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ABSTRACT
We study several variants of coordinated consensus in dynamic net-
works. We assume a synchronous model, where the communica-
tion graph for each round is chosen by a worst-case adversary. The
network topology is always connected, but can change completely
from one round to the next. The model captures mobile and wire-
less networks, where communication can be unpredictable.

In this setting we study the fundamental problems of eventual,
simultaneous, and∆-coordinated consensus, as well as their rela-
tionship to other distributed problems, such as determining the size
of the network. We show that in the absence of a good initial upper
bound on the size of the network, eventual consensus is as hard as
computing deterministic functions of the input, e.g., the minimum
or maximum of inputs to the nodes. We also give an algorithm
for computing such functions that is optimal in every execution.
Next, we show that simultaneous consensus can never be achieved
in less thann − 1 rounds in any execution, wheren is the size of
the network; consequently, simultaneous consensus is as hard as
computing an upper bound on the number of nodes in the network.

For∆-coordinated consensus, we show that if the ratio between
nodes with input0 and input1 is bounded away from1, it is possi-
ble to decide in timen−Θ(√n∆), where∆ bounds the time from
the first decision until all nodes decide. If the dynamic graph has di-
ameterD, the time to decide ismin{O(nD/∆), n −Ω(n∆/D)},
even ifD is not known in advance. Finally, we show that (a) there
is a dynamic graph such that for every input, no node can decide be-
fore timen−O(∆0.28n0.72); and (b) for any diameterD = O(∆),
there is an execution with diameterD where no node can decide
before timeΩ(nD/∆). To our knowledge, our work constitutes
the first study of∆-coordinated consensus in general graphs.

Categories and Subject Descriptors:
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problems—computations on dis-
crete structures
G.2.2 [Discrete Mathematics]: Graph Theory—network problems
General Terms: Algorithms, Theory
Keywords: distributed algorithms, dynamic networks, consensus,
coordination, common knowledge
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1. INTRODUCTION
Coordinating the actions of distributed computing devicesor mo-

bile agents is an essential distributed task. Applicationsof coordi-
nation abound in robotics and swarm protocols, where many mobile
agents cooperate to jointly accomplish some global objective. In
such examples, nodes must jointly agree to execute some common
action (movement, data collection, or even something so simple as
resetting their clocks or starting a protocol) at the same oralmost
the same time.

Global coordination is a challenging task, made all the moredif-
ficult in dynamic settings, where the agents move around and the
communication links between them can behave unpredictably. In
this paper we study the problems of consensus, simultaneouscon-
sensus, and∆-coordinated (i.e., “almost simultaneous”) consensus
in dynamic networks. Our goal is to characterize the time complex-
ity of these tasks, as well as to investigate the relationship that they
bear to higher-level tasks, such as computing functions of inputs to
the nodes and determining the number of nodes.

We study the above problems in the dynamic network model of
[18]. The model is round-based; in each round, the communication
network is an adversarially-chosen graph over a vertex setV of size
n. The setV of network nodes is assumed to be fixed throughout an
execution, although we do not assume that the participants knowV
(or evenn, in some cases). The communication graph is assumed
to be connected, but it can change completely from one round to
the next. Nodes communicate by broadcasting messages to their
immediate neighbors. Similar dynamic network models have pre-
viously been considered in, e.g. [1, 16, 17, 22], and many others.

Our main objective in this paper is to understand the complexity
of consensus and of coordinating actions and decisions in dynamic
networks. We begin by studyingeventual consensus, in which each
node receives an initial input, and all nodes must eventually agree
on the input to one of the nodes. We show that eventual consensus
is closely related to knowing when a node has been causally influ-
enced by all nodes in the graph; namely, in certain settings,no node
can decide on an output value until it has been causally influenced
by all nodes. Although the decision value in a consensus protocol
is not a deterministic function of the inputs, our result implies that
in many settings it is equivalent in difficulty to computing adeter-
ministic function such as the minimum or maximum of inputs. We
also give an optimal criterion for determining when a node knows
it has been causally influenced by all nodes, and so can decide.

Next we turn our attention to the problem ofsimultaneous con-
sensus, where nodes are required to output their decision value si-
multaneously. Simultaneous coordination is a useful primitive, as
many distributed protocols assume that all nodes begin executing
the protocol at the same time; without simultaneous coordination,
it is not possible to execute such a protocol soon after some other



protocol completes (that is, the protocols cannot be sequentially
composed). It is known that achieving simultaneous consensus is
tightly related to obtaining common knowledge in a distributed sys-
tem [8, 15]. Informally, a factϕ is common knowledge whenever
ϕ is known to all nodes, and everyone knows that everyone knows
ϕ, and (everyone knows)3 ϕ, and so on (a more rigorous definition
is presented in Section 2). When nodes must execute an actionat
the same time, the fact that the action is being performed must be
common knowledge. We show that achieving common knowledge
is costly in dynamic networks: it always requiresn−1 rounds. This
holds even in executions where the communication graph is well-
behaved, e.g., when it is static and has a small diameter. In partic-
ular, this result implies that simultaneous consensus can never be
achieved before timen − 1, even ifn is knowna priori. (Compare
to eventual consensus, which can be solved in two rounds if the
graph is fully-connected.) If the number of nodes isnot known a
priori , thenn rounds are required. This implies that solving simul-
taneous consensus in this model is as hard as computing an upper
bound on the size of the network: given a protocol for simultaneous
consensus, we can obtain an upper bound onn by simply having
each node output the round number in which it decides.

In light of the cost of simultaneous consensus, it is desirable to
find a trade-off between the time it takes to achieve coordination
and the quality of coordination achieved. We show that such a
trade-off exists by considering∆-coordinated consensus, a variant
of consensus in which all nodes are required to output their decision
values within∆ rounds of each other. In particular, simultaneous
consensus is equivalent to0-coordinated consensus, and eventual
consensus to∞-coordinated consensus.

One might initially expect that a protocol for∆-coordinated con-
sensus would not be able to improve upon the running time of a
simultaneous consensus protocol by more than∆ rounds, and in-
deed we show that this is true in the worst-case: for some input
and some execution,∆-coordinated consensus requiresn −∆ − 1

rounds. However, surprisingly, there are many cases in which even
1-coordinated consensus can decide significantly faster than simul-
taneous consensus. For example, we give a protocol that halts inn−
Θ(√n∆) rounds if the ratio of the number of zeroes to the number
of ones in the input is bounded away from1, and we give another
protocol that halts inmin{O(nD/∆), n −Ω(n∆/D)} rounds in
graphs where each message takes no more thanD rounds to tra-
verse the network (we callD thedynamic diameterof the network).
Hence, for the purpose of achieving coordinated consensus,having
a small-diameter network does help significantly, whereas for si-
multaneous consensus it does not help at all.

On the negative side, we show that there is a static network such
that for every∆-coordinated consensus algorithm and every input
assignment, no node decides before timen −O(∆0.28n0.72). The
network we construct in this lower bound has a diameter ofΘ(n),
which makes it inherently “difficult”. To complete the picture, we
also show that for everyD = O(∆), there is a static network of
diameterD such that for all algorithms and inputs, no node decides
before timeΩ(nD/∆). Both lower bounds use a novel variation
on the standard proof technique used in, e.g., [8] to obtain lower
bounds on the time to acquire common knowledge. In [8], one
freely moves between indistinguishable points (configurations); in
contrast, here we pay a cost each time we move to some new indis-
tinguishable point, and our goal is to minimize the total number of
points involved in the proof.

In these two lower bounds we exhibitstaticnetworks in which
solving ∆-coordinated consensus is hard (i.e., it requires many
rounds). The hardness arises from thepotential for dynamic be-
havior: although in practice the network topology does not change

during the execution, the nodes do not know in advance that this
will be the case, and informally, they must assume the worst-case
dynamic behavior. We note also that the three lower bounds we
give in this paper are in some sense incomparable with each other.

● The n − ∆ − 1 lower bound asserts, in a non-constructive
manner, the existence of a particular combination of dynamic
network and input assignment for which∆-coordinated con-
sensus is hard.

● In then − O(∆0.28n0.72) lower bound we construct a spe-
cific network in whicheveryinput assignment is hard. This
network has diameterΘ(n).

● TheΩ(nD/∆) lower bound also gives a specific network in
which every input assignment is hard. While the bound is
smaller than the previous one, it applies to every diameter
D = O(∆).

1.1 Related work

Consensus and knowledge.Consensus is a central topic in
distributed computing, initiated by the seminal paper by Pease,
Shostak and Lamport [23]. Most of the literature on the subject in
the context of message-passing systems assumes that the network
is a complete graph, with direct channels connecting every pair of
nodes. For more general networks, there has been work on the con-
nectivity requirements for reaching consensus under various failure
models (see, e.g., [7]), as well as work on implementing consensus
in bounded-degree networks with special properties, such as ex-
panders [14, 9]. We are not aware of a study of the efficiency of
consensus protocols in general graphs. The current paper consid-
ers an even weaker network model, where the graph can possibly
change completely from one round to the next.

While most of the literature on consensus is concerned with tol-
erating node failures, in the dynamic network model that we con-
sider here the nodes themselves are assumed to be reliable, but the
protocol must overcome potentially drastic changes in topology be-
tween rounds. Santoro and Widmayer studied consensus in thecon-
text of edge failures [24], and showed that it is unsolvable if more
thann − 2 (arbitrarily chosen) edges can be down in every round.
The dynamic network model allows a much broader set of execu-
tions, since almost all (in fact, all butn − 1) edges can be down in
every round, and their choice is almost arbitrary. The only require-
ment is that the network in each round be connected.

Some of our results concern cases in which the number of nodes
in the network is unknown, or in which there is a rough but inexact
bound on the number of nodes. These are unusual assumptions in
the context of consensus. A number of standard consensus proto-
cols (e.g., [2]) can easily be modified to handle such assumptions,
but this is only due to the fact that the network there is a complete
graph, so that a node hears from all correct nodes in every round.

Simultaneous coordination has been shown to be closely related
to the notion of common knowledge [15, 10]. Thus, for example, in
a simultaneous consensus protocol [8, 21], when the nodes decide
on v, it must be common knowledge that some initial value isv.
This is much stronger than for regular consensus, in which a node
decidingv must (individually) know that one of the initial values
wasv. It has been shown that deciding in simultaneous consensus
(and in a large class of simultaneous coordination tasks) can be
reduced to the problem of computing when facts (and which facts)
are common knowledge at any given point in an execution. For
simultaneous tasks, this enables the design of protocols that areall-
caseoptimal: foreverybehavior of the adversary, in the execution
of the all-case optimal protocol, nodes decide as fast as they do for



that behavior under any other protocol. (All-case optimality does
not exist for eventual consensus, as shown in [21].)

Part of our analysis centers on the problem of∆-coordinated
consensus, in which decisions must be taken at most∆ rounds
apart. In the standard literature, many protocols for eventual agree-
ment are 1-coordinated in this sense: because the network isas-
sumed to be fully-connected, once some correct nodev decides, all
other correct nodes find out aboutv’s decision in the next round;
it is then safe for all correct nodes to decidev as well. For net-
works that are general graphs, we know of no work developing∆-
coordinated consensus protocols. As in the case of simultaneous
coordination, the property of∆-coordination has a natural coun-
terpart in knowledge theory, called∆-common knowledge. Very
roughly speaking, ifu knows that a fact is∆-common knowledge,
then within∆ rounds everyone will know that this is the case. In
order to decide, a node must know that the decision value is∆-
common knowledge [15, 10]; the analysis in Section 6 is the first
case in which such coordination is analyzed and nontrivial bounds
are obtained as a result.

Dynamic networks.In an increasingly networked world, in
which various kinds of computing devices of all sizes are connected
to form large networks, understanding dynamic networks hasbe-
come all the more important. It is thus not surprising that inrecent
years there has been a significant amount of work on dynamic net-
work algorithms, for a large variety of different dynamic network
models. Our discussion here is restricted to models similarto the
one we consider in the current paper; we refer the interestedreader
to [19] for a discussion of a few alternative models.

Some initial results on distributed computations in completely
adversarial dynamic networks were obtained in [22]. The model as
studied in this paper was introduced in [18], where the complexity
of basic computation and communication tasks such as determin-
ing the size of the network or exchanging information among all
the nodes was studied. In [1], Avin et al. study the behavior of
random walks in a very similar dynamic network model. Some
basic information dissemination tasks, such as globally broadcast-
ing a message, have also been considered in a probabilistic version
of the graph model in which edges are independently formed and
removed according to a simple random process; e.g., [3, 5, 6]. An-
other problem related to distributed coordination is clocksynchro-
nization. In [16, 17], the problem of clock synchronizationwas in-
vestigated in a partially-synchronous variant of the dynamic graph
model we study here. Related dynamic network models were also
considered in, e.g., [4, 11, 12, 13], and others.

2. MODEL AND DEFINITIONS
We now formally introduce the dynamic graph model, originally

introduced in [18]. As explained above, we consider a synchronous-
round based model of computation, in which the set of nodes (pro-
cesses) is not knowna priori. The set of nodes that participate in a
given execution is, however, fixed for the duration of the execution,
and each of them has a unique identifier (UID). The nodes sharea
global clock, which starts at 0 and advances in unit steps.

Communication proceeds in synchronous rounds; we think of
round k (for k = 1,2, . . .) as taking place between timek − 1

and timek. Roundk proceeds as follows: first, each node gen-
erates a single message to broadcast, based on its local state at time
k − 1. The adversary then selects a communication graph (i.e., a
set of edges) for roundk, and delivers each message to the sender’s
neighbors in accordance with the edges it chose. The communi-
cation graph for each round is assumed to be connected, but this is

the only constraint on the adversary.1 After messages are delivered,
each node processes the messages it received, and transitions to a
new state (its state at timek). Then the next round begins.

The adversary’s behavior in a given execution is described by a
dynamic graphG = (V,E,σ), where∣V ∣ > 2 is a set of nodes
(or processes),E ∶ N+ → (V

2
) is a dynamic edge functionwhich

assigns to each roundr a setE(r) of undirected edges overV , and
σ is thesignatureof the execution. The signature is an assignment
of a unique identifier (UID) and an input (or initial value) toeach
node inV . If nodes have access to an upper bound on the count
∣V ∣, this upper bound is also part of the signatureσ. In particular,
if σ always includes the exact number of nodes, then we say that
the count is knowna priori. We are frequently concerned only with
the dynamic network topology; in this case we omit the signature
σ from our notation.

A dynamic graphG = (V,E) induces acausal order, denoted
(u, t) ↝G (v, t′), where(u, t) and (v, t′) are time-nodesrep-
resenting the states of nodesu and v at timest and t′, respec-
tively. Informally, the causal order captures the idea thata time-
node(u, t) can only influence another time-node(v, t′) in a given
execution if there is a chain of messages starting fromu at time
t and ending atv at time t′. Formally, the causal order is de-
fined in the usual way: it is the transitive and reflexive closure of
the order(u, t) →G (v, t + 1), which holds iff eitheru = v or
{u, v} ∈ E(t + 1). We omit the subscriptG when it is clear from
the context.

At time t, nodeu has direct information only about the states
of nodesv at time t′ such that(v, t′) ↝ (u, t). This motivates
the next definition, which defines all the information a node can
possibly acquire about an execution.

DEFINITION 1 (VIEW). Theview of nodeu at timet in dy-
namic graphG, denotedview(G,u,t), is defined as the restriction
of G to the time-nodes and edges along paths from time 0 nodes
to (u, t) in G (see Fig. 1). In particular,view(G,u,t) includes the
states of all nodesv at timet′ such that(v, t′) ↝G (u, t).
In particular, nodeu cannot know the input value of any node
v such that(v,0) /↝ (u, t). A common strategy in consensus
lower bounds and impossibility proofs is to create a situation where
(v,0) /↝ (u, t), and then flip the input value ofv, without nodeu
being able to tell the difference (at least until timet). Thus we
are often interested in the set of nodes whose input valuesu can
potentially know at timet (see Fig. 1 for an illustration.)

DEFINITION 2 (PAST SET). Thepast setof a time-node(u, t)
from timet′ in graphG is defined by

past(G,u,t)(t′) ∶= {v ∣ (v, t′) ↝ (u, t)} .
If v ∈ past(G,u,t)(0) (i.e., if (v,0) ↝G (u, t)), then we say that
at time t nodeu hasheard fromnodev. As usual, we omit the
subscriptG from our notation where it is clear from the context.

In static networks, the performance of distributed algorithms of-
ten depends on thediameterof the network. In a dynamic network,
the diameter of the communication graph can change from round
to round, and is not a good measure of the amount of time required
for information to spread through the network (see [19] for dis-
cussion). Thus, we use a more general definition, which explicitly
captures the amount of time required for any node to hear fromany
other node:

DEFINITION 3 (DYNAMIC DIAMETER). We say that dynamic
graphG = (V,E) has a dynamic diameter ofD up to timet if for
all t′ ≤ t andu, v ∈ V we have(u,max {0, t′ −D})↝ (v, t′).
1This assumption was called1-interval connectivityin [18].
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Figure 1: 4 rounds of a 6-node dynamic graph: The nodes and edges in the gray area together formview(c,4), the 4 nodes inside the dashed
ellipse are the nodes in the setpast(c,4)(1).

(In other words, for any timet′ ≤ t and any nodeu ∈ V , we have
past(u,t′)(t′ −D) = V .)

In our lower bounds and knowledge analysis we assume that
nodes execute afull information protocol, where the state of each
nodeu at timet is exactlyview(u,t). This state is then broadcast
by u at timet, allowingu’s neighborsv to combine the views they
receive and computeview(v,t+1). Any lower bound on full infor-
mation protocols extends, of course, to protocols that are not full
information. Our upper bounds typically require nodes to send at
least the inputs of all the nodes they have heard from, and some-
times more information as well.

2.1 Knowledge and Common Knowledge
Knowledge theory, and specifically the notion of common knowl-

edge and its variants, is central to the study of coordinatedactions.
This connection has been developed and described in [15, 10,8, 21,
20]. that simultaneous coordination is closely related to common
knowledge. In this section we review the basic definitions, focus-
ing on the elements needed for our analysis of dynamic networks.
For a more complete exposition of knowledge theory see [10].

Given a distributed protocolP , letR = R(P ) be the set of all
runs (executions) ofP . A point ofR is a pair(G, t), represent-
ing the global state of the execution at timet when protocolP is
executed in dynamic graphG.

The fundamental notion underlying the concept of knowledgeis
indistinguishablityamong points. We write(G, t) ∼u (G′, t) and
say that the two points areindistinguishable to nodeu, if nodeu’s
view is the same in both runs, that is,view(G,u,t) = view(G′,u,t).
(Recall from Section 2 that a node’s view represents all the infor-
mation it can possibly acquire about the execution.) Noticethat
two points may be indistinguishable tou even though the runs
are quite different; for example, the number of nodes may differ
between the two runs, as well as the inputs and UIDs of some
of the nodes. The points(G, t) in a systemR, and the individ-
ual indistinguishability relations∼u for all nodes that appear in
the runs ofR, define an undirected, edge-labelled graph that is
called thesimilarity graph for R. We are particularly interested
in the connected components of the similarity graph; we denote
(G, t) ∼ (G′, t) if points (G, t) and(G′, t) are in the same con-
nected component, that is, there is a sequenceu0, . . . , uk such that
(G, t) = (G0, t) ∼u0 (G1, t) ∼u1 . . . ∼uk

(Gk+1, t) = (G′, t).
(Note that fori = 0, . . . , k − 1 we must haveui ∈ Vi ∩ Vi+1, where
Vi is the node set ofGi.)

Intuitively, nodeu will knowa factϕ at(G, t) exactly ifϕ holds
at all points(G′, t) such that(G, t) ∼u (G′, t). In other words, a
fact is known byu if u’s view implies that the fact must be true.
odeu knows a given fact iff the node’s information implies that the

fact is true. We now formalize this intuition with a minimal amount
of logical notation.

Given a systemR = R(P ) (that is, a collection of all runs of
some protocolP ), we start out with some setΦ of basic factsof
interest; each basic fact is associated with a set of points(G, t) in
which it is satisfied. We use(R,G, t) ⊧ ϕ to denote the satisfac-
tion of factϕ in (G, t).

Now letKuϕ stand for the fact thatnodeu knows thatϕ holds.
We callKuϕ a knowledge formula, and its satisfaction is formally
defined as follows:

(R,G, t) ⊧Kuϕ iff

(R,G′, t) ⊧ ϕ holds for all(G′, t) ∼u (G, t).
Note thatϕ does not have to be a basic formula; it can itself be a
knowledge formula. For example, the formulaKuKvψ asserts that
“nodeu knows that nodev knowsψ”.

It is convenient to define additional knowledge operatorsE and
C, which can also be combined and nested. The operatorE stands
for everyone knows, and it is formally defined by

(R,G, t) ⊧ Eϕ iff

(R,G, t) ⊧Kuϕ holds for allu ∈ V ,

whereV is the node set ofG.
The operatorC stands forcommon knowledge: a factϕ is com-

mon knowledge ifϕ holds, and everyone knows thatϕ holds, and
everyone knows that everyone knows thatϕ holds, and so on. The
C operator can be formally defined as a fixpoint (see [10]), but here
we give a more semantic definition, in terms of the similaritygraph:

(R,G, t) ⊧ Cϕ iff

(R,G′, t) ⊧ ϕ holds for all(G′, t) ∼ (G, t).
According to this definition, a factϕ is not common knowledge
at (G, t) whenever there is a graph(G′, t) such that(G′, t) /⊧ ϕ,
and a chainu0, . . . , uk such that(G, t) = (G0, t) ∼u0 (G1, t) ∼u1

. . . ∼uk
(Gk+1, t) = (G′, t). Informally this means thatϕ is not

common knowledge if some nodeu0 suspects that some nodeu1

suspects that. . . some nodeuk suspects thatϕmight not hold. (Here
“ui suspectsψ” is to be formally understood as¬Kui

¬ψ, that is,
ui does not know thatψ is not true.)

Common knowledge is known to be closely related to simultane-
ous coordination. For example, in simultaneous consensus,a node
cannot decidev before it is common knowledge thatv is the in-
put to some node. In general, any actiona that must be performed
simultaneously can only be performed when it is common knowl-
edge thata is being performed. The simultaneity ofa implies that
whenevera is performedeveryone knowsthat a is performed; a



straightforward induction on the length of paths in the similarity
graph shows thata is common knowledge, that is,a is performed
at all points in the connected component of the similarity graph.
We review the argument relating common knowledge and simulta-
neous consensus in Section 6.1.

3. CAUSALITY IN DYNAMIC GRAPHS
As we saw in the previous section, at timet a nodeu can only

know the input of another nodev if v ∈ past(u,t)(0), i.e., if(v,0) ↝
(u, t). Globally-sensitive functions, such as the minimum or max-
imum of inputs to all nodes, require a node to know when it has
heard from everyone; nodeu is only guaranteed that it has the true
answer at timet if past(u,t)(0) = V .2 In this section we give an
optimal condition that allows a node to test when it has heardfrom
all nodes in the graph, even if it does not knowa priori how many
nodes there are.

The problem of determining when a node has heard from every-
one was already considered in [18], and anΘ(n)-round algorithm
was presented. WhileΩ(n) is a trivial lower bound on the problem,
the algorithm of [18] has the drawback ofalwaysrequiringΘ(n)
rounds, even when the network has small dynamic diameter. Here
we give an algorithm which is all-case optimal, and in particular,
requiresO(D) time in networks with dynamic diameterD.

The test is surprisingly simple; it only requires the node tokeep
track of its past sets from time 0 and from time 1.

LEMMA 3.1. Nodeu knows at timet that past(u,t)(0) = V iff
past(u,t)(0) = past(u,t)(1).

PROOF. First, suppose thatpast(u,t)(0) = past(u,t)(1). This
implies thatpast(u,t)(1) = V : if V ∖ past(u,t)(1) is non-empty,
connectivity in round 1 implies that there is some edge{v,w} ∈
E(1) such thatv ∈ past(u,t)(1) andw /∈ past(u,t)(1). But this
means that(w,0) ↝ (v,1) ↝ (u, t), and hencew ∈ past(u,t)(0)
andpast(u,t)(0) ≠ past(u,t)(1). Thus,past(u,t)(1) = V , which
also implies thatpast(u,t)(0) = V .

For the other direction, supposepast(u,t)(0) ≠ past(u,t)(1).
This does not necessarily imply thatpast(u,t)(0) ≠ V ; however,
there is some nodev ∈ past(u,t)(0) ∖ past(u,t)(1) thatu has not
heard from since time 0. At time0, no communication rounds have
occurred yet, sov does not yet know who its neighbors will be.
The adversary can conceal arbitrarily many nodes from(u, t) by
connecting them only to nodev throughout the execution. Since
u never hears fromv from time 1 onwards, it cannot distinguish
(for example, in the graph from Fig. 1, node (c) cannot tell whether
node (f) is part of the network or not). Therefore nodeu cannot
knowit has heard from everyone (even if in fact it has).

We remark that ifpast(u,t)(0) ≠ V andu has noa priori upper
bound on the count, thenu has no upper bound on∣V ∣ at timet:
as we saw above, any nodev from whichu has not heard could be
“concealing” arbitrarily many other nodes that are connected to the
rest of the graph only throughv. Thus, ifpast(u,t)(0) ≠ V , then
at time t nodeu cannot know the value of a wide class of func-
tions, including majority, minimum or maximum with unbounded
inputs, and in general any functionf ∶ (⋃∞n=1Dn) → D (whereD
is the data domain) satisfying the following condition: forany in-
put assignmentI ∈ Dn there exists a sizen′ > n and an extension
I ′ ∈ Dn′ of I , such thatf(I) ≠ f(I ′). For each such function,
2This assumes that inputs are unbounded. If inputs are bounded
from above or below, then a node knows it has the true minimum or
maximum if it has heard the smallest or largest possible value (re-
spectively). However, if this smallest or largest value is not present
then the node cannot halt until it hears from everyone.

Lemma 3.1 yields an all-case optimal algorithm: by forwarding all
input values (or sufficient information about them to allowf to be
computed), and stopping as soon aspast(u,t)(0) = past(u,t)(1),
we obtain an algorithm that cannot be beaten by any other algo-
rithm in any execution.

In fact, it turns out that knowing whenpast(u,t)(0) = V is cru-
cial not only for computing deterministic functions of the input but
also for eventual consensus, as we show below.

4. CONSENSUS AND CAUSALITY
In this section we show that when nodes do not have an initial

upper bound on the count that is tight to within a factor of 2 of
the true count, eventual consensus is in some sense equivalent to
knowing whenpast(u,t)(0) = V . Specifically, for either the all-
zero or all-one input assignment (or both), no node can decide until
it hears from all the other nodes.

For simplicity, the statement we include here applies only to
comparison-basedalgorithms, in which nodes can only compare
UIDs to each other (but they cannot, e.g., execute a different pro-
gram based on the UID they are assigned).

For i ∈ {0,1}, letσV,i denote the signature where all nodes inV
receivei as their input, and the upper bound on the count is2n.

THEOREM 4.1. If nodes are given an upper bound on the count
that is loose to a factor of at least 2, then for any comparison-based
algorithm there is ani ∈ {0,1} such that in any executionG =
(V,E,σV,i), no nodeu can decide at timet if past(G,u,t)(0) ≠ V .

PROOF SKETCH. Suppose not. Then there exist executionsGi =
(Vi,Ei, σi) for i = 0,1, such thatσi assigns to all nodes ofVi in-
put i, the sets of UIDs used inσ0 andσ1 are disjoint, and there
exist nodesui, vi and timesti such thatui decides at timeti, even
thoughvi /∈ past(Gi,ui,ti)

(0) (that is,ui does not hear fromvi
before it decides).

Becauseu0 andu1 do not hear from all the nodes in their respec-
tive executions, we can “stitch together”G0 andG1 without these
nodes noticing. Consider the executionH = (V0∪V1,EH , σ0∪σ1),
where for alls ≥ 1 we setEH(s) ∶= E0(s) ∪E1(s) ∪ {v0, v1}. In
H , nodes are provided2n as an upper bound on the count. Because
u0 andu1 do not hear fromv0 andv1 respectively, they cannot dis-
tinguishH fromG0 andG1 respectively, and they each decide the
same as they would in the original execution. But inG0 all nodes
must decide0, includingu0, and inG1 all nodes must decide1,
includingu1; therefore agreement is violated inH .

The assumption that the upper bound provided to the nodes is
loose to within a factor of 2 is nearly tight: if nodes have access
to an upper boundN < 2(n − 1), then the claim no longer holds,
and nodes can halt without being causally influenced by everyone
on both the all-zeroes and all-ones input assignments. One sim-
ple protocol illustrating this is the one where nodes decideon the
majority input. To know that it has the true majority valuev, it is
sufficient for a node to hear of⌊N/2⌋ + 1 copies ofv in the input;
whenN < 2(n − 1) we have⌊N/2⌋ + 1 < n, so a node can some-
times decide before it has heard from all the nodes, even in the case
of the all-zeroes or the all-ones input assignment.

5. COMPUTING COMMON KNOWLEDGE
As noted in Section 2, simultaneous coordination is closelyre-

lated to common knowledge: a simultaneous action can only be
performed when it is common knowledge that it is being performed.
To understand simultaneous consensus in dynamic networks,we
characterize the time required to achieve common knowledge.



The results in this section hold for common knowledge in gen-
eral; see Section 6.1 for a discussion of how they apply to simulta-
neous consensus. Roughly speaking, we prove the following:

● Even ifn is knowna priori, it takesn − 1 rounds to acquire
common knowledge of any fact that is not “trivially common
knowledge”.3

● If n is not knowna priori, then it takesn rounds to acquire
common knowledge of any fact about time 0 that is not ini-
tially common knowledge (such asn itself).

For simplicity, we focus here on facts pertaining to time 0, such as
the inputs to consensus. However, the result holds for othertimes
as well; any fact about timet cannot become common knowledge
until time t + n − 1.

Recall that a fact is common knowledge in(G, t) iff it holds at
all points(H, t) ∼ (G, t) in the similarity component of(G, t).
To prove the result above, we show that we can change any aspect
of the dynamic graphG at times0, . . . , n − 2 (and in particular,
in rounds1, . . . , n − 2) while still remaining inside the similarity
component of(G, t). Formally, we show the following.

THEOREM 5.1. For any full-information protocol,

1. (G, t) ∼ (H, t) for all t ≤ n − 2; and

2. If n is not known a priori then in addition,(G,n − 1) ∼
(H,n − 1).

PROOF SKETCH. The main concept in the proof ishiding: given
a setX ⊆ V , timest′ ≤ t and a nodeu ∈ V , we say thatX at time
t′ can be hidden from(u, t) if there is a point(G′, t) ∼ (G, t)
such thatpast(G′,u,t)(t′) ∩ X = ∅. Hiding X at time t′ means
that we move inside the similarity component of(G, t) to a point
(G′, t) ∼ (G, t)where nodeu knows nothing about the states of the
nodes inX from timet′ onwards. Once we have done this, we can
add or remove any edges adjacent only to nodes inX in roundt′,
while still remaining in the similarity component of(G, t), because
u does not learn of these changes by timet.

To prove the theorem, we show by induction onk ≤ n−2 that for
any setX of size at mostn − k − 1 and for any nodeu /∈ X, setX
at timet − k can be hidden from(u, t), without altering any round
preceding timet − k − 1. We hide sets ofdecreasing sizeas we
go back in time; essentially, we “use up” one node for each round
we go back. The case wherek = n − 2 yields the theorem, since it
shows that we can hide any single node at timet−(n−2), and then
change its state. In particular, we can hide any node at time 0from
any other node at timen − 2, so the state of no node is common
knowledge at timen−2. Moreover, ifn is not knowna priori, then
we can hide any nodew at time 1 from some nodeu ≠ w at time
n−1 and proceed to add more nodes to the network, as in the proof
of Lemma 3.1. By adding more nodes we can increase the dynamic
diameter of the network to more thann−1, which again shows that
the state of no node is common knowledge (nor is the size of the
network common knowledge).

To hide a setX at timet−kwe must remove all edges from nodes
in X to nodeu and to other nodes thatu is causally influenced by
in roundst − k + 1, t − k + 2, . . . , t. (“Removing” here means that
we move to a point(G′, t) ∼ (G, t) where these edges do not exist,
by first hiding both endpoints of the edge at timet − k + 1 from
some node at timet.) To ensure that connectivity is preserved,
before we remove edges we choose some nodew /∈ X ∪ {u} and

3For example, the current round number is trivially common
knowledge.

add edges betweenw and all nodes in the graph. Then we remove
all edges from nodes inX to all nodes exceptX ∪ {w}. In the
resulting graph, only nodes inX ∪ {w} hear from nodes inX in
roundt − k + 1. Our final step is to use the induction hypothesis
to hideX ∪ {w} at time t − k + 1 from (u, t), so that we have
past(u,t)(t − k) ∩X = ∅.

An immediate consequence of Theorem 5.1 is that all initial val-
ues become common knowledge precisely at timen − 1 if n is
known a priori. Thus, a simultaneous consensus protocol that is
all-case optimal can be designed. It decides at timen − 1 in all
executions, and no protocol for this task can ever decide earlier. In
fact, Theorem 5.1 implies that simultaneously acting basedon any
nontrivial function of the initial values can be done at timen − 1

(whenn is known), and this is all-case optimal.
We also note that Theorem 5.1 implies that solving simultaneous

consensus is as hard as computing an upper bound on the count,
because a simultaneous consensus protocol can only decide at time
t if t ≥ n represents an upper bound on the count.

6. ∆-COORDINATED CONSENSUS
Since simultaneous consensus is expensive and requiresn − 1

rounds even in very well-behaved executions, it is interesting to
consider a trade-off between the performance of the consensus al-
gorithm and the degree of coordination it achieves. To this end we
consider the following problem:

DEFINITION 4 (∆-COORDINATED CONSENSUS). A protocol
solves∆-coordinated consensusif it solves consensus, and in ad-
dition, all nodes decide no later than∆ rounds after the first node
decides.

In the sequel we assume, unless stated otherwise, that the count is
initially known. (An upper bound on the count can be used instead,
or one can combine the algorithm in this section with the criterion
from Section 3.)

One might expect that∆-coordinated consensus should not be
much easier than simultaneous consensus. For example, when∆ =
1, we require all nodes to decide within one round of each other;
it seems that if we can achieve this, then simultaneous coordina-
tion can be achieved at not much extra cost (a cost of∆ additional
rounds, perhaps). Indeed, in the worst case this expectation is borne
out by the following theorem.

THEOREM 6.1. For any ∆-coordinated consensus algorithm,
there exists an execution in which no node decides before round
n −∆ − 1, even whenn is knowna priori.

PROOF. Suppose that there exists a∆-coordinated consensus
algorithmA, such that in every execution some node decides before
timeR < n−∆− 1. Then inA, all nodes decide no later than time
R + ∆ < n − 1 in every execution. We can obtain an algorithm
for simultaneous consensus in fewer thann − 1 rounds by simply
having each node runA and outputA’s decision value at timeR +
∆ < n − 1, contradicting the lower bound from Section 5.

This result shows the existence of only one “bad” execution where
no node can decide until timen−∆−1. Given the general similar-
ity between∆-coordinated consensus and simultaneous consensus,
one might expect that a∆-coordinated consensus protocol would
neverbe able to decide before timen −∆ − 1 (just as simultane-
ous consensus can never decide before timen − 1). However, we
now show that even in 1-coordinated consensus, nodes can some-
times decide significantly earlier than timen−∆− 1. Consider the
following protocol.



Clear-Majority Protocol. Fix some integerkmax, and for each
k = 1, . . . , kmax, let tk ∶= n − k ⋅∆ − 1. In each round the nodes
forward the set of all node UIDs they have heard from so far, along
with the input to each node. At timetk, an undecided node decides
v iff it has heard of at least⌊n/2⌋ + 1 + (k

2
)∆ inputs equal tov.

Finally, at timen−1, all the nodes know all the inputs; at this point
any undecided node decides on the majority input (breaking ties in
some consistent way if there is no majority).

LEMMA 6.2. The clear-majority protocol solves∆-coordinated
consensus. Furthermore, when the fraction of identical inputs is at
least(1/2 + ǫ)n for some constantǫ, and if∆ ≤ (ǫn − 1)/2, all
nodes can decide aftern −Θ(√n∆) rounds.

PROOF. Agreement and validity follow immediately from the
fact that nodes always decide on the majority value (or, if there is
no majority value, all nodes reach timen − 1 and decide in some
consistent way). To show that the protocol is∆-coordinated, sup-
pose that in some execution, the earliest nodeu decides on valuev
at timetk. We must show that all nodes decide no later than time
tk +∆ = tk−1.

Because the communication graph in every round is connected,
for all s ≤ n − 1, at timen − s − 1 in the execution each node
has heard all but at mosts of the inputs. In particular, by time
tk−1 = n − (k − 1)∆ − 1 each node has heard all but(k − 1)∆
of the inputs. Sinceu decidesv at timetk, the input assignment
contains at least⌊n/2⌋ + 1 + (k

2
)∆ values equal tov, and hence by

time tk−1 each node hears at least⌊n/2⌋ + 1 + (k
2
)∆ − (k − 1)∆ =

⌊n/2⌋ + 1 + (k−1
2
)∆ inputs equal tov. Thus, all nodes that do not

decide at timetk decidev at timetk−1 = tk +∆, as required.
Now suppose that for some constantǫ, the input assignment

contains at least(1/2 + ǫ)n copies of some valuev. By time
tk = n − k ⋅∆ − 1 each node hears all butk ⋅∆ of the input values,
i.e., at least(1/2+ ǫ)n− k ⋅∆ copies ofv. If ∆ ≤ (2ǫn− 1)/4, we
setkmax = ⌊

√
(2ǫn − 1)/∆ − 1⌋, and then simple algebra shows

that (1/2 + ǫ)n − kmax ⋅ ∆ ≥ (kmax

2
) + ⌊n/2⌋ + 1; thus, by time

tkmax , each node hears sufficiently many copies ofv to decide. For
this value ofkmax we havetkmax = n −Θ(

√
n∆).

The clear-majority protocol can be viewed as an instance of a
more general scheme, in which nodes decide as soon as they know
that everyone else will decide the same value within∆ rounds. Us-
ing this abstract scheme, any eventual consensus algorithmcan be
transformed into a∆-coordinated consensus protocol as follows.
Let “A = v” stand for the formula that asserts that(G, t) isv-valent
with respect to algorithmA (that is, in any possible extension of the
first t rounds ofG, all nodes decidev). LetK@t

u ϕ denote the for-
mula that means “nodeu knows that at timet factϕwill hold”, and
letE@tϕ ∶= ⋀u∈V K

@t
u ϕ. Now we can state the protocol:

The ∆-Ladder. Given an eventual consensus algorithmA in
which all nodes decide no later than roundn − 1, we first trans-
form A into a full-information algorithmA′. Nodes executeA′,
but do not immediately output its decisions. Instead, each unde-
cided nodeu evaluates the following decision rules at each decision
point tk = n −∆ ⋅ k − 1 (the rules are given here in reverse order
w.r.t. the time each rule is evaluated):

● Decidev at timen−1 if (R(A′),G,n−1) ⊧Ku (A′ = v), that
is, if it is known that the run isv-valent forA′.

● Decidev at timen −∆ − 1 if

(R(A′),G,n −∆ − 1) ⊧KuE
@(n−1) (A′ = v) ,

that is, if it is known that everyone will decidev no later than
timen − 1.

● Decidev at timen − 2∆ − 1 if

(R(A′),G,n − 2∆ − 1) ⊧KuE
@(n−∆−1)

E
@(n−1) (A′ = v) ,

that is, if it is known that everyone will know at timen −∆ − 1
that everyone will decidev no later than timen − 1.
. . .

In general, at timen−k ⋅∆−1, a node decidesv if it has not decided
already and

(R(A′),G,n − k ⋅∆ − 1) ⊧KuE
@(n−(k−1)∆−1)

⋯

E
@(n−∆−1)

E
@(n−1) (A′ = v) .

It is easy to see that any instantiation of this scheme satisfies∆-
coordinated consensus; this is in some sense the optimal strategy.
However, it requires nodes to keep track of information about the
full dynamic graph, and to evaluate complex knowledge criteria;
the clear-majority protocol uses less precise rules, but they are sim-
pler and easier to evaluate. In general, any approximation for the
knowledge criteria above can be used, as long as the same approx-
imation is applied consistently at each decision pointn− k ⋅∆− 1.

Approximate∆-Ladder. Let A be an eventual consensus al-
gorithm with round complexity at mostn− 1, letkmax ∈ N, and fix
a collection{Φk,v

u }
u∈V,k∈[kmax],v∈{0,1}

of local knowledge formu-

las, such thatu can evaluate the satisfaction ofΦk,v
u based on its

local state. These formulas represent the decision rules, and they
must satisfy:

(a) Consistency: for all u,

R(A) ⊧ Φ0,0
u → (A = 0) andR(A) ⊧ Φ0,1

u → (A = 1).

(b) Timeliness: for all executionsG,

(R(A),G,n − 1) ⊧ Φ0,0
u ∨Φ0,1

u .

(c) Coordination: for all 1 ≤ k ≤ kmax andv ∈ {0,1}, if
(R(A), G,n − k ⋅∆ − 1) ⊧KuΦ

k,v
u , then

(R(A),G,n − (k − 1)∆ − 1) ⊧ ⋀w∈V KwΦ
k−1,v
w .

Then a protocol for∆-coordinated consensus is given by the fol-
lowing: the nodes simulate algorithmA with their local inputs,
but do not outputA’s decisions immediately. Instead, for each
k = kmax, . . . ,1, a nodeu (which has not decided already) decides
v at timen − k ⋅∆ − 1 if (R, n − k ⋅∆ − 1) ⊧KuΦ

k,v
u .

LEMMA 6.3. Any instantiation of the∆-ladder protocol solves
∆-coordinated consensus.

Finally, let us give another instantiation of the approximate ∆-
ladder, which decides quickly in graphs where all nodes hearfrom
everyone quickly.

Dynamic Diameter-Based Protocol.Let f ∶ {0,1}n →
{0,1} be any function that satisfiesf(0n) = 0 and f(1n) = 1.
Nodes always forward their full view of the execution so far.At
timen − k ⋅∆ − 1, a node decidesf(x̄) if it knows that the input
assignment is̄x, and it knows that there exists someD such that
the dynamic graph had a diameter of at mostD until time(k−1)D
(where(k − 1)D ≤ n − k ⋅∆ − 1).



To see that this decision rule is consistent with the requirements,
suppose that the rule for deciding at timen − k ⋅ ∆ − 1 holds at
nodeu, i.e.,u knows the input assignment and dynamic diameter
of the graph is at mostD until time (k − 1)D. If k ≥ 2, then for
any two nodesw,w′ we have(w, (k − 2)D) ↝ (w′, (k − 1)D);
consequently at time(k − 1)D, all nodes know that the dynamic
graph had diameter at mostD up to time(k − 2)D and all nodes
know the input assignment. When timen−(k−1)∆−1 arrives the
decision rule fork − 1 is satisfied. Ifk = 1, then the decision rule
for timen − (k − 1)∆ − 1 = n − 1 holds trivially, because it only
requires nodes to know the input assignment.

The value we choose forkmax should satisfy(kmax − 1)D <
n − kmax ⋅∆ − 1, otherwise the decision rule for timetkmax would
be unsatisfiable. If we choosekmax ≥ ⌊n/(D+∆)⌋, nodes can stop
as early as timen−kmax ⋅∆−1 < n(1−∆/(D+∆))+∆ = nD/(D+
∆) + ∆. For example, if the communication graph is always a
clique, then the running time is slashed by a factor of∆. Note that
the algorithm does not commit in advance to some diameterD;
nodes always evaluate the stopping condition with respect to allD,
and check if some boundD satisfies the requirement.

6.1 Lower Bounds
In the following, we prove two lower bounds that complement

the upper bounds from the previous section.
In Section 5 we proved a lower bound on common knowledge.

Viewed through the lens of simultaneous consensus, we can in-
terpret our strategy as follows: to show that simultaneous consen-
sus cannot decide in(G, t), we showed that there exist two points
(G0, t) and(G1, t) such that

(a) In G0 the input to all nodes is 0, and inG1 the input to all
nodes in 1; and

(b) (G0, t) ∼ (G, t) ∼ (G1, t).
To briefly review the argument, suppose that some node decides v
in (G, t). Consider the path between(G, t) and(G1−v , t) in the
similarity graph; denote this path by

(G, t) = (H0, t) ∼u1 (H1, t) ∼u2 . . . ∼uℓ
(Hℓ, t) = (G1−v , t).

We show that some node decidesv in (G1−v , t), violating valid-
ity, by employing the following argument at each stepi = 1, . . . , ℓ

along the path:

1. Some nodew decidesv in (Hi, t); therefore,
2. From simultaneity and agreement, nodeui decidesv in (Hi, t);

therefore,
3. Nodeui also decidesv in (Hi+1, t), because it cannot distin-

guish(Hi+1, t) from (Hi, t).
This argument hinges on simultaneity, and we cannot employ it as-
is to prove lower bounds on∆-coordinated consensus. However,
∆-coordination allows us to make the following weaker argument:

1. Some nodew decidesv in (Hi, t); therefore,
2. From ∆-coordination and agreement, node ui decides v in
(Hi, t +∆);4 therefore,

3. If (Hi, t + ∆) ∼ui
(Hi+1, t + ∆), nodeui also decidesv in

(Hi+1, t+∆), because it cannot distinguish(Hi+1, t+∆) from
(Hi, t +∆).

The key difference is that unlike before, now we have to pay for
each step we take in the similarity graph; our lower bound is weak-
ened by∆ rounds at each step, as we move forward in time.
4Technically, there exists somet′ ≤ t +∆ such thatui decidesv in
(Hi, t

′). The essential property is that by timet +∆ nodeui has
already decidedv inHi.

This reasoning, applied repeatedly, yields the following lemma.

LEMMA 6.4. LetG,G0,G1 be runs, where inG0 andG1 all
nodes receive input 0 and 1, respectively. Assume that for some
ℓ ≥ 1 and timet, the following two sequences of steps (i.e., edges)
exist in the similarity graph:

(G, t +∆) ∼u1 (H1, t +∆),
(H1, t + 2∆) ∼u2 (H2, t + 2∆),

. . .

(Hℓ−1, t + ℓ∆) ∼uℓ
(G0, t + ℓ∆)

and

(G, t +∆) ∼u′
1
(H ′1, t +∆),

(H ′1, t + 2∆) ∼u′
2
(H ′2, t + 2∆),

. . .

(H ′ℓ−1, t + ℓ∆) ∼u′
ℓ
(G1, t + ℓ∆);

Then in any∆-coordinated consensus algorithm, no node can de-
cide by timet in G.

PROOF SKETCH. As outlined above, if some node decidesv in
(G, t), we show by induction on the path length (ℓ) that some node
decidesv in (G1−v , t + ℓ∆), violating validity.

The condition of Lemma 6.4 involves many different times,t +

∆, t+ 2∆, . . . , t+ ℓ∆. A simpler condition that implies the lemma
can be obtained by replacing all times with the last time,t+ ℓ∆ (to
still obtain a lower bound for timet). We show the existence of the
following two walks in the similarity graph:

(G, t + ℓ∆) = (H0, t + ℓ∆) ∼u1 (H1, t + ℓ∆) ∼u2 . . .

∼uℓ
(Hℓ, t + ℓ∆) = (G0, t + ℓ∆), and

(G, t + ℓ∆) = (H ′0, t + ℓ∆) ∼u′
1
(H ′1, t + ℓ∆) ∼u′

2
. . .

∼u′
ℓ
(H ′ℓ, t + ℓ∆) = (G1, t + ℓ∆).

This only strengthens the condition, since(G, t) ∼u (G′, t) implies
(G, t′) ∼u (G, t′) for all t′ ≤ t. Thus the existence of these walks
is sufficient to apply Lemma 6.4.

When a full-information protocol is used, all information about
the input becomes common knowledge at timen − 1; therefore we
cannot hope to havet + ℓ∆ > n − 1 when we apply (the simpli-
fied version of) Lemma 6.4. In order to maximizet and obtain the
strongest possible lower bound, we must minimizeℓ; that is, we
must find short walks in the similarity graph. Since our ultimate
goal is to span betweenG and two runs where the inputs are0 and
1 (respectively), the walk should allow us to flip the inputs ofas
many nodes as possible in each step.

Lower bound for static paths.We now apply the strategy
described above to obtain ann − O(∆0.28n0.72) lower bound in
static paths of lengthn. A path is a natural candidate for proving
strong lower bounds: we can flip the inputs of nodes at one end
of the path, and the nodes at the other end do not find out for a
long time. However, to use Lemma 6.4, we must be able to flip
the inputs ofall the nodes in the network, not just the nodes at
the ends of the path. Thus, we start with some pathu1, . . . , un,
and flip the inputs in some prefixu1, . . . , uβ of the path; nodeun

cannot distinguish the two cases until time roughlyn − β. Then
we find a short walk in the similarity graph from our original path
u1, . . . , un to a new path,uβ+1, . . . , un+β (i.e., we preserve the
order of nodes, but we rotate the path so that now it starts atuβ+1;
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Figure 2: Illustration of Lemma 6.5. The shaded arcs indicate
which nodes can distinguishG from G′. Switching fromPk to
Pk+s “cuts off” the spread of information about the missing edge,
and prevents it from reaching nodek + s − 1.

note that here and in the sequel, node indices are given modulo n.
The parameterβ will be fixed later). Now we can flip the inputs
of nodesuβ+1, . . . , u2β ; nodeuβ = un+β , located at the end of the
new path, cannot distinguish until time roughlyn − β. We require
at most⌈n/β⌉ such steps to flip any input assignment into either
the all-zero or the all-one input assignment.

The strength of the lower bound is determined by the length
of the walk from one path,ui⋅β+1, . . . , un+i⋅β , to the next path,
u(i+1)⋅β+1, . . . , un+(i+1)⋅β . To construct the walk we use an intri-
cate recursion. During the walk between paths we do not change
any input values; in the sequel we focus on the dynamic graph and
assume some fixed signature for all the executions we consider.

Let Pk ∶= uk+1, . . . , un+k denote the path starting at nodeuk+1,
and letC denote the cycleu1, . . . , un, u1. It is convenient to use
the cycleC to bridge between paths: we cannot remove any edge
of a path without violating connectivity, but a cycle is 2-vertex con-
nected, so we can drop any of its edges. Intuitively, to move from
a pathPk to a different pathPk+s (for s ≠ 0), we first closePk to
form the cycleC, then drop edge{vk+s, vk+s+1} to obtainPk+s.
The following lemma shows how we can move from a path to the
cycle while ensuring that some node cannot distinguish the two ex-
ecutions; it represents an intermediate step which will be used later
to move between two paths.

LEMMA 6.5. Let k ∈ {0, . . . , n − 1}, s ∈ Z, and let0 ≤ a ≤ ∣s∣
andb ≥ 0 satisfya + b < n − s. Fix a timeb < t ≤ n − 1. Consider
two graphsG,G′ that agree on the firstmax{0, t − b − a} rounds,
such that

● In roundsr ∈ [t−b−a+1, t−b],G(r) = C andG′(r) = Pk;

● In roundsr ∈ [t − b + 1, t],G(r) = G′(r) = Pk+s.

Then(G, t) ∼uk+s−1
(G′, t).

PROOF SKETCH. Assume thats ≥ 0 (the other case is symmet-
ric). At each timer = (t − b − a + 1) + i for i = 1, . . . , a, only
nodesuk−i, . . . , uk+i+1 might have learned of the missing edge,
{uk, uk+1}. Thus, at timet − b, only nodesuk−a, . . . , uk+a+1

can distinguishG from G′. Next, both graphs switch toPk+s

where the distance between any nodeuk−a, . . . , uk+a+1 and node
uk+s−1 = uk−(n−s+1) is at leastn− s− a. Sinceb < n− s− a, node
uk+s−1 does not learn of the difference by timet (see Fig. 2).

Next, we show how to use Lemma 6.5 to recursively transform a
suffix of the execution from one pathPk to a different pathPk+s.

(Our eventual goal is to transform the entire execution fromone
path to another.) Letd((G, t), (G′, t)) denote the distance be-
tween(G, t) and(G′, t) in the similarity graph.

LEMMA 6.6. Fix a time0 ≤ t ≤ n − 1 and a value1 ≤ β ≤
n − 1. LetG,G′ be dynamic graphs that agree up to timet − (n −
1 − β), such that in roundsr ∈ [t − (n − 1 − β) + 1, t], G(r) =
Pk andG′(r) = Pk′ (for somek, k′). Thend((G, t), (G′, t)) ≤
9(n/β)log2 3.

PROOF SKETCH. Defineℓβ ∶= ⌈log2(n/β)⌉. We show by in-
duction onℓβ thatd((G, t), (G′, t)) ≤ 3ℓβ+1 − 1. The claim then
follows, because

3
ℓβ+1

− 1 ≤ 3
log2(n/β)+2 = 9(n

β
)log2 3

.

Let us denotedβ ∶= 3ℓβ + 1. Note that we are transforming the
suffix [t−(n−1−β)+1, t] of the execution; hence, smaller values
of β (or equivalently, larger values ofℓβ) are “harder” because they
require us to transform a longer suffix.

The induction base is straightforward; it is omitted here. For the
step we use Lemma 6.5. Seta = β andb = n− 1− 2β. Given static
graphsH1,H2, letG[H1,H2] be the dynamic graph defined by

G[H1,H2](r) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G(r) r ≤ t − (n − 1 − β),
H1 t − (n − 1 − β) < r ≤ t − b,
H2 t − b < r ≤ t.

Sinceb = n − 1 − 2β andℓ2β = ℓβ − 1, the induction hypothesis
shows that for any graphH and for any two pathsPq, Pq′ we have
d((G[H,Pq], t), (G[H,Pq′ ], t)) ≤ d(2β). Further, Lemma 6.5
shows thatd((G[Pq , Pq+β], t), (G[C,Pq+β ], t)) = 1 for any q
(because these points are indistinguishable to some node).Thus,
we construct the following walk (see Fig. 3):

(G, t) = (G[Pk, Pk], t) d(2β)
→
I.H.
(G[Pk, Pk+β], t) 1

→
Lem. 6.5

(G[C,Pk+β], t) d(2β)
→
I.H.
(G[C,Pk′+β], t) 1

→
Lem. 6.5

(G[Pk′ , Pk′+β], t) d(2β)
→
I.H.
(G[Pk′ , Pk′], t) = (G′, t).

The length of the walk is at most3d(2β) + 2 = 3(3ℓβ − 1) + 2 =
3ℓβ+1 − 1.

THEOREM 6.7. In the static line graph, for any input assign-
ment, no∆-coordinated consensus algorithm can decide by time

n −O(∆ 1
2+log2 3 n

1− 1
2+log2 3 ) ≈ n −O(∆0.28n0.72).

PROOF SKETCH. Let σ be any signature, and letσ0, σ1 be the
corresponding signatures where all nodes receive input 0 or1, re-
spectively. LetP k,τ denote the dynamic graph defined byP k,τ(r) =
Pk for all r, using signatureτ ∈ {σ,σ0, σ1}. Also sett ∶= n−2β−1.

For v ∈ {0,1}, we span between(P 1,σ, t) and(Pn−β,σv , t) by
repeating the following stepsO(n/β) times:

1. Flip the inputs of the leftmostβ nodes on the path tov in one
move (the endpoint of the line cannot distinguish),

2. Applying Lemma 6.6, move from our current point(P k,τ , t) to
(P k+β , t) in O((n/β)log2 e) steps.

The total length of the walk isℓ = O((n/β) ⋅ (n/β)log2 e) =
O((n/β)1+log2 3). Now, fix β such thatβ ≥ c ⋅∆ ⋅ (n/β)1+log2 e.
For this setting of the parameters, Lemma 6.4 shows that no node

decides by timet − ℓ∆ = n −O(∆ 1
2+log2 3n

1− 1
2+log2 3 ).



G[Pk, Pk] ∶

G[Pk, Pk+β] ∶

G[C,Pk+β] ∶

G[C,Pk′+β] ∶

G[Pk′ , Pk′+β] ∶

G[Pk′ , Pk′ ] ∶

t − b − a t − b t

I.H. (d(2β) steps)

Lem. 6.5 (one step)

I.H. (d(2β) steps)

Lem. 6.5 (one step)

I.H. (d(2β) steps)

Figure 3: The recursion from Lemma 6.6. The two graphs shown
for each step represent the communication graph for roundst − b −

a, . . . , t − b and for roundst − b + 1, . . . , t.

The final theorem states that the dynamic diameter-based proto-
col is asymptotically optimal for diametersD = O(∆), even for
static executions. The proof uses Lemma 6.4 witht + ℓ∆ ≈ n/2,
that is, we construct a short walk in the indistinguishability graph
for time roughlyn/2 (recall thatt is the time for which we wish
to show the lower bound, andℓ is the length of the walk we con-
struct in the similarity graph). We start with an execution whose
first t rounds are a static graph with diameterD, and the remaining
n/2− t are a static path. This(n/2− t)-round suffix means that the
nodes at the end of the path require roughlyn rounds to learn what
the communication graph was in each of the firstn/2 − t rounds.
In ℓ = O(t/D) steps in the similarity graph, we move from this
execution to a static path. Because we need only maintain indis-
tinguishability until time roughlyn/2, once we have reached the
static path we can flip the inputs of nodes1, . . . , n/2 on the path in
one step; noden does not find out by timen/2. By repeating this
process twice we can flip all the inputs. Since we haveℓ = O(t/D)
and we are constrained byt + ℓ∆ ≤ n/2 (as indistinguishability is
only maintained until timen/2), we can apply Lemma 6.4 to obtain
the lower bound at timet = Ω(nD/∆).

THEOREM 6.8. For everyD = O(∆), there is a static graph
H = (V,EH) with diameter at mostD such that for every∆-
coordinated consensus algorithm, every inputσ and every dynamic
graphG = (V,E,σ)withE(r) = EH for all roundsr until the first
node decides, no node can decide at a time beforeΩ(nD/∆).
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