0 the claim is immediate. For the step, suppose th&ts)| >
min {|V|,|S| + fd}. Suppose further that?*!(S) # V, otherwise the claim is immediate. This also
implies thatl'!(S) # V, becausd'?(S) C T'%+1(S). Thus the induction hypothesis states thist(S)| >
|S| + fd.

LetT' := I'+1(S) \ I'Y(S) denote the “new” nodes in thel + 1)-neighborhood of5. It is sufficient to
show thatT'| > f, because thefi'*1(S)| = [T'4(S)| + |T'| > |S| + f(d + 1), and we are done.

Suppose by way of contradiction thHal < f, and letG’ = (V’, E’) be the subgraph obtained fragby
removing the nodes ifhi. Becaus&~ is f-connected anl’| < f, the subgrapld:’ is connected. Consider
the cut(I'¢(S), V' \ T'Y(S)) in G'. BecauseS # § andS C T'%(S), we havel'?(S) # (), and because
rd(S) C T1(S) andT?t1(S) # V, we also havd’’ \ T%(S) # (. However, the cut is empty: if there
were some edgéu,v} € F such thatu € T4(S) andv € V' \ T'Y(S), then by definition of"¢*+!(S) we
would havev € T9F1(S). This in turn would imply thaty € T, and thusy ¢ V’, a contradiction. This
shows that?’ is not connected, contradicting thfeconnectivity ofG. O

Now we can modify Procedurdi sseni nat e to require only[k/(fT)] phases. Claim E.8 still holds,
since it is only concerned with a single phase. The key change is in ClaimvEi€) we now re-state as
follows.

Claim E.13. For each of thel’ smallest tokens € I and phases we have K (0)| > min {n,T - f - i}.

Proof. Again by induction oni, with the base case being trivial. For the step, assume|#igb)| >
T - f-i. As argued in the proof of Claim E.9, at the end of phasel we havel'’ (t) C K;"'(0), where
I7(t) == {u e V| tdist;(u,t) < T}. From Lemma E.12|T7 ()| > min {n,|K{(0)| + fT'}, and the
claim follows. O]

Corollary E.14. If k > n, thenKtW(fTﬂ (0) = V for each of thel’ smallest tokens € I.

Proof. BecausefT - [k/(fT)]| > k. O
By substituting the shortenadi ssemi nat e in Algorithm 6, we obtain an algorithm that solvés

Committee inO(n + n?/(fT)) time in 27-interval f-connected graphs.

E.4.2 Vertex Expansion

In this section, we show that if the communication graph is always an expdhedi sseni nat e proce-

dure require®)([log(n)/T"]) phases to disseminate tiiesmallest tokens.

Definition E.4. A static graphG = (V, E) is said to have vertex expansion> 0 if for all S C V, if
15| < W thent®) > 1 4 A,

Definition E.5 (T-interval vertex expansion)A dynamic graphG = (V, F) is said to havd -interval ver-
tex expansion\ > 0 for ' € N if for all » € N, the static grapltz, 7 := (V, ﬂ:;T_l E(r)) has vertex
expansion.

LemmaE.15. LetG = (V, E), |V| = n be a fixed undirected graph. @ has vertex expansiok > 0, for
any non-empty sef C V' and integerd > 0, we have

min {(n +1)/2,]5|- (1 + X4} if |S| < n/2
Fé(s) > {n— VA S|/(1+ M) it S| > n/2.

27



Proof. The casel = 0 is trivial, the caseS| < n/2 follows directly from Definition E.4. FofS| > n/2,
let A = T9(S)\ S and letB = V \ (S U A). Note that any two nodeg € S andv € B are at dis-
tance at least + 1. It therefore holds thaF?(B) C V \ S. Consequently, we hae’(B) < n/2 and
certainly also|B| < n/2 and thus by Definition E.40%(B) > |B|(1 + \)¢. Together, this implies that
n—|T4S)| = |B| < |V \S|/(1+ \)? as claimed. O

Analogously tdl'-interval f-connected graphs, we can modify Procedlireseni nat e to require only
O(1 + log,, (n)/T) phases. Again, Claim E.8 still holds and the key is to restate Claim E.9, which now
has to be adapted as follows.

Claim E.16. We defing, := [log;\((n + 1)/2)/T]. For each of thel’ smallest tokens € I and phases
7, we have

. min {(n+1)/2, (1 + AT} fori < g
(KO =29, m-nj2 fori > i
ESYIC=ES 0

Proof. As in the other two cases, the proof is by induction;pwith the base case being trivial. Again, for
the step, as argued in the proof of Claim E.9, at the end of phasewe havel'" (t) C K!'(0), where
IT(t) := {u € V| tdist;(u,t) < T}. The claim now immediately follows from Lemma E.15. O

Corollary E.17. If i > 2iy = O(1 + log;,(n)), K;(0) = V for each of thel smallest tokens € I. [

Consequently, in dynamic graphs withinterval vertex expansioi, n-gossip can be solved i@ (n +
nlog,,,(n)/T) rounds.

E.5 Asynchronous Start

So far we assumed that all nodes begin executing the protocol in the santk tois interesting to consider
the case where computation is initiated by some subset of nodes, while theeresieep. We assume that
sleeping nodes wake up upon receiving a message; however, sircggaeare delivered at thadof each
round, nodes that are woken up in rounsend their first message in round- 1. Thus, nodes have no way
of determining whether or not their messages were received by sleepileg in the current round.

Claim E.18. Counting is impossible in 1-interval connected graphs with asynchrostaiis

Proof. Suppose by way of contradiction thdtis a protocol for counting which requires at mé@t) rounds
in 1-interval connected graphs of size Letn’ = max {¢(n) + 1,n + 1}. We will show that the protocol
cannot distinguish a line of lengthfrom a line of length.’'.

Given a sequencd = a; o ... o a,, letshift(A, r) denote the cyclic left-shift ofl in which the firstr
symbols ¢ > 0) are removed from the beginning of the sequence and appended tath@ersider an exe-
cution in a dynamic line of length’, where the line in round is composed of two adjacent sectiofis B,.,
whereA = 0o...o(n— 1) remains static throughout the execution, @1a) = shift(no...o(n'—1),7)
is left-shifted by one in every round. The computation is initiated by ribaled all other nodes are initially
asleep. We claim that the execution of the protocol in the dynamic graphA o B(r) is indistinguishable
in the eyes of nodeg, . .., n — 1 from an execution of the protocol in the static line of lengtfthat is, the
network comprising sectiod alone). This is proven by induction on the round number, using the fact tha
throughout rounds, . . ., t(n) — 1 none of the nodes in sectiot ever receives a message from a node in
sectionB: although one node in sectids is awakened in every round, this node is immediately removed
and attached at the end of sectiBnwhere it cannot communicate with the nodes in secdoThus, the
protocol cannot distinguish the dynamic graghfrom the dynamic grapt o B(r), and it produces the
wrong output in one of the two graphs. O
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If 2-interval connectivity is assumed, it becomes possible to solve gosdigr @synchronous start. We
begin by defining a version of thecommittee and-verification problems that explicitly address sleeping
nodes.

k-Commitee with Wakeup. In the modifiedk-committee problem we require, as before, that no commit-
tee have more thakh nodes. Sleeping nodes are not counted as belonging to any committeéitiorgdf
k > n, we require all nodes to be awake and to be in the same committee.

k-Verification with Wakeup. In the modifiedk-verification problem, all awake nodes must eventually
output 1 iff ¥ > n. Sleeping nodes do not have to output anything. (Nodes that are agdhkleiring the
execution are counted as awake and must output a correct valueydrowreere is no requirement for the
algorithm to wake up all the nodes.)

E.5.1 k-Verification with Wakeup

We modify thek-verification protocol as follows. First, each node that is awake at tgenbeg of the
computation maintains a round counterhich is initialized to 0 and incremented after every round. Each
message sent by the protocol carries the round counter of the saadeg|l as a tag indicating that it is a
k-verification protocol message (so that sleeping nodes can tell whitbcpidhey need to join).

As before, each node has a variable:,, which is initially set to its committee ID. In every round node
u broadcasts the messagever, ¢, z,,). If u hears a different committee ID or the special valugt sets
xy < L; ifit hears a round counter greater than its own, it adopts the greater aalits own round counter.
When a node: is awakened by receiving a message carryingitiver tag, it setsr,, «+ L and adopts the
round counter from the message (if there is more than one message,theitagest one).

All awake nodes execute the protocol until their round counter reahest that point they halt and
outputl iff = #£ L.

T <— committee
c+0
while ¢ < 2k do
broadcastk-verif, ¢, x)
receive(k-verif, c1, x1,), ..., (k-verif, cs, x5, ) from neighbors
if x; # x for somel < i < sthen
| <+ L
¢+ max{c,ci,...,csp+1
if x = 1 then
| outputO
else
| outputl
upon awakening by receipt of message&-verif, c1, x1, ), ..., (k-verif, cs, x5, ):
T4 1
¢+ max{cy,...,cs+1
upon awakening spontaneously (by the adversary):
<+ L
c+0

Algorithm 8 k-verification protocol with wakeup

Claim E.19. Algorithm 8 solves thé-verification with wakeup problem if all nodes start in a state that
represents a solution tb-committee with wakeup, and the graph is 2-interval connected.

Proof. The case wheré > n is immediate: as in the synchronous start case, all nodes are awake at the
beginning of the protocol, and no node ever hears a committee 1D diffiecantits own.
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Suppose that < n. Nodes that are awakened during the protocol set theariable toL, so they will
output O; we only need to concern ourselves with nodes that are awtiestzeginning and have a commit-
tee ID. We show that the size of each committee shrinks by at least one vegetwo rounds, so that at
the end of thek rounds, all nodes have= 1.

Consider a cut between the nodes that belong to some comifiithee still haver = ', and the rest of
the nodes, which are either sleeping or havg C. From 2-interval connectivity, some ed@e, v} in the
cut exists for the next two rounds. Assume that= C. If v is asleep in the first round, wakes up when
it receivesu’s message, and broadcastsn the second round. If is awake in the first round it broadcasts
T, 7# X, in the first round. In both cases nodavill changez,, to L by the end of the second round. [

It remains to show that we can solkecommittee with asynchronous start. We can do this using the same
approach as before, with one minor modification: as wiVerification, we maintain a round counteat
every node, and now each nodeises the paifc,, u) as its UID, instead of; alone. The pairs are ordered
lexicographically, withlarger round counters winning out over smaller ones; thatds, u) < (c,,v) iff
Cy > Cy, Or e, = ¢, andu < v.

When a node receives a larger round counter than its own in a messadepis that value as its own
round counter, and jumps to the appropriate part of the protocol (e.ge ifotlnd counter it receives is
k + 3, in the next round it will execute the fifth round of the invitation phase, bsedt knows that the first
k — 1 rounds were taken up by the polling phase and the first four roundse afthation phase have passed
already). We use round counters so that nodes that awaken duriegabation of the protocol will know
what the current round is, and to have the eventual leader be onerufdles that woke up first.

Claim E.20. Algorithm 6, when run with round counters and using pairs of the farmu) instead of UIDs,
solves thé:-committee with wakeup problem.

Proof. First consider the case wheke> n, and letu be the node with the smallest UID among the nodes
that initiate the computation. The first polling phase executed lastsk > n rounds, during which all
nodes receive’s polling message and forward it, setting their round counter to matlf it does not
already. At the end of’s polling phase, all nodes are awake, all have the same round cosnigamd all
haveu as their leader. From this point on the execution proceeds as in the caggchfonous wakeup.

Next suppose that < n. In this case we only need to show that no committee contains moré tin@m-
bers. But this, as always, is guaranteed by the fact that each committesénsoonly nodes invited by the
node whose UID is the committee ID, and no node ever invites moreithades to join its committee. ]

When nodes execute the full counting algorithm with asynchronous veakidfterent parts of the graph
may be testing different values férat the same time. However, the round counter serves to bring any
lagging nodes up-to-date. When some nodiest reache& > n, even if other nodes are still testing smaller
values fork, the first polling phase af’s k-committee instance will reach all nodes and cause them to join
u's computation. (In fact they will join’'s computation sooner, because to reach n it had already had to
go through at least—1 rounds testing smaller values, so all nodes will have seen its currert atneady.)

E.6 Randomized Approximate Counting

We next show that under certain restrictions on the adversary providengequence of graphs, by using
randomization, it is possible to obtain an approximation to the number of nodes imltimost linear im

with high probability, even if the dynamic graph is orllyinterval connected. The techniques we use are
based on a gossiping protocol described in [32]. We assume that tee kioow some potentially loose up-
per boundV onn. When arguing about randomized algorithms, we need to specify whidomachoices

the dynamic grapliz = (V, E') can depend on. We assume an adversary that is oblivious to all random
choices of the algorithm.
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Definition E.6 (Oblivious Adversary) Consider an execution of a randomized algoritdmThe dynamic
graphG = (V, E) provided by an oblivious adversary has to be independent of albraruthoices of4.

In the sequel, we show that in the case of an oblivious adversary, isEhpe to use randomization to
efficiently compute an arbitrarily good estimaterofin particular, we show that for any> 0, itis possible
to compute aril + ¢)-approximation of, with high probability (inV') in time

e O(n) when using messages of si2Z€log N - (loglog N + log(1/¢))/e?)
e O(n - (loglog N +log(1/¢))/<?) if the maximal message size is restrictedtog N) bits.

For simplicity, we only describe the algorithm with slightly larger message sizestail and merely
sketch how to adapt the algorithm if messages are restrictedltg; V) bits. For parameters € (0,1/2)
andc > 0, we define

0:=T[(2+2c) 27In(N)/e%]. (1)
Initially, each nodev € V, computes independent exponential random variab‘i@@, . -er(U) with
ratel. Following the aggregation scheme described in [32], we define
. 14
VS CV:n(S):= Ok 2

/ . v
> ie1 Minyes V]

If we choose a se$ independently of the exponential random variables of the nodgs), is a good
estimate for the size &f as shown by the following lemma, which is proven in [32].

Lemma E.21([32]). For everyS C V thatis chosen independently of the random variabrllé@ fori € [{]
andv € V, we have
Pr (

Before describing the algorithm in detail, we give a brief overview. Ireotd obtain a good estimate

for the total number of nodes, the objective of each node will be to compuitd”) and thusmin,cy Yi(”)
for eachi € [¢]. In each round, every node broadcasts the minirhafalue it has heard for everye [/].
If we assume that the sequence of graphs is chosen by an oblivioessady for each node € V' and
roundr > 0, C,(r) is independent of all the exponential random variaMZé@ chosen by nodeg € V.
Hence, as a consequence of Lemma EZT,(r)) is a good estimate gt (r)| for all » andv. Because
|Cy(r)] > r for all » andv (Claim E.2), each node can stop forwarding miniriiavalues as soon as the
value ofn(C,(r)) exceeds the round number by a sufficient amount.

Executing the algorithm as described above would require the nodesd@sact values of exponential
random variables, i.e., real values that cannot a priori be sent usiograded number of bits. Therefore,

each node € V computes a rounded vaILﬁ:;(”) of Y;(”) for eachi € [/] as follows.

(v)
(V) s # 14c £ llogy 1 ¢ a(Y; )]
Y, = mln{MNHc,max{ln(MN ) (1—|— 4> . (3)

Hence,Yi(”) is rounded to the next smaller integer powed of /4. Further, we restricf/l.(”) to be within
the rang€g1/(4¢N1+¢) In(4/N'*)]. We will show that with high probability, all variablég(”) will be in
this range and thus restricting the range only has an effect with negligititbpitity. Asl?;(”) is an integer

a(S) — |S|| > ; : 5]S|> < 2eE/2T,
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power of1 + /4, it can be stored usin@(loglogy ;. /4(¢N)) = O(loglog N + log(1/¢)) bits. The details
of the algorithm are given by Algorithm 9.

Z0 (v v
forr=1,2,...do
broadcasg (¥
receiveZ("), ..., Z(s) from neighbors
fori=1,...,¢do
2 e min{z", 2", 2"}

fo(r) €/ Y0, 72

if (1 —e¢)r > n,(r) then terminate and output, (r)

Algorithm 9: Randomized approximate counting in linear time, code for node

Theorem E.22. For ¢ € (0,1/2) andc > 0, with probability at leastt — 1/N¢, every node of Algorithm 9
computes the same valag(r) =: n. Further|n — n| < en.

Proof. Let A be the event that the exponential random varialbl@’% forall i € [¢] andv € V are within
the rangd1/(4/N1+¢), In(4¢N1+¢)]. For eacm/i(”), we have

pr (v < L =1- e_4fN11+c < #
E 4¢N1+e 4¢N1+e
and .
(v) I4+cy) _ In(4eNt+e) _
Pr (Yi > In(4¢N )) - = T

As the number of random variabléfé”) is ¢n, we obtainPr(.4) > 1 — 1/(2N°) by a union bound.
Consider the state of some node V afterr > 0 rounds. Because all minima); values are always for-

warded, for al € [¢], it holds thatZZ.(”) = minyec, () ffi(“). In case of the evend, for all i andv, we have

v <y < (1 i Z) Y andthus i, (r) > #(Cy(r)) > 1ﬁi(£/)4. (4)
We thus get
Pr (| (r) — [Co(r)]] > €|Cu(r)]) N A)
<ag§1/z> () — [Co(r)| — %ycv(r)\ > (1 n Z) gs\C (r )\) N A)

o
R

Q+Z)mam»—mun\>@+j)§mqumA)

< m(\m ) > 2l )

(LemmaE.2} 9 1
—e20/27 —2—(24c¢)InN)
< 2e < 2e < SNZTC

In order to be able to apply Lemma E.21, we use that with an oblivious adygefsaall » andv, C,(r) is
independent of all random variabléé“). By applying a union bound, we obtain that with probability at
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leastl — 1/(2N°¢) eventA occurs or
Yv e V,Vr >0: ‘ﬁv(r)— \C’v(T)H <e-|Cy(r)]. 5)

Note thatC,(r) = V for all » > n — 1 and that the union bound therefore is oug¢n — 1) < N? events.
If (5) holds, we have
My(r) 2 (1—¢) - |Cu(r)| 2 (1 —¢) -7

forallr < n—1andv € V. Therefore, in this case no node terminates before reundl. Hence, all
nodes get the same final valaefor n,(r) and by (5), it holds thatn — n| < en as required. Because
Pr(A) < 1/(2N¢), (5) holds with probability at least— 1/N¢ which completes the proof. Ol

F Lower Bounds for Token-Forwarding Algorithms

A token-forwarding algorithm for solving the gossip problem is an algorithat does not manipulate the

tokens in any way except storing and forwarding them. Specifically, tlogitigh must satisfy the following

conditions. Lets&(r) denote the message broadcast by nederoundr, when the algorithm is executed

in dynamic graplG = (V, E).

1. s%(r) € T U {L} for all roundr and nodes..

2. Nodes can only learn new tokens by receiving them, either in their imgntaomessage from another
node. Formally, leR?$ (r) := {s$(r) | {u,v} € E(r)} denote the set of messageseceives in round

r, and let
AG( (U RG )

We require the following.

e sC(r) € A%(r) U {L} for all nodesu and rounds-, and
. If nodew terminates in round, then A% (r) = I.

We omit the superscrigt when it is obvious from the context.
F.1 Q(nlogk) Lower Bound for Centralized k-Gossip in 1-Interval Connected Graphs

For this lower bound we assume that in each rognsbme central authority provides each nadeith a
valuet, (r) € A,(r) to broadcast in that round. The centralized algorithm can see the stakéstony of

the entire network, but it does not know which edges will be scheduleatioutrent round. Centralized al-
gorithms are more powerful than distributed ones, since they have doaesse information. To simplify,

we begin with each of thé tokens known to exactly one node. This restriction is not essential. The lowe
bound holds as long as there is constant fraction of the nodes that stlitméearnk® tokens for some
positive constand.

We observe that while the nodes only know a small number of tokens, it ysfeathe algorithm to
make progress; for example, in the first round of the algorithm at keastdes learn a new token, because
connectivity guarantees thainodes receive a token that was not in their input. As nodes learn morestoke
it becomes harder for the algorithm to provide them with tokens they do reddyirknow. Accordingly,
our strategy is to charge a cost bf(k — i) for thei-th token learned by each node: the first token each
node learns comes at a chelgfk, and the last token learned costs deatly Formally, the potential of the

system in round is given by
[Aw(r)|=1

Z Z k—z'

ueV =0
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In the first round we havé(0) = 1, becausé nodes know one token each. If the algorithm terminates
in roundr then we must havé(r) = n- H;, = ©(nlog k), because ath nodes must know alt tokens. We
construct an execution in which the potential increase is bounded bystacbin every round; this gives us
an(nlog k) bound on the number of rounds required.

Theorem F.1. Any centralized algorithm fok-gossip in 1-interval connected graphs requife&: log k)
rounds to complete in the worst case.

Proof. We construct the communication graph for each rouidthree stages.

Stage I: Adding the free edges. Anedge{u, v} is said to bdreeif ¢,,(r) € A,(r) andt,(r) € A,(r); that

is, if we connect:. andv, neither node learns anything new. Liétr) denote the set of free edges in round
r; we add all of them to the graph. Lét, . .., Cy denote the connected components of the g(&piE'(r)).
Observe that any two nodesandv in different components must send different values, otherwise we would
clearly have, () € A,(r) andt,(r) € A,(r) andu andv would be in the same component.

We choose representatives € C4,...,v, € Cp, from each component arbitrarily. Our task now is to
construct a connected subgraph owver. .., v, and pay only a constant cost. We assume £hat6, oth-
erwise we can connect the nodes arbitrarily for a constant costnissing(u) := k — | A, (r)| denote the
number of tokens node does not know at the beginning of round

Stage ll: We split the nodes into two sef®p, Bottom according to the number of tokens they know, with
nodes that know many tokens “on topTop := {v; | missing(v;) < ¢/6} and consequentlBottom :=
{vi | missing(v;) > £/6}.

Since top nodes know many tokens, connecting to them could be expekigdvill choose our edges
in such a way that no top node will learn a new token, and each bottom rildearn at most three new
tokens. We begin by bounding the sizefp.

To that end, notice thal . 1,,, missing(u) > ("57): for all i, j such that, v € Top, eithert, (r) ¢
Ay(r) ort,(r) ¢ Ay,(r), otherwise{u, v} would be a free edge and v would be in the same component;
therefore each paii,v € Top contributes at least one missing token to the sum. On the other hand, since
each node irfop is missing at most/6 tokens, it follows thad . ,,,, missing(u) < |Top|-(£/6). Putting
the two facts together we obtdifop| < ¢/3 + 1, and consequently alsBottom| = ¢ — | Top| > 2¢/3 — 1.

Stage lll: Connecting the nodes. The bottom nodes are relatively cheap to connect to, so we connect
them in an arbitrary line. In addition we want to connect each top node ttt@nbb@ode, such that no top
node learns something new, and no bottom node is connected to more theopomae. That is, we are
looking for a matching using only the edgBs= {{u,v} | u € Top,v € Bottom andt, € A,(r)}.

Since each top node is missing at mé4&i tokens, and each bottom node broadcasts a different value, for
each top node there are at le@Bbttom| — ¢/6 edges inP to choose from. But since we assute 6,
| Top| < £/3 4+ 1 < |Bottom| — ¢/6; thus, each top node can be connected to a different bottom node using
P-edges.

What is the total cost of the graph? Top nodes learn no tokens, and budties learn at most two tokens
from other bottom nodes and at most one token from a top node. Thusjdheost is bounded by

min{3,missing(u)}

1 6
> > — < |Bottom|- > < (- = 36. O
missing(u) — (i — 1) £ 14

u€ Bottom =1

F2 (n + n2/T) lower bound against knowledge-based token-forwarding algorithra

In this section we describe a lower bound against a restricted classdufmézed token-forwarding algo-
rithms. We represent randomness as a random binary string providadhmede at the beginning of the
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execution. In every round, the nodes may consume a finite number afmabitls, and use them to deter-
mine their message for that round and their next state. In every execoti@s only use finitely many coin
tosses; we use an infinite string when modelling the algorithm in order to avoid

A token-forwarding algorithm is said to Henowledge-based it can be represented as a collection of
functions{f, |u e U} C P(T)* x {0,1}* — D(T), such that in every round, if R is the sequence of
coin-tosses for node up to roundr (inclusive), the distribution according to which nodelecides which
token to broadcast is given b, (A,(0) ..., Au(r), R).

We say that two dynamic graplis = (V, E) andG’ = (V', E’) areequal up to round- if V' = V" and
for all ' < r we haveE(r') = E’(r'). Let D, (r) denote the probability distribution for noden roundr-.
Knowledge-based algorithms have the following property.

Lemma F.2. Let G, G’ be two dynamic graphs that are equal up to roundnd let(V, I) be an instance
of gossip. Ifu is a node such thatl¢(r) = I, then for any round’ > 0 and stringR < {0,1}* we have
DS (', R) = DS (', R).

Proof. SinceG andG’ are equal up to round, the sequenced$(0) ... AS (r) and AS(0) ... AS (1) are
equal, and in particulad® () = A% (r) = 1.

By definition, for all+’ > r we haveAS(r) € A% (+') and AS" (r) € AS'(+'); therefore, AS (r') =
A% (") = I'foralls’ > r. Consequently, for all’ > 0, the sequences$ (0) ... A (') andAS" (0) ... AG" (+)
are equal, and the claim follows. O

!

Theorem F.3. Any knowledge-based token-forwarding algorithmifenput gossip ifi"-interval connected
graphs overn nodes require$2(n + nk/T") rounds to succeed with probability at lealst2. Further, if
[U| = Q(n%k/T), then for sufficiently large:, deterministic algorithms requir(n + nk/T) rounds even
when each node begins with at most one token.

Proof. A lower bound ofQ2(n) is demonstrated trivially in a static line network where at least one token
starts at one end of the line. In the sequel we assume:that.

Let { f,} be an knowledge-based token-forwarding algorithmifgossip. We use the UID space as the
token domain, and choose nodss. . . , u,,: for randomized algorithms we choose the UIDs arbitrarily, but
for deterministic algorithms we must choose them carefully (see the lastf plagtproof). If the algorithm is
randomized, we choose an input assignment where someunadarts with allk tokens, and all other nodes
u; # uy start with a sef (u;) C {u1,u;}. For deterministic algorithms, we later show that we can reach this
state from some input assignment where each node starts with at most ene Eak now let us suppose
that we have reached some roundn which A,,, (ro) = I and for allu; # u; we haveA,,, C {u1,u;}. In
this starting state there are— 2 nodes that do not know each tokegt «;. We abuse notation by usirlg
to denote the set of all tokens, . . ., u; as well as the input assignmefitu;) to each node:;.

Letr) :=ro+ (n — 2)(k — 2)/(4T). For atokent € I, letE [#t] denote the expected number of times
tokent is broadcast by between rounds, andr; (exclusive). We have

ri—1

D E[#t]=>_ > Prltisbroadcastinround] = ry —rog — 2 < (n — 2)(k — 2)/(47).

tel tel r=rg+1

Thus, there are at least two tokeng t' such thaff [#t] , E [#t'] < (n —2)/(4T). Assume w.l.0.g. that

t # u;. From Markov’s inequality, node; broadcasts less thann — 2)/(27") times with probability at
least1/2 in any execution fragment starting from roungland ending before round, regardless of the
dynamic graph we choose. The idea in the proof is towysas a buffer between the nodes that have already
learnedt and those that have not; singe broadcasts infrequently with high probability, in this manner
we can limit the number of nodes that learn
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We divide the rounds betweey andr; into segments., . .., a,,,. The graph remains static during each
segment, but changes between segments. For each segmeatdefine two sets of nodeé;; and D,
whereC; N D; = {u;}. The nodes iD; are “contaminated nodes” that might know tokeat the beginning
of the segment; we connect them in a clique. The nod&s; iare “clean”: initially, except for, these
nodes do not know (some of them might learhduring the segment). The only way the node€’jncan
learnt is if u; broadcasts it. In the first segmefit is arranged in a line with; at one end; in subsequent
segments we “close’; to form a ring. Initially D, = {u;,t} andC; = V' \ {¢} (recall thatt, in addition
to being a token, is also the UID of a node).

There are two types of segments in our construction.

e Quietsegments are ones in whiah does not broadcastuntil the last round in the segment. In the last
round of a quiet segment, broadcastsg, and some nodes in the ring become contaminated. The first
segmenty; is a quiet segment.

e After every quiet segment there follows one or maoéivesegments, in which we clean up the ring and
move contaminated nodes froff) to D;. We have to do this in a way that preserZednterval connec-
tivity. Each active segment is triggered by broadcasting in the previous segment; if in some active
segment:; does not broadcastthe next segment will be quiet.

An active segment lasts exactly rounds, and a quiet segment lasts until the first timebroadcasts
(including that round).

Next we define in detail the construction of the communication graph in egchesg. We maintain the
following property:

(*) At the beginning of each active segment of all the nodes ir(;, only w1 and at mosf” nodes in the
T-neighborhood ofi; in the ring know tokert. Further, all the nodes that knavare on the same side of
u1. We refer to the side af; where these nodes are located ascihietaminated side af; .
(x+) At the beginning of each quiet segment nodeu; is the only node in the ring that knows token

Let vy, ...,v,—o be some ordering of the nodes @ \ {u;} (nodes that initially do not know). In
each segmentthe nodes irC; will be some contiguous subset,, ..., vg,, WwhereL;;; > L; > 1 and
Rit1 < R; <n—2foralli. We placeu; betweerv,, andvg, in the ring. Formally, the edges in any round
r € ay; Wherei > 1 are given by

E(r) := D U {{vj,vj1} | Li < j < Ri} U {{ur,or,}, {u1,vr,}} .

In the first segment, the edges d¢r) = D§2> U {{vj,v;,} |1 <j<n—2}U{{u,v1}} (we do not
close the ring; this is to ensure tha) polds for the first active segment).

If «; is a quiet segment, then we defifig,; := C; (and consequentlp; . := D;); that is, the network
does not change between anda;1 (except possibly for the closing of the ring after the first segment).
However, ifa; is an active session, then has some neighbors in the ring that knatysnd they might
spreadt to other nodes even when does not broadcast We divide the nodes i@; \ {u;} into three
subsets.

e Thered nodesed; comprise th&T nodes adjacent te; on the contaminated side. The fifStof these
(the ones closer ta;) may knowt at the beginning of the segment; the otfiemay become contaminated
if some of the firstl” broadcast token. To be safe, we treat all red nodes as though they knbwthe
end of the session.

e Theyellow nodegellow; comprise thél’ nodes adjacent te; on the uncontaminated side. These nodes
may learnt during the segment, but onlyif; broadcasts it.

e The green nodegreen, are all the other nodes in the ring. These nodes cannot become contaminate
during the segment, because their distance from any node that kneweeater tha'.
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Our cleanup between segmentsand ;1 consists of moving all the red nodes infty. ;. Formally, if
vr, € red;, then we definey,. | := vr, + 2T andvg, , = vg,; otherwise, ifvr, € red;, then we define
VR, := VR, +2T andvr,, , := vr,. This satisfies{) and ¢x): if v, does not broadcastluring segment;,
then only the red nodes can knowt the end, and since we removed them from the ring, at the beginning of
a;+1 No node knows exceptu;. The next segment will be quiet. Otherwiseyif does broadcastduring
«;, then at the beginning of the next session (which is active) only the yeltmesyellow; can knowt.
These nodes then become red nodes in segment and there aré@ of them, as required.

The cleanup step preservésinterval connectivity: assume thedd; = {vr,,...,vr,yor} (the other
case is similar). Then the ling,, 127, vr,+27—-1,- .., U1, VR, VR, +1, - - - » UL, +27—1 €XiStS throughout both
segmenty; and segmendy;1: in segmenty; it exists as part of the ring, and in segment ,, after we
moved the red nodes into the cliqiig, the first part of the line, o7, vr,427-1, . .., u1 €Xists in the
clique and the second pairt, vg,, Vr,+1, - - -, VL, +27—1 €XisSts in the ring. The nodes I; are all connected
to each other in both segments; thus, there is a static connected graphr$isspleroughout both segments
oy, a1, @and in particular it exists in any’ rounds that start ilv;. (Note thate; 1 may be quiet, and in
this case it can be shorter th@arrounds. But in this case it will be followed by an active segment which has
exactly the same edges and ldBteounds.)

Notice that the number of uncontaminated nodes at the beginning of evamy segment is at motl’
less than in the previous active session. Therefore the total numbedes$ tlmat know by roundr; is at
most2T times the number of active sessions, and this in turn is bounded lbynes the number of rounds
in which u; broadcastg. Sinceu; broadcasts less than(n — 2)/(27") times with probability at least/2,
the algorithm is not finished by round with probability at least /2.

Deterministic algorithms. If the algorithm is deterministic, we first show that there exists an input as-
signment in which each node begins with at most one token, from which either

1. the algorithm runs fo®2(nk/T") rounds, or
2. we reach a round, in which some node:; hasA,, (rp) = I and for alli # 1 we haveA,,(ry) C

{u1,u;}.
In the case of (2), we then continue with the same proof as for the ingghassnt where some node starts
with all tokens and the rest of the nodes have no tokens (see aboved. i&nare free to choose the input
assignment, we restrict attention to instances in which the inputsnimdes are their own UIDs, and the
inputs to the other tokens afle

For deterministic algorithms the functigf) representing node’s behavior must return a distribution in
which one token has probability 1. We abuse notation slightly by uging.(0) ..., A,(r — 1)) to denote
this token.

We say that a processe U fires in roundr if when process receives{u} as its input and hears nothing
in the firstr — 1 rounds, it will stay silent in those rounds and then spontaneously tmetids token in
roundr. Formally, process fires in roundr if

1. For all?’ < r we havef,({L1}") = L, and
2. fu{u}") = u.
If processu does not fire in any round < r, we say that: is passive until round-. (Note that nodes
that receive no tokens in their input have no choice but to broadctshgauntil they receive a token from
someone.)

Since|t| = Q(n?k/T), there exist constants ng such that for alh > ny we havell/| > cn?k +n — 1.
Letn > ng. We divide into two cases.

Case |. There existuy,...,u, € U that are all passive until rounghk/T. In this case we construct the
static clique ovely, ..., u, and let the algorithm run. During the firstk /T rounds, all nodes send only
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1, and no node learns new tokens. Consequently all nagdéswve A, (nk/T) = in(u;) # I, and the
algorithm cannot terminate by rourd#k /T

Case ll. All but n — 1 processes fire no later than round: /7.

Since|U| > c¢(n®k/T + n — 1), by the pigeonhole principle there must exist a rouck cnk/T such
that at leash processes fire in roung). Letuq, ..., u, ben such processes. We choose the instance where
each node; receives as inpufu; } if i < k,or()if i > k.

Let S be the static star with; at the centerS = (V, Eg), whereEg(r) = {{u1,u;} |7 > 1} forall r.
Because all nodes fire in roumg, when the algorithm is executed i the network is silent until round,.
In roundrg all nodes that have a token broadcast it. Following rounae haveA,, (ro + 1) = I, and for
alli > 1, Ay, (ro + 1) = I'(u;) U {u1} C {u1,u;}. Thisis the state from which we start the main body of
the proof above. Ol
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