6.045

Lecture 23:
Randomized Complexity
Practice Problems for Final Exam

Find them on Piazza!

Lots of problems to keep you busy... proofs, multiple choice, etc.

Solutions will come out in a few days

I strongly recommend trying to solve them before looking at the solutions!
TQBF = \{ \phi \mid \phi \text{ is a true quantified Boolean formula} \}

Theorem: TQBF is PSPACE-Complete

GG = \{ (G, a) \mid \text{Player 1 has a winning strategy for geography on graph G starting at node a} \}

Theorem: GG is PSPACE-Complete
Theorem [Hopcroft, Paul, and Valiant, ...]

\[\text{TIME}(t(n)) \subseteq \text{SPACE}\left(\frac{t(n)}{\log t(n)}\right) \]

For every algorithm that runs in \(t(n) \) time, there is another algorithm with the same input/output behavior, using \(O(t(n)/\log t(n)) \) space (and exp time)

Holds for any reasonable algorithm model!

Amazing result! But we won’t prove it here...
Theorem [Hopcroft, Paul, and Valiant, ...]

\[\text{TIME}(t(n)) \subseteq \text{SPACE}\left(\frac{t(n)}{\log t(n)}\right) \]

Corollary: \(\text{SPACE}(n) \) is not in \(\text{TIME}(n \log \log n) \)
There are problems solvable in \(O(n) \) space
that cannot be solved in \(O(n \log \log n) \) time.
A baby step towards \(P \neq \text{PSPACE} \).

Proof Sketch: If \(\text{SPACE}(n) \subseteq \text{TIME}(n \log \log n) \), then
\[\text{SPACE}(n^2) \subseteq \text{TIME}(n^2 \log \log n) \] by “padding”
By HPV theorem,
\[\text{TIME}(n^2 \log \log n) \subseteq \text{SPACE}(\frac{(n^2 \log \log n)}{\log n}) \]
This contradicts the Space Hierarchy Theorem!
VOTE VOTE VOTE

For your favorite course on automata and complexity

Please complete the online subject evaluation for 6.045
Randomized / Probabilistic Complexity
Probabilistic TMs

A probabilistic TM M is a nondeterministic TM where:

- Each nondeterministic step is called a coin flip.
- Each nondeterministic step has only two legal next moves (heads or tails).

The probability that M runs on a branch b is:

$$\Pr [b] = 2^{-k}$$

where k is the number of coin flips that occur on branch b.
Probabilistic/Randomized Algorithms

Why study randomized algorithms?

1. They can be simpler than deterministic algorithms
2. They can be more efficient than deterministic algorithms
3. Can randomness be used to solve problems provably much faster than deterministic algorithms?

This is an open question!
Pr [M accepts w] = \sum_{b \text{ is a branch on which } M \text{ on } w \text{ accepts}} Pr [b]

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:

- \(w \in A \) \(\Rightarrow \) \(Pr[M \text{ accepts } w] > 0 \)
- \(w \notin A \) \(\Rightarrow \) \(Pr[M \text{ accepts } w] = 0 \)
Theorem: A language A is in coNP if there is a nondeterministic polynomial time TM M such that for all strings w:

$$w \in A \Rightarrow \Pr[M \text{ accepts } w] = 0$$
$$w \not\in A \Rightarrow \Pr[M \text{ accepts } w] > 0$$

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:

$$w \in A \Rightarrow \Pr[M \text{ accepts } w] > 0$$
$$w \not\in A \Rightarrow \Pr[M \text{ accepts } w] = 0$$
Definition. A probabilistic TM M decides a language A with error ε if for all strings w,

$w \in A \Rightarrow \Pr [M \text{ accepts } w] \geq 1 - \varepsilon$

$w \notin A \Rightarrow \Pr [M \text{ doesn’t accept } w] \geq 1 - \varepsilon$
Error Reduction Lemma

Lemma: Let \(\varepsilon \) be a constant, \(0 < \varepsilon < 1/2 \), let \(k \in \mathbb{N} \). If \(M_1 \) has error \(1/2 - \varepsilon \) and runs in \(t(n) \) time then there is an equivalent machine \(M_2 \) such that \(M_2 \) has error \(< 1/2^{n^k} \) and runs in \(O(n^k \cdot t(n)/\varepsilon^2) \) time.

Proof Idea:
On input \(w \), \(M_2 \) runs \(M_1 \) on \(w \) for \(m = 10 \frac{n^k}{\varepsilon^2} \) random independent trials, records the \(m \) answers of \(M_1 \) on \(w \), returns most popular answer (accept or reject).

Can use Chernoff Bound to show the error is \(< 1/2^{n^k} \)
Probability that the Majority answer over \(10m/\varepsilon^2 \) trials is \textit{different} from the \(1/2 + \varepsilon \) prob event is \(< 1/2^m \)
Lemma: Let \(\varepsilon \) be a constant, \(0 < \varepsilon < 1/2 \), let \(k \in \mathbb{N} \). If \(M_1 \) has error \(1/2 - \varepsilon \) and runs in \(t(n) \) time then there is an equivalent machine \(M_2 \) such that \(M_2 \) has error \(< 1/2^n^k \) and runs in \(O(n^k \cdot t(n)/\varepsilon^2) \) time.

Proof Idea:

On input \(w \), \(M_2 \) runs \(M_1 \) on \(w \) for \(m = 10 \cdot n^k/\varepsilon^2 \) random independent trials, records the \(m \) answers of \(M_1 \) on \(w \), returns most popular answer (accept or reject).

Define indicator \(X_i = 1 \) iff \(M_1 \) outputs right answer in trial \(i \). Set \(X = \sum_i X_i \). Then \(E[X] = \sum_i E[X_i] \geq (1/2 + \varepsilon)m \).

Show: \(\Pr[M_2 \text{ outputs wrong}] = \Pr[X < m/2] < 1/2^{\varepsilon^2 m/10} \).
BPP = Bounded Probabilistic P

BPP = \{L \mid L \text{ is recognized by a probabilistic polynomial-time TM with error at most } 1/3 \}

Why 1/3?

It doesn’t matter what error value we pick, as long as the error is smaller than \(1/2 - 1/n^k\) for some constant \(k\).

When the error is smaller than 1/2, we can apply the error reduction lemma and get \(1/2^{n^c}\) error.
Checking Matrix Multiplication

CHECK = \{ (M_1,M_2,N) \mid M_1, M_2 and N are matrices and \(M_1 \cdot M_2 = N \) \}

If \(M_1 \) and \(M_2 \) are \(n \times n \) matrices, computing \(M_1 \cdot M_2 \) takes \(O(n^3) \) time normally, and \(O(n^{2.373}) \) time using very sophisticated methods.

Here is an \(O(n^2) \)-time randomized algorithm for CHECK:

Pick a \(0-1 \) bit vector \(r \) at random, test if \(M_1 \cdot M_2r = Nr \)

Claim: If \(M_1 \cdot M_2 = N \), then \(\Pr [M_1 \cdot M_2r = Nr] = 1 \)
If \(M_1 \cdot M_2 \neq N \), then \(\Pr [M_1 \cdot M_2r = Nr] \leq 1/2 \)

WHY?
Checking Matrix Multiplication

CHECK = \{ (M_1, M_2, N) \mid M_1, M_2 and N are matrices and M_1 \cdot M_2 = N \}\}

If M_1 and M_2 are n x n matrices, computing M_1 \cdot M_2 takes O(n^3) time normally, and O(n^{2.373}) time using very sophisticated methods.

Here is an O(n^2)-time randomized algorithm for CHECK:

Pick a 0-1 bit vector r at random, test if M_1 \cdot M_2 r = Nr

Claim: If M_1 \cdot M_2 = N, then Pr \{M_1 \cdot M_2 r = Nr \} = 1
If M_1 \cdot M_2 \neq N, then Pr \{M_1 \cdot M_2 r = Nr \} \leq 1/2

If we pick 20 random vectors and test them all, what is the probability of incorrect output? \(1/2^{20} < 0.000001\)
Checking Matrix Multiplication

CHECK = \{ (M_1,M_2,N) \mid M_1, M_2 and N are matrices and M_1 \cdot M_2 = N \}

Pick a 0-1 bit vector r at random, test if M_1 \cdot M_2 r = Nr

Claim: If M_1 \cdot M_2 \neq N, then Pr [M_1 \cdot M_2 r = Nr] \leq 1/2

Proof: Define M' = N – (M_1 \cdot M_2). M' is a non-zero matrix. Some row M'_i is non-zero, some entry M'_{i,j} is non-zero.

Want: Pr[M'r = \vec{0}] \leq 1/2

We have: Pr[M'r = \vec{0}] \leq Pr[<M'_i,r> = 0]

= Pr[\sum_k M'_{i,k} \cdot r_k = 0] (def of inner product)

= Pr[r_k = (\sum_{k \neq j} M'_{i,k} \cdot r_k)/M'_{i,j}] \leq 1/2

Why \leq 1/2? After everything else is assigned on RHS, there is at most one value of r_k that satisfies the equation!
An arithmetic formula is like a Boolean formula, except it has +, −, and * instead of OR, NOT, AND.

\[\text{ZERO-POLY} = \{ p \mid p \text{ is an arithmetic formula that is identically zero} \} \]

Identically zero means: all coefficients are 0

Two examples of polynomials in ZERO-POLY:

\[(x + y) \cdot (x + y) - x \cdot x - y \cdot y - 2 \cdot x \cdot y\]

Abbreviate as: \((x + y)^2 - x^2 - y^2 - 2xy\)

\[(x^2 + a^2) \cdot (y^2 + b^2) - (x \cdot y - a \cdot b)^2 - (x \cdot b + a \cdot y)^2\]

There is a rich history of polynomial identities in mathematics. Useful also in program testing!
Testing Univariate Polynomials

Let $p(x)$ be a polynomial in one variable over \mathbb{Z}

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_d x^d$$

Suppose p is hidden in a black box – we can only see its inputs and outputs.
Want to determine if p is identically 0

Simply evaluate p on $d+1$ distinct values!
Non-zero degree d polynomials have $\leq d$ roots.
But the zero polynomial has every value as a root.
Testing Multivariate Polynomials

Let $p(x_1,\ldots,x_n)$ be a polynomial in n variables over \mathbb{Z}.

Suppose $p(x_1,\ldots,x_n)$ is given to us, but as a very complicated arithmetic formula. Can we efficiently determine if p is identically 0?

If $p(x_1,\ldots,x_n)$ is a product of m polynomials, each of which is a polynomial in t terms, $\prod_m(\sum_t stuff)$

Then expanding the expression into a \sum of \prod could take t^m time!

Big Idea: Evaluate p on random values
Theorem (Schwartz-Zippel-DeMillo-Lipton)

Let $p(x_1, x_2, \ldots, x_n)$ be a nonzero polynomial, where each x_i has degree at most d. Let $F \subset \mathbb{Z}$ be finite.

If a_1, \ldots, a_m are selected randomly from F, then:

$$\Pr \left[p(a_1, \ldots, a_m) = 0 \right] \leq \frac{dn}{|F|}$$

Proof (by induction on n):

Base Case ($n = 1$):

$$\Pr \left[p(a_1) = 0 \right] \leq \frac{d}{|F|}$$

Nonzero polynomials of degree d have most d roots, so at most d elements in F can make p zero
Inductive Step (n > 1): Assume true for n-1 and prove for n

Let \(p(x_1,\ldots,x_n) \) be not identically zero.

Write: \(p(x_1,\ldots,x_n) = p_0 + x_n p_1 + x_n^2 p_2 + \ldots + x_n^d p_d \)

where \(x_n \) does not occur in any \(p_i(x_1,\ldots,x_{n-1}) \)

Observe: At least one \(p_i \) is not identically zero

Suppose \(p(a_1,\ldots,a_n) = 0 \). Let \(q(x_n) = p(a_1,\ldots,a_{n-1},x_n) \). Two cases:

(1) \(q \equiv 0 \). That is, for all \(j \), \(p_j(a_1,\ldots,a_{n-1}) = 0 \) (including \(p_i \))

\[\Pr[(1)] \leq \Pr[p_i(a_1,\ldots,a_{n-1}) = 0] \leq (n-1)d/|F| \] by induction

(2) \(q \) is not identically zero, but \(q(a_n) = 0 \).

Note \(q \) is a univariate degree-d polynomial!

\[\Pr[(2)] \leq \Pr[q(a_n) = 0] \leq d/|F| \] by univariate case

\[\Pr[(1) \text{ or } (2)] \leq \Pr[(1)] + \Pr[(2)] \leq nd/|F| \]
ZERO-POLY = \{ p \mid p \text{ is an arithmetic formula that is identically zero}\}

Theorem: ZERO-POLY \in BPP

Proof: Suppose \(n = |p| \). Then \(p \) has \(k \leq n \) variables, and the degree of each variable is at most \(n \).

Algorithm A: Given polynomial \(p \),
For all \(i = 1, \ldots, k \), choose \(r_i \) randomly from \(\{1, \ldots, 3n^2\} \)
If \(p(r_1, \ldots, r_k) = 0 \) then output \text{zero}
else output \text{nonzero}

Observe A runs in polynomial time.

If \(p \equiv 0 \), then \(\Pr[A(p) \text{ outputs zero}] = 1 \)
If \(p \not\equiv 0 \), then by the Schwartz-Zippel lemma,
\(\Pr[A(p) \text{ outputs zero}] = \Pr_r[p(r) = 0] \leq n^2/3n^2 \leq 1/3 \)
Checking Equivalence of Arithmetic Formulas

ZERO-POLY = \{ p \mid p \text{ is an arithmetic formula that is identically zero}\}

Theorem: ZERO-POLY \in BPP

EQUIV-POLY = \{ (p,q) \mid p \text{ and } q \text{ are arithmetic formulas computing the same polynomial}\}

Corollary: EQUIV-POLY \in BPP

Proof: (p,q) \in EQUIV-POLY \iff p-q \in ZERO-POLY

Therefore EQUIV-POLY \leq_P ZERO-POLY

and we get a BPP algorithm for EQUIV-POLY.

See Sipser 10.2 for an application to testing equivalence of simple programs!
Equivalence of Arithmetic Formulas

EQUIV-POLY = \{ (p,q) \mid p \text{ and } q \text{ are arithmetic formulas computing the same polynomial} \}

Corollary: \text{EQUIV-POLY} \in \text{BPP}

There is a big contrast with Boolean formulas!

EQUIV = \{ (\phi,\psi) \mid \phi \text{ and } \psi \text{ are Boolean formulas computing the same function} \}

We showed \text{EQUIV} is in \text{coNP}. It’s also \text{coNP}-complete!

\text{TAUTOLOGY} \leq_P \text{EQUIV}: \text{map } \phi \text{ to } (\phi, T)
Theorem: ZERO-POLY \in BPP

ZERO-POLY = \{ \ p \mid p \text{ is an arithmetic formula that is identically zero}\}

It is not known how to solve ZERO-POLY efficiently \textit{without} randomness!

Thm [KI’04, AvM’11] IF ZERO-POLY \in P THEN NEW \textit{LOWER BOUNDS FOLLOW} (not P \neq NP, but still a breakthrough!)
BPP = \{ L \mid L \text{ is recognized by a probabilistic polynomial-time TM with error at most } 1/3 \}

Is BPP \subseteq NP?

THIS IS AN OPEN QUESTION!
Is $\text{BPP} \subseteq \text{PSPACE}$?

Yes! Run through all possible sequences of coin flips one at a time, and count the number of branches that accept.

Known: $\text{BPP} \subseteq \text{NP}^{\text{NP}}$ and $\text{BPP} \subseteq \text{coNP}^{\text{NP}}$, but $\text{BPP} \subseteq \text{P}^{\text{NP}}$ is still open!
Is \(NP \subseteq BPP \)?

THIS IS AN OPEN QUESTION!