
Stanford University — CS154: Automata and Complexity Handout
Luca Trevisan and Ryan Williams Updated 4/26/2017

The Cook-Levin Theorem via Boolean Circuits

1 Circuits

We refer to Sipser (Section 9.3) for the definition of Boolean circuit. In general, a Boolean circuit
is a directed acyclic graph with n sources (for inputs) and 1 sink (for the output), where each node
is a “logic gate” of indegree (at most) two, computing some Boolean function on (at most) two
inputs. The entire circuit computes a function f : {0, 1}n → {0, 1}.

Lemma 1 Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function. Then there is a circuit of
size O(2n) that computes f .

Proof: We give a recursive construction of the circuit. If n = 1, then either f(x) = x, in which
case it is computed by a circuit of zero gates, or f(x) = ¬x, which can be computed by a circuit of
size one, or f(x) = 0 = (x∧¬x), which is computed by a circuit of size two, or f(x) = 1 = (x∨¬x),
which is also computed by a circuit of size 2.

Let now f be an arbitrary function of n variables. We can write it as

f(x1, . . . , xn) = (xn ∧ f(x1, . . . , xn−1, 1)) ∨ (¬xn ∧ f(x1, . . . , xn−1, 0))

Where both f(x1, . . . , xn−1, 1) and f(x1, . . . , xn−1, 0) are functions of n − 1 variables, that can be
recursively realized by a circuit.

The size S(n) of the circuit constructed this way satisfies the recursion S(1) ≤ 2, S(n) ≤
4 + 2S(n− 1), which solves to S(n) ≤ 3 · 2n − 4. �

Boolean circuits are a great computational model for computing finite functions (i.e. finite
languages) over {0, 1}n for some n. A key fact about Boolean circuits is that they can simulate
time-bounded Turing machines in an efficient way, as shown in the following theorem.

Theorem 2 Let M = (Q,Σ,Γ, δ, q0, qA, qR) be a Turing machine that, on inputs of length n, runs
in time at most t. Then there is a circuit of size O((|Γ| · |Q|)3 · t2) that, given an input x of length
n, outputs 1 if and only if M accepts x.

Proof: We first construct a circuit Cnext that, given a configuration of M that uses ≤ t cells of
tape, computes the configuration at the following step. A final configuration is left unchanged.

Let M have tape alphabet Γ and set of states Q. We represent a configuration by using t blocks
of bits. The i-th block of bits contains the alphabet element of the i-th cell of the tape (represented
as a sequence of dlog |Γ|e bits), a bit that says whether the head of the machine is over the i-th cell
of the tape, and, if so, the current state of the machine, represented as a sequence of dlog |Q|e bits.

1

Each block, therefore, is 1 + dlog |Γ|e+ dlog |Q|e bits long. Let us call this number B. (Note that,
for a fixed machine M , B is a constant.)

We want to build a circuit Cnext that, given ct bits in input representing a configuration,
produces ct bits in output representing the next-step configuration.1 It suffices to observe that
every bit of the output depends on only ≤ 3B bits of the input, and so each output bit of the
circuit can be computed using O(23B) gates, so that the entire circuit has size O(t · 23B). To
justify the previous observation, let c be an input configuration for the circuit and c′ be the desired
output. The portion of c′ corresponding to the i-th cell of the tape depends only on the portion
of c corresponding to the (i − 1)-th, i-th, and (i + 1)-th cells of the tape; in one step, the content
of no other cell can have any effect on the i-th cell. In total, these three cells are described by 3B
bits, including a description of where the head of the machine is and what is the state.

Let us now construct a circuit Ct by layering t copies of circuit Cnext one on top of the other,
that is, with the outputs of the i-th copy fed as inputs of the (i + 1)-th copy. Clearly, Ct has size
O(t2 · 23c) and, given a configuration c, Ct(c) computes the configuration reached by M starting
from c in t steps. We can modify it into a circuit C ′t of size O(t2 · 23c) that has only one output
and such that C ′t(c) = 1 if and only if M reaches an accepting configuration starting from c and
running for at most t steps.

Finally, let us hard-wire into C ′t that the head is in the first cell, that the state is q0, and that
all the cells except the first n contain a blank symbol, and let us call C the resulting circuit. Now,
on input x, C(x) = 1 if and only if M accepts x in at most t steps.2 �

2 Satisfiability Problems

Definition 3 (Circuit-SAT) Define the Circuit Satisfiability (Circuit-SAT) problem as follows:
given a circuit C the question is whether there is an input x such that C(x) = 1.

Using Theorem 2, it is easy to prove that Circuit Satisfiability is NP-complete.

Theorem 4 Circuit-SAT is NP-complete.

Proof: First, we argue that Circuit-SAT is in NP: given a circuit C, a short proof that C is in
the language is an input x such that C(x) = 1. Note that such an x is no longer than the length of
the description if the circuit C, and its validity can be checked in polynomial time by evaluating
C on x.

We now wish to show that Circuit-SAT is NP-hard. Let L be a problem in NP. By our charac-
terization of NP in terms of polynomial-time verifiers, there is a polynomial time algorithm V (·, ·)

1There is one more detail to take care of: what happens if the input is a configuration c that uses t cells of tape
and the next-step configuration c′ uses t+ 1 cells of tape? In this case, we will let the circuit output only the content
of the first t cells of the tape of c′.

2There is one final detail: Ct and C′
t expect in input a configuration, which is a sequence of triples (b, q, a) where

b is a bit that tells whether the head is on that cell of the tape, q tells, if b = 1, what is the state of the machine, and
a is the tape alphabet element on that cell of the tape. After we hard-wire the values of b and q, we still cannot let
a be the input of the circuit, because each a is a sequence of dlog2 |Γ|e bits designed to represent an element of Γ,
while we want our final circuit to have only one input bit per cell of the tape. We can solve this problem by assuming
that Γ is represented in binary so that 0 is mapped into 0 · · · 00 and 1 is mapped into 0 · · · 01, then we just have to
hardwire zeroes into all the input bits corresponding to an alphabet element except for the last bit in each cell.

2

and a polynomial p(·) such that

x ∈ L if and only if there exists a w such that |w| ≤ p(|x|) and V (x,w) = 1.

Our polynomial-time reduction from L to Circuit-SAT works as follows. Given an input x of
length n, first construct a circuit C such that for every z of length n and every w of length ≤ p(n)
we have V (z, y) = C(z, y). Since V runs in polynomial time, the circuit C has size polynomial in
n and can be constructed in time polynomial in n, by applying Theorem 2.

Next, we “hard wire” the given input x into the z-input of C, obtaining a new circuit Cx such
that for every w of length ≤ p(n) we have Cx(w) = C(x,w) = V (x,w). Our reduction then outputs
the circuit Cx.

In summary, the polynomial-time reduction takes an input x and outputs a circuit Cx. By
construction, Cx is in Circuit-SAT if and only if there is a w such that Cx(w) = V (x,w) = 1, which
happens if and only if x is in L. �

Next we define the problem 3SAT. In 3SAT, an input is a Boolean formula in 3-Conjunctive-
Normal-Form (3CNF). A 3CNF formula is a AND-of-ORs, with each OR being over precisely three
distinct variables. Variables are allowed to be completed.

Definition 5 (3SAT) The 3SAT problem is: given a 3CNF formula φ, is there an assignment of
values to the variables that satisfies φ?

It is easy to see that 3SAT is in NP.

Theorem 6 Circuit-SAT ≤p
m 3SAT. Therefore 3SAT is NP-hard, and so NP-complete.

This is Theorem 9.27 in Sipser’s book.

3

