Lecture 21: Space Complexity
Measuring Space Complexity

We measure space complexity by finding the largest tape index reached during the computation.
Let M be a deterministic TM.

Definition: The space complexity of M is the function $S : \mathbb{N} \rightarrow \mathbb{N}$, where $S(n)$ is the largest tape index reached by M on any input of length n.

Definition: $\text{SPACE}(S(n)) = \{ L \mid L \text{ is decided by a Turing machine with } O(S(n)) \text{ space complexity} \}$
Theorem: $\text{3SAT} \in \text{SPACE}(n)$

Proof Idea: Try all possible assignments to the (at most n) variables in a formula of length n. This can be done in $O(n)$ space.

Theorem: $\text{NTIME}(t(n))$ is in $\text{SPACE}(t(n))$

Proof Idea: Try all possible computation paths of $t(n)$ steps for an NTM on length-n input. This can be done in $O(t(n))$ space.
Intuition: If you have more space to work with, then you can solve strictly more problems!

Theorem: For functions $s, S : \mathbb{N} \rightarrow \mathbb{N}$ where $\frac{s(n)}{S(n)} \rightarrow 0$

$\text{SPACE}(s(n)) \subsetneq \text{SPACE}(S(n))$

Idea: Diagonalization
Make a machine M that uses $S(n)$ space and “does the opposite” of all $O(s(n))$ space machines on at least one input

So $L(M)$ is in $\text{SPACE}(S(n))$ but not $\text{SPACE}(s(n))$
Since for every k, $\text{NTIME}(n^k)$ is in $\text{SPACE}(n^k)$, we have:

$$\mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$$
The class PSPACE formalizes the set of problems solvable by computers with *bounded memory*.

Fundamental (Unanswered) Question: How does time relate to space, in computing?

$\text{SPACE}(n^2)$ problems could potentially take much longer than n^c time to solve, for any c!

Intuition: You can always re-use space, but how can you re-use time?

Is $P = \text{PSPACE}$?
Let M be a halting TM that on input x, uses $S(|x|)$ space.

How many time steps can $M(x)$ possibly take? Is there an upper bound?

The number of time steps is at most the total number of possible configurations of M.

(If a configuration repeats, the machine is in an infinite loop!)

A configuration of M on x specifies a head position, a state, and S cells of tape content.

So the total number of configurations is at most:

$$S(|x|)|Q||\Gamma|^{S(|x|)} \leq 2^{O(S(|x|))}$$
Theorem:
For every space-$S(n)$ TM, there is a TM running in $2^{O(S(n))}$ time that decides the same language.

\[
\text{SPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \text{TIME}(2^c \cdot s(n))
\]

Proof Idea: For each $s(n)$-space bounded TM M there is a $c > 0$ so that on all inputs x, if M runs for more than $2^c s(|x|)$ time steps on x, then M must have repeated a configuration, so M will never halt.
\[\text{PSPACE} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k) \]

\[\text{EXPTIME} = \bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k}) \]

\[\text{PSPACE} \subseteq \text{EXPTIME} \]
P ⊆ NP ⊆ PSPACE

Is NP^{NP} ⊆ PSPACE?

YES

And coNP^{NP} ⊆ PSPACE
Example: MIN-FORMULA is in PSPACE

MIN-FORMULA = \{ \phi \mid \phi \text{ is minimal} \}

Recall the coNP^{NP} algorithm for MIN-FORMULA:

Given a formula \(\phi \),

Try all formulas \(\psi \) such that \(\psi \) is smaller than \(\phi \).

If \(((\phi, \psi) \in \text{NEQUIV}) \) then *accept* else *reject*

Can store a formula \(\psi \) in space \(O(|\phi|) \)

Can check \((\phi, \psi) \in \text{NEQUIV} \) by trying all assignments to the variables of \(\phi \) and \(\psi \)

Can store a variable assignment in space \(O(|\phi|) \)

Evaluating \(\psi \) or \(\phi \) on an assignment uses \(O(|\phi|) \) space
Theorem: \(P \neq \text{EXPTIME} \)

Why? The Time Hierarchy Theorem!

\[
\text{TIME}(2^n) \not\subseteq P
\]

Therefore \(P \neq \text{EXPTIME} \)

Corollary: At least one of the following is true:

\(P \neq \text{NP}, \ \text{NP} \neq \text{PSPACE}, \ \text{or} \ \text{PSPACE} \neq \text{EXPTIME} \)

Proving any one of them would be major!
PSPACE and Nondeterminism
Definition: \(\text{SPACE}(s(n)) = \)
\{ L \mid L \text{ is decided by a Turing machine with } O(s(n)) \text{ space complexity} \}

Definition: \(\text{NSPACE}(s(n)) = \)
\{ L \mid L \text{ is decided by a } \text{non-deterministic} \) Turing Machine with \(O(s(n)) \) space complexity \}
Recall:
Space $S(n)$ computations can be simulated in at most $2^{O(S(n))}$ time steps

$$\text{SPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \text{TIME}(2^c \cdot s(n))$$

Idea: After $2^{O(s(n))}$ time steps, a $s(n)$-space bounded computation must have repeated a configuration, after which it will probably never halt.
Theorem:

NSPACE $S(n)$ computations can also be simulated in at most $2^{O(S(n))}$ time steps.

$$\text{NSPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \text{TIME}(2^c \cdot s(n))$$

Key Idea: Think of the problem of simulating NSPACE$\langle s(n) \rangle$ as a problem on graphs.
Def: The configuration graph of M on x has nodes C for every configuration C of M on x, and edges (C, C') if and only if C yields C'.

$G_{M,x}$

M has space complexity $S(n)$ \Rightarrow $G_{M,x}$ has $2d \cdot S(|x|)$ nodes.

M is deterministic \Rightarrow every node has outdegree ≤ 1.

M is nondeterministic \Rightarrow some nodes may have outdegree > 1.

M accepts x \iff there is a path in $G_{M,x}$ from the initial configuration node to a node in an accept state.
Def: The configuration graph of M on x has nodes C for every configuration C of M on x, and edges (C, C') if and only if C yields C'.

$G_{M,x}$

M has space complexity $S(n)$
$\Rightarrow G_{M,x}$ has $2d \cdot S(|x|)$ nodes

M is deterministic
\Rightarrow every node has outdegree ≤ 1

M is nondeterministic
\Rightarrow some nodes may have outdegree > 1

To simulate a non-deterministic M in $2^{O(S(|x|))}$ time: do BFS in $G_{M,x}$ from the initial configuration!
PSPACE = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k)

NPSPACE = \bigcup_{k \in \mathbb{N}} \text{NSPACE}(n^k)
SPACE versus NSPACE

Is \(\text{NTIME}(n) \subseteq \text{TIME}(n^2) \)?

Is \(\text{NTIME}(n) \subseteq \text{TIME}(n^k) \) for some \(k > 1 \)?

Nobody knows!

If the answer is yes, then \(P = \text{NP} \).

What about the space-bounded setting?

Is \(\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^k) \) for some \(k \)? Is \(\text{PSPACE} = \text{NPSPACE} \)?
Savitch’s Theorem

Theorem: For functions $s(n)$ where $s(n) \geq n$,

$$\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)$$

Proof Try:

Let N be a non-deterministic TM with space complexity $s(n)$.

Construct a deterministic machine M that tries every possible branch of N.

Since each branch of N uses space at most $s(n)$, then M uses space at most $s(n)^2$...

There are $2^{2^{s(n)}}$ branches to keep track of!
Given configurations C_1 and C_2 of a $s(n)$ space machine N, and a number k (in binary), want to know if N can get from C_1 to C_2 within 2^k steps

Procedure SIM(C_1, C_2, k):

\[\text{If } k = 0 \text{ then accept iff } C_1 = C_2 \text{ or } C_1 \text{ yields } C_2 \text{ within one step.} \]
\[\text{[uses space } O(s(n)) \text{]}\]

\[\text{If } k > 0, \text{ then for every config } C_m \text{ of } O(s(n)) \text{ symbols, } \]
\[\text{if } \text{SIM} (C_1, C_m, k-1) \text{ and } \text{SIM} (C_m, C_2, k-1) \text{ accept } \]
\[\text{then return accept} \]
\[\text{return reject if no such } C_m \text{ is found} \]

SIM(C_1, C_2, k) has $O(k)$ levels of recursion
Each level of recursion uses $O(s(n))$ additional space.

Theorem: SIM(C_1, C_2, k) uses only $O(k \cdot s(n))$ space
Theorem: For functions $s(n)$ where $s(n) \geq n$

$$\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)$$

Proof:
Let N be a nondeterministic TM using $s(n)$ space
Let $d > 0$ be such that the number of configurations of $N(w)$ is at most $2^d s(|w|)$

Here’s a deterministic $O(s(n)^2)$ space algorithm for N:

$M(w)$: For all configurations C_a of $N(w)$ in the accept state,
If $\text{SIM}(q_0, w, C_a, d s(|w|))$ accepts, then accept
else reject

Claim: $L(M) = L(N)$ and M uses $O(s(n)^2)$ space
Theorem: For functions $s(n)$ where $s(n) \geq n$

$$\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)$$

Proof:
Let N be a nondeterministic TM using $s(n)$ space
Let $d > 0$ be such that the number of configurations of $N(w)$ is at most $2^{d \cdot s(|w|)}$

Here’s a deterministic $O(s(n)^2)$ space algorithm for N:
$M(w)$: For all configurations C_a of $N(w)$ in the accept state,
If $\text{SIM}(q_0, w, C_a, d \cdot s(|w|))$ accepts, then accept
else reject

Why does it take only $s(n)^2$ space?
Proof:
Let N be a nondeterministic TM using $s(n)$ space.

Let $d > 0$ be such that the number of configurations of $N(w)$ is at most $2^d s(|w|)$.

Here’s a deterministic $O(s(n)^2)$ space algorithm for N:

$M(w)$: For all configurations C_a of $N(w)$ in the accept state, if $\text{SIM}(q_0, w, C_a, d s(|w|))$ accepts, then accept. Else reject.

SIM uses $O(k \cdot s(|w|))$ space to simulate 2^k steps of $N(w)$.

For $k = d s(|w|)$ we have $O(k \cdot s(|w|)) \leq O(s(|w|)^2)$ space.
PSPACE = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k)

NPSPACE = \bigcup_{k \in \mathbb{N}} \text{NSPACE}(n^k)

PSPACE = \text{NPSPACE}
PSPACE-complete problems
Definition: Language B is PSPACE-complete if:

1. $B \in \text{PSPACE}$
2. Every A in PSPACE is poly-time reducible to B (i.e. B is PSPACE-hard)

Theorem: If B is PSPACE-complete and B is in P then $P = \text{PSPACE}$

Theorem: If B is PSPACE-complete and B is in NP then $NP = \text{PSPACE}$
Definition:
A fully quantified Boolean formula is a Boolean formula where every variable in the formula is quantified (∃ or ∀) at the beginning the formula. These formulas are either true or false

∄x∃y [x ∨ ¬y]

∀x [x ∨ ¬x]

∀x [x]

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]
TQBF = \{ \phi \mid \phi \text{ is a true fully quantified Boolean formula} \}

- SAT is the special case where all quantifiers on all variables are \exists
- TAUTOLOGY is the special case where all quantifiers are \forall

So, $\text{SAT} \leq_P \text{TQBF}$ and $\text{TAUTOLOGY} \leq_P \text{TQBF}$

Theorem (Meyer-Stockmeyer): TQBF is PSPACE-complete