Lecture 13:
Review Recursion Theorem,
Foundations of Mathematics and
Kolmogorov Complexity
The Recursion Theorem

Theorem: For every TM T computing a function
$$t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$$
there is a Turing machine R computing a function $r : \Sigma^* \rightarrow \Sigma^*$, such that for every string w,
$$r(w) = t(R, w)$$
For every computable t, there is a computable r such that \(r(w) = t(R,w) \) where

\(R \) is a description of a TM computing \(r \)

Moral: Suppose we can design a TM \(T \) of the form

“On input \((x,w)\), do bla bla with \(x \),
do bla bla bla bla with \(w \), etc. etc.”

We can always find a TM \(R \) with the behavior:

“On input \(w \), do bla bla bla with code of \(R \),
do bla bla bla bla with \(w \), etc. etc.”

We can use the operation:

“Obtain your own description”
in Turing machine pseudocode!
Theorem: \(A_{\text{TM}} \) is undecidable

Proof (using the recursion theorem)

Assume \(H \) decides \(A_{\text{TM}} \)

Define a TM \(T \) as follows:

\[
T(M,w) := \text{Run } H \text{ on } (M,w) \text{ and output the opposite}
\]

By the Recursion Theorem,

There is a TM \(B \) such that for all \(w \), \(B(w) = T(B,w) \).

Then, \(B \) on input \(w \) always does the opposite of what \(H(B,w) \) said \(B \) would do! Contradiction!
Theorem: \(A_{\text{TM}} \) is undecidable

Proof (using the recursion theorem)

Assume \(H \) decides \(A_{\text{TM}} \)

Construct machine \(B \) such that on input \(w \):

1. Obtains own description \(B \)
2. Runs \(H \) on \((B, w)\) and flips the output

Running \(B \) on any input \(w \) always does the \textit{opposite} of what \(H(B,w) \) says \(B \) would do! Contradiction!

A formalization of “free will” paradoxes!
No single machine can predict behavior of all others
Turing Machine Minimization

MIN = \{ M \mid M \text{ is a minimal-state TM over } \Gamma = \{ 0, 1, \square \} \}

Theorem: MIN is undecidable

Proof: Suppose we could recognize MIN with TM \(M' \)

\[M(x) := \text{Obtain the description of } M. \]

For \(k = 1, 2, 3, \ldots \)

Run \(M' \) on the first \(k \) TMs \(M_1, \ldots, M_k \) for \(k \) steps,

Until \(M' \) accepts some \(M_i \) with more states than \(M \)

Output \(M_i(x) \).

Why does \(M_i \) exist?

We have: 1. \(L(M) = L(M_i) \) [by construction]

2. \(M \) has fewer states than \(M_i \)

3. \(M_i \) is minimal [by definition of MIN]

CONTRADICTION!
Computability and the Foundations of Mathematics
Formal Systems of Mathematics

A formal system describes a formal language for
- writing (finite) mathematical statements as strings,
- has a definition of a proof of a statement (as strings)
- has a notion of “true” statements

Example: Every TM M can be used to define a formal system \mathcal{F} with the properties:

- $\{\text{Mathematical statements in } \mathcal{F}\} = \Sigma^*$
 String w represents the statement “M halts on w”
- A proof of “M halts on w” can be defined as the computation history of M on w: the sequence of configurations $C_0 \ C_1 \ \cdots \ C_t$ that M goes through while computing on w
Interesting Systems of Mathematics

Define a formal system \mathcal{F} to be *interesting* if:

1. Mathematical statements about computation can be (computably) described as a statement of \mathcal{F}. Given (M, w), there is a (computable) $S_{M,w}$ of \mathcal{F} such that $S_{M,w}$ is true in \mathcal{F} if and only if M accepts w.

2. Proofs are “convincing” – a TM can check that a candidate proof of a theorem is correct. This set is decidable: $\{ (S, P) | P$ is a proof of S in $\mathcal{F} \}$.

3. If S is in \mathcal{F} and there is a proof of S describable as a computation history, then there’s a proof of S in \mathcal{F}.

If TM M halts on w, then there’s either a proof P of $S_{M,w}$ or a proof P of $\neg S_{M,w}$.
Consistency and Completeness

A formal system F is inconsistent if there is a statement S in F such that both S and $\neg S$ are provable in F. F is consistent if it is NOT inconsistent.

A formal system F is incomplete if there is a statement S in F such that neither S nor $\neg S$ are provable in F. F is complete if it is NOT incomplete.

We want consistent and complete systems!
Limitations on Mathematics!

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F must be *incomplete*!
“The there are mathematical statements that are true but cannot be proved.”

Theorem 2. (Gödel 1931)
The consistency of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.
Unprovable Truths in Mathematics

(Gödel) Every consistent interesting \mathcal{F} is incomplete: there are statements that cannot be proved or disproved.

Let $S_{M,w}$ in \mathcal{F} be true if and only if TM M accepts string w

Proof: Define TM $G(w)$:

1. Obtain own description G [Recursion Theorem!]
2. For all strings P in lexicographical order,
 If (P is a proof of $S_{G,w}$ in \mathcal{F}) then reject
 If (P is a proof of $\neg S_{G,w}$ in \mathcal{F}) then accept

Note: If \mathcal{F} is complete then G cannot run forever!

1. If (G accepts w) then have proof P of “G doesn’t accept w”
2. If (G rejects w) then have proof P of “G accepts w”

In either case, \mathcal{F} is inconsistent! Proof of $S_{G,w}$ and $\neg S_{G,w}$
Unprovable Truths in Mathematics

(Gödel) Every consistent interesting \mathcal{F} is incomplete: there are statements that cannot be proved or disproved.

Let $S_{M,w}$ in \mathcal{F} be true if and only if TM M accepts string w

Proof: Define TM $G(w)$:

1. Obtain own description G [Recursion Theorem!]
2. For all strings P in lexicographical order,
 If (P is a proof of $S_{G,w}$ in \mathcal{F}) then reject
 If (P is a proof of $\neg S_{G,w}$ in \mathcal{F}) then accept

 Note: If \mathcal{F} is complete then G cannot run forever!

Conclusion: G must run forever.
So in fact $\neg S_{G,w}$ is a true statement, but it has no proof in \mathcal{F}!

 In either case, \mathcal{F} is inconsistent! Proof of $S_{G,w}$ and $\neg S_{G,w}$
(Gödel 1931) The consistency of F cannot be proved within any interesting consistent F

Proof Sketch: Assume we can prove “F is consistent” in F

We constructed $\neg S_{G, w} = “G$ does not accept $w”$

which has no proof in F

G accepts w \Rightarrow There are proofs of $S_{G, w}$ and $\neg S_{G, w}$ in F

But if there’s a proof of “F is consistent” in F, then there is a proof of $\neg S_{G, w}$ in F (here’s the proof):

“F is consistent, because <insert proof here>.
If $S_{G, w}$ is true, then both S_{G} and $\neg S_{G, w}$ have proofs in F.

But F is consistent, so this is a contradiction. Therefore, $\neg S_{G, w}$ is true.”

This contradicts the previous theorem!
Undecidability in Mathematics

\[\text{PROVABLE}_F = \{ S \mid \text{there's a proof in } F \text{ of } S, \text{ or there's a proof in } F \text{ of } \neg S \} \]

(Church-Turing 1936) For every interesting consistent \(F \), \(\text{PROVABLE}_F \) is undecidable

Proof: Suppose \(\text{PROVABLE}_F \) is decidable with TM P. Then we could decide \(A_{\text{TM}} \) with the following procedure:

On input \((M, w)\), run the TM P on input \(S_{M,w} \)
If P accepts, examine all proofs in lex order
If a proof of \(S_{M,w} \) is found then accept
If a proof of \(\neg S_{M,w} \) is found then reject
If P rejects, then reject.

Why does this work?
Kolmogorov Complexity:
A Universal Theory of Data Compression