Lecture 14:
Kolmogorov Complexity
Kolmogorov Complexity: A Universal Theory of Data Compression
The Church-Turing Thesis:

Everyone’s Intuitive Notion of Algorithms = Turing Machines

This is not a theorem – it is a falsifiable scientific hypothesis.

A Universal Theory of Computation
A Universal Theory of *Information*?

Can we quantify how much *information* is contained in a string?

A = 01010101010101010101010101010101

B = 11001001110111010110100101100101

Idea: The more we can “compress” a string, the less “information” it contains....
Thesis: The amount of information in a string x is the length of the *shortest description* of x.

How should we “describe” strings?
Some algorithmic process to describe strings...

Church-Turing Thesis: Use Turing machines with inputs!

Let $x \in \{0,1\}^*$

Def: A *description of x* is a string $<M,w>$ such that

M on input w halts with only x on its tape.

Def: The *shortest description of x*, denoted as $d(x)$, is the lexicographically shortest description of x.
A Specific Pairing Function

Theorem. There is a 1-1 computable function
\[<,> : \Sigma^* x \Sigma^* \rightarrow \Sigma^* \]
and computable functions \(\pi_1 \) and \(\pi_2 : \Sigma^* \rightarrow \Sigma^* \) such that:

\[z = <M,w> \iff \pi_1(z) = M \text{ and } \pi_2(z) = w \]

Define:

\[<M,w> := 0^{\mid M \mid}1 M w \]

(Example: \(<10110,101> = 0000011011010101 \))

Note that \[\mid <M,w> \mid = 2\mid M \mid + \mid w \mid + 1 \]
Kolmogorov Complexity (1960’s)

Def: The *shortest description of* x, denoted as $d(x)$, is the lexicographically shortest string $<M,w>$ such that M on w halts with only x on its tape.

Def: The *Kolmogorov complexity of* x, $K(x)$, is $|d(x)|$.

EXAMPLES??
Let’s first determine some properties of K. Examples will fall out of this.
Theorem: There is a fixed c so that for all x in $\{0,1\}^*$

$$K(x) \leq |x| + c$$

“The amount of information in x isn’t much more than $|x|$”

Proof: Define a TM N = “On input w, halt.”

On any string x, N on x halts with x on its tape.

Observe that $<N,x>$ is a description of x.

Let $c = 2|N| + 1$

Then $K(x) \leq |<N,x>| \leq 2|N| + |x| + 1 \leq |x| + c$
Theorem: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$.

"The information in x^n isn't much more than that in x"

Proof: Define the TM $N = \text{"On input } \langle n, \langle M, w \rangle \rangle, \text{ Let } x = M(w). \text{ Print } x \text{ for } n \text{ times."}"

Let $\langle M, w \rangle$ be the shortest description of x. Then $K(x^n) \leq |\langle N, \langle n, \langle M, w \rangle \rangle \rangle|$

$$\leq 2|N| + d \log n + K(x) \leq c \log n + K(x)$$

for some constants c and d.

Repetitive Strings have Low K-Complexity n written in binary.
Theorem: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$

“ The information in x^n isn’t much more than that in x ”

Recall:

$A = 01010101010101010101010101010101$

For $w = (01)^n$, we have $K(w) \leq K(01) + c \log n$

So for all n, $K((01)^n) \leq d + c \log n$ for a fixed c, d
Does The Computational Model Matter?

Turing machines are one “programming language.” If we use other programming languages, could we get significantly shorter descriptions?

An interpreter is a “semi-computable” function

\[p : \Sigma^* \rightarrow \Sigma^* \]

Takes programs as input and prints their outputs, but a TM implementing \(p \) may not halt sometimes!

Definition: Let \(x \in \{0,1\}^* \). The **shortest description of** \(x \) **under** \(p \), called \(d_p(x) \), is the lexicographically shortest string \(w \) such that \(p(w) = x \).

Definition: The **\(K_p \) complexity of** \(x \) is \(K_p(x) := |d_p(x)| \).
Theorem: For every interpreter \(p \), there is a fixed \(c \) so that for all \(x \in \{0,1\}^* \), \(K(x) \leq K_p(x) + c \)

Moral: Using another programming language only changes \(K(x) \) by some additive constant

Proof: Define TM \(M = "On w, simulate p(w) and write its output to tape" \)

Then \(<M,d_p(x)> \) is a description of \(x \).

So \(K(x) \leq |<M,d_p(x)>| \)

\[\leq 2|M| + K_p(x) + 1 \leq c + K_p(x) \]
There Exist Incompressible Strings

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \geq n$

“There are incompressible strings of every length”

Proof:

(Number of binary strings of length $n) = 2^n$

but

(Number of descriptions of length $< n) \leq (Number of binary strings of length $< n)

= 1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1

Therefore, there is at least one n-bit string x that does not have a description of length $< n$.
Random Strings Are Incompressible!

Theorem: For all n and $c \geq 1$,
\[
\Pr_{x \in \{0,1\}^n}[K(x) \geq n-c] \geq 1 - 1/2^c
\]

"Most strings are highly incompressible"

Proof:
(Number of binary strings of length n) = 2^n but (Number of descriptions of length $< n-c$)
\[
\leq (\text{Number of binary strings of length } < n-c) = 2^{n-c} - 1
\]
Hence the probability that a *random* x satisfies
\[
K(x) < n-c
\]
is at most $(2^{n-c} - 1)/2^n < 1/2^c$.
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000
2. 1235813213455891442333776109871597
3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000

2. 1235813213455891442333776109871597

3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 0100011011000001010011100101101110000

2. 1235813213455891442333776109871597

3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000001010011100101110110000
2. 1235813213455891442333776109871597
3. 126241207205040403203628803628800

This looks hard to determine in general. Why?
Computing Compressibility?

Can an algorithm perform optimal compression?
Can algorithms tell us if a given string is compressible?

COMPRESS = \{ (x,c) \mid x \text{ string}, c \text{ integer, } K(x) \leq c \}

Theorem: COMPRESS is undecidable!

Idea: If COMPRESS were decidable, we could use its decider to design an algorithm printing an incompressible string of a given length n.
But then, such a string could be succinctly described, by providing the algorithm code and n in binary!

Berry Paradox: “The smallest integer that cannot be defined in less than thirteen words.”
Computing Compressibility?

COMPRESS = \{ (x,c) | x string, c integer, K(x) ≤ c \}

Theorem: **COMPRESS** is undecidable!

Proof: Suppose it’s decidable. Consider the TM:

M = “On input x ∈ \{0,1\}^*,
 For all y ∈ \{0,1\}^* in lexicographical order,
 If (y, 2^{|x|}) \not\in **COMPRESS** then print y and halt.”

M on x prints the lex. first string y’ with K(y’) > 2^{|x|}.

<M,x> is a description of y’, and |<M,x>| ≤ d + |x| for some constant d

So 2^{|x|} < K(y’) ≤ d + |x|. **CONTRADICTION** for long x!
Yet Another Proof that A_{TM} is Undecidable!

$\text{COMPRESS} = \{(x, c) \mid K(x) \leq c\}$

Theorem: A_{TM} is undecidable.

Proof: Mapping reduction from COMPRESS to A_{TM}. Given a pair (x, c), our reduction constructs a TM:

$M_{x,c} = \text{On input } w,$

*For all pairs } <M',w'> \text{ with } |<M',w'>| \leq c,$

simulate each M' on w' in parallel.

If some M' ever halts and prints x, then accept.

$(x, c) \in \text{COMPRESS} \iff K(x) \leq c \iff M_{x,c} \text{ accepts } \varepsilon$
Proving Theorems With K-Complexity

Theorem: $L = \{xx \mid x \in \{0, 1\}^*\}$ is not regular.

Proof: Suppose L is recognized by a DFA D. Let $n \geq 0$ and choose an $x \in \{0, 1\}^n$ such that $K(x) \geq n$. Let q_x be the state of D reached after reading in x.

Define TM M that on input (D, q, n) does the following:
- Find some path P in D of n edges from state q to some final state (if no path, reject).
- Print the n-bit string along path P, and halt.

Claim: The string $<M, (D, q_x, n)>$ is a description of x!

So $n \leq K(x) \leq |<M, (D, q_x, n)>| \leq O(\log n)$

CONTRADICTION for large n
More on Interesting Formal Systems

A formal system \mathcal{F} is *interesting* if:

1. Any mathematical statement about computation can also be effectively described within \mathcal{F}.

 For all strings x and integers c, there is a $S_{x,c}$ in \mathcal{F} that is equivalent to "$K(x) \geq c$"

2. Proofs are convincing: it should be possible to check that a proof of a theorem is correct.

 This set is decidable: $\{ (S,P) \mid P$ is a proof of S in $\mathcal{F} \}$
The Unprovable Truth About K-Complexity

Theorem: For every interesting consistent \(\mathcal{F} \), there is a \(t \) s.t. for all \(x \), “\(K(x) > t \)” is unprovable in \(\mathcal{F} \).

Proof: Define a Turing machine \(M \) as follows:

\[
M(y) := \text{Search over all strings } x \text{ and proofs } P \text{ for a proof } P \text{ in } \mathcal{F} \text{ of “} K(x) > 2^{|y|} \text{”}. \text{Output } x \text{ if found}
\]

If \(M(y) \) halts, it prints some \(x \). Then for some \(c \),

\[
K(x') = K(<M,y>) \leq c + |y|
\]

Therefore “\(K(x) \leq c + |y| \)” has a proof in \(\mathcal{F} \).

But “\(K(x) > 2^{|y|} \)” also has a proof \(P \) in \(\mathcal{F} \).

For large enough \(|y| \), have proof of “\(K(x') > c + |y| \)” and its negation! Therefore \(M(y) \) does not halt!
Theorem: For every interesting consistent \mathcal{F}, there is a t s.t. for all x, “$K(x) > t$” is unprovable in \mathcal{F}.

For a randomly chosen x of length $t+100$, “$K(x) > t$” is true with probability at least $1-\frac{1}{2^{100}}$.

We can *randomly generate* true statements in \mathcal{F} which have no proof in \mathcal{F}, with high probability!

For every interesting formal system \mathcal{F} there is always some finite integer (say, $t=10000$) so that you’ll never be able to prove in \mathcal{F} that a random 20000-bit string requires a 10000-bit program!
Next Episode:
Complexity Theory!