6.045

Automata, Computability, and
Complexity

csail.mit.edu/~rrw/6.045-2020

INSTRUCTORS & TAs

Ryan Williams

Brynmor Chapman Dylan McKay

' B s

¥
!.I
) .
)
,- ' '-.
R « - .
> . N 7\
>
~ 3~

Recitations and Office Hours

Recitations on Fridays
Dylan: 11am-noon (66-144)
Brynmor: 1pm-2pm (4-153)

You're not required to attend recitations...
But it is strongly recommended
Attending lectures is also strongly recommended!

Office Hours (tentative):
Brynmor: Monday 4pm-6pm (Stata, G5 Lounge)
Dylan: Tuesday 4pm-6pm (Stata, G5 Lounge)
Ryan: Wednesday 10:30am-12:30, 32-G638

Textbook(s)

OXFORD

THE NATURE of
COMPUTATION

i

Intrg

ComruT

| {

:'.\' '.r:.'."'.' ol
INISN
4 ! !

N\ 4
Jesond. joattion

MICHAEL SIPSER
Cristopher Moore & Stephan Mertens

MICHAEL SIPSER

Grades

B Homework
W Final
W Midterm

Class participation also counts

Homework / Problem Sets / Psets / Pests

Homework will be assigned on most Wednesdays and
will be due one week later, at 11:59pm (<=9 psets)

No late days allowed (except from S"3) but
your lowest homework grade will be dropped

Use a word processor for written parts of
assignments! We strongly recommend LaTeX

(You can scan any drawn figures and include in the PDF)

We will provide LaTeX source code for every
homework assignment - fill it in with your answers!

Collaboration Policy

You may collaborate with others, but you must:

e Try to solve all problems by yourself first

* List your collaborators on each problem

* Write your own solutions

* If you receive a significant idea from a source,

you must acknowledge the source in your
solution.

6.045: Automata, Computability, X = =+

&« > C 0O @ people.csail.mitedu/rrw/6.045-2020/index.htm

6.045 - Automata, Computability, and Complexity Theory - Spring 2020

® MIN-FORMULA

[General Info] [Lectures] [Homeworks] [Exams]

Announcements on Piazza

Introduction

What is computation? Given a definition of a computational model, what problems can we hope to solve in principle with this model?
Besides those solvable in principle, what problems can we hope to efficiently solve? This course provides a mathematical introduction
to these questions. In many cases we can give completely rigorous answers; in other cases, these questions have become major
open problems in both pure and applied mathematics!

By the end of this course, students will be able to classify computational problems given to them, in terms of their computational
complexity (Is the problem regular? Not regular? Decidable? Recognizable? Neither? Solvable in P? NP-complete? PSPACE-
complete?, etc.) They will also gain a deeper appreciation for some of the fundamental issues in computing that are independent of

piazza.com

Q&A Resources Statistics Manage Class

Massachusetts Institute of Technology (MIT) - Spring 2020

6.045: Automata, Computability, & Complexity

+ Add Syllabus

v
Course Information Staff Resources
Description /7 Edt Announcements + Add
What is computation? Given a definition of a computational model, what
problems can we hope to solve in principle with this model? Besides those Add arn Ainnlouncemem
solvable in principle, what problems can we hope to efficiently solve? This Click the Add button to add an announcement

course provides a mathematical introduction to these questions. In many cases
we can give completely rigorous answers; in other cases, these questions have
become major open problems in both pure and applied mathematics!

By the end of this course, students will be able to classify computational
problems given to them, in terms of their computational complexity (Is the
problem regular? Nof regular? Decidable? Recognizable? Neither? Solvable in
P? NP-complete? PSPACE-complete?, etc.) They will also gain a deeper
appreciation for some of the fundamental issues in computing that are
independent of trends of technology, such as the Church-Turing Thesis and the
P versus NP problem. Prerequisites: 6.042 or equivalent mathematical maturity.

General Information 7 Edit

Webpage
https://people.csail.mit.edu/rrw/6.045-2020/index.html

Copyright © 2017 Piazza Technologies, Inc. All Rights Reserved

This class is about the
theory of computation

What is computation?
What can and cannot be computed?
What can be efficiently computed?

Philosophy, mathematics, and engineering

Why take this class?

new ways of thinking about computing
different models, different perspectives

theory often drives practice

mathematical models of computation predated computers
(present-day example: we “know” a lot about quantum computing,
but no large-scale quantum computers have been built yet!)

math is good for you!
defs, thms, and pfs... yum yum

some of the most important math of this century and last!

timelessness \-,

Course QOutline

1. Finite Automata: Simple Models

DFAs, NFAs, regular languages, regular expressions, proving no DFA
exists (non-regular languages), Myhill-Nerode Theorem, computing
the minimum DFA, streaming algorithms, communication complexity

2. Computability Theory: Powerful Models

Turing Machines, Universal Models and the Church-Turing Thesis,
decidable/recognizable languages, undecidability, reductions and
oracles, Rice’s theorem, Kolmogorov Complexity, even the
foundations of mathematics (what can and can’t be proved)...

3. Complexity Theory: Time and Space Bounded Models

time complexity, classes P and NP, NP-completeness, polynomial
time with oracles, space complexity, PSPACE, PSPACE-completeness,

randomized complexity theory, other topics TBA

This class will emphasize

MATHEMATICAL PROOFS

A good proof should be:
Clear -- easy to understand

Correct

Problem Set 0 will help you calibrate
yourself: watch for it!
(Should take under an hour to do)

In writing mathematical proofs, it can be very
helpful to provide three levels of detail

1 First level: a short phrase/sentence giving
“hints” of the proof

(e.g. “Proof by contradiction,” “Proof by induction,”
“Pick the thing at random”)

[Second level: a short, one paragraph
description of the main ideas

1 Third level: the full proof (and nothing but the proof)

Prof. Sipser wrote his much of his book in this way.
| encourage you to write your solutions in this way!

Let’s do an example.
Suppose A — {1, 2, ..., 2n} with |A]| =n+1

TRUE or FALSE?
There are always two numbers x, y in A such

that x divides y

TRUE

Example: A c {1, 2, 3,4} and |A|=3 (the case of n=2)
If 1isin A, then 1 divides every number.
If 1isn’tin A, then A ={2,3,4}, and 2 divides 4

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop 6 pigeons in 5 holes,
then at least one hole will have
more than one pigeon

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop 6 pigeons in 5 holes,
then at least one hole will have
more than one pigeon

LEVEL 1 “We’ll use the Pigeonhole Principle”

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop n+1 pigeons in n holes
then at least one hole will have
more than one pigeon

HINT 2:

Every integer a can be written as
a = 2Xm, where m is an odd number (k is an integer)
Call m the “odd part” of a

Examples: The odd part of 3 is 3.
Odd part of 8 is 1. Odd part of 12 is 3.

LEVEL 2

Proof Idea:

Given Ac{], 2, ..., 2n}and |A| = n+1
Applying the pigeonhole principle,
we’ll show there are elements a, and a, of A

such that a, = 2'm and a, = 2Im
for some odd m and integersi < j

Then a, divides a,

LEVEL 3 PrOOf'
Suppose A {1, 2, ..., 2n} with |A| = n+1

Write each element of A in the form a = 2km
where m is an odd numberin{3], ..., 2n}

Note: There are n odd numbers in {3, ..., 2n}

Since |A| = n+1, there are two distinct
numbers in A with the same odd part, by P.H.P.

Let a, and a, have the same odd part m, where
a, <a,.Then a; =2'm and a, = 22’m where i < j,
so a, divides a,. QED

What'’s the right level of detail in a proof?

During lectures, my proofs will generally contain
the first two levels, but only part of the third
(TAs will guide you through some “third levels”)

Think about how to fill in the details!

You aren’t required to do this (except on certain
problems in homework/exams) but it can really
help you learn.

In this course, it’s often the case that the big ideas
and concepts are more important than gritty details!

Come by office hours or ask (privately) on piazza
if you worry about your level of detail in a proof!

Deterministic Finite Automata

=
()
©
)
@)
=

Anatomy of Deterministic Finite Automata

transition: for every state and alphabet symbol

states — accept/final states

/
start state (q,) _ states

directed graph, possibly with self-loops

from left to right

The automaton accepts the input string
if this process ends in a double-circle state

Otherwise, the automaton rejects the string

What strings are
accepted by this DFA?

from left to right

The automaton accepts the input string
if this process ends in a double-circle state

Otherwise, the automaton rejects the string

What strings are
accepted by this DFA?

Strings endingina l

from left to right

The automaton accepts the input string
if this process ends in a double-circle state

Otherwise, the automaton rejects the string

'-! Let’s make this more formal...
An alphabet Z is a finite set (e.g., Z = {0,1})
A string over 2 is a finite sequence of elements of 2
2* = the set of all strings over 2

For a string x, | x| is the length of x
(number of letters in x)

The unique string of length 0 is denoted by ¢
and is called the empty string

A language over 2 is a set of strings over 2
In other words: alanguage is a subset of Z*

Languages = Problems

A language over Z is a set of strings over 2
In other words: a language is a subset of Z*

Problem: Given a string x, is x in the language?

Languages = Functions that take a string as
input, and output a single bit

Thm: Every language L over 2 uniquely
corresponds to a function f: Z* > {0,1}.

Proof Idea: Given L, define f such that:
fix)=1 ifxel
=0 otherwise

Languages = Problems

A language over Z is a set of strings over 2
In other words: a language is a subset of Z*

Problem: Given a string x, is x in the language?

Languages = Functions that take a string as
input, and output a single bit

Thm: Every language L over 2 uniquely
corresponds to a function f: Z* > {0,1}.

Proof Idea: Given f, define L={x | f(x) = 1}

Definition. A DFA is a 5-tuple M =(Q, Z, 9, q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)

0 :Q x Z— Q isthe transition function
d, € Qis the start state
F — Qis the set of accept/final states

letw,, ..., w, e Zand w=w,---w,_ € 2¥
M accepts w if there arer,, ry, ..., r, € Q, s.t.

Fo= 4o
* o(r.,w)=r foralli=1,..., n, and

* IhE F M rejects w iff M does not accept w

Definition. A DFA is a 5-tuple M =(Q, Z, 9, q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)

0 :Q x Z— Q isthe transition function
d, € Qis the start state
F — Qis the set of accept/final states

= W, e *
letw,,...,w, e Zand w=w;---w, €2

M accepts w if the (unique) path starting from q,
with edge labels w,, ..., w_ends in a state in F.

‘ M rejects w iff M does not accept w \

=(Q, £, §, q,, F) where Q ={q,, d,, d,, 9z}

T ={0,1}

d:Q x X — Q transition function

do € Q is start state

F ={q,, q,}

[

m/‘\
\ /
/'

0 0 1

Y Yo d1
9 Yo 92
92 ds 92
ds Yo 92

*

A DFAis a 5-tuple M = (Q, 2, §, q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)

0:QxZXZ— Q isthe transition function
do, € Qs the start state

F < Qis the set of accept/final states

The problem “solved” by the DFA M is:

L(M) = set of all strings that M accepts
= “the language recognized by M”
= the function computed by M

L(M) = {w | wbegins with 1}

- @D

L(M) = {0,1}*

R Q o

L(M) = &

0 0

1
~-O0=QO
1
L(M) = {w | w has an odd number of 1s}

How would you prove this?

Q y qo, F 510 1
M = ({p,q}, {0,1}, 3, p, {q}) Pl P d

m 1 Theorem:
o\ @ L(M) = {w | w has odd
1 number of 1s }

Proof: By induction on n, the length of a string.
Base Case n=0:€ ¢ Land € g L(M)

Induction Hypothesis: Suppose for all w € 2%, |w| =n,
M accepts w <~ w has odd number of 1s

Every string of length n+1 has the form w0 or wl, |w]|=n

Show that after reading w0 or w1, M correctly

accepts/rejects. Use Induction Hypothesis!

<your case analysis goes here...>

Build a DFA that accepts exactly the strings
containing 001

0,1

e AYNA.
MO ONOM

Can we use fewer states? No! But why...?

1 0

The Problems Solved by DFAs

Definition: A language L is reqgular if

L' is recognized by a DFA;
that is, there is a DFA M where L' = L(M).

L' ={w | wcontains 001} is regular
L' ={ w | w begins with a 1} is regular

L' ={w | w has an odd number of 1s} is regular

IBM JOURNAL APRIL 1959

Turing Award winning paper

M. O. Rabin*
D. Scottt

Finite Automata and Their Decision Problemsi

Abstract: Finite automata are considered in this paper as instruments for classifying finite tapes. Each one-

tape automaton defines a set of tapes, a two-tape automaton defines a set of pairs of tapes, et cetera. The
structure of the defined sets is studied. Various generalizations of the notion of an automaton are introduced

and their relation to the classical automata is determined. Some decision problems concerning automata are

shown to be solvable by effective algorithms; others turn out to be unsolvable by algorithms.

Introduction

Turing machines are widely considered to be the abstract
prototype of digital computers; workers in the field, how-
ever, have felt more and more that the notion of a Turing
machine is too general to serve as an accurate model of
actual computers, It is well known that even for simple
calculations it is impossible to give an a priori upper
bound on the amount of tape a Turing machine will need
for any given computation. It is precisely this feature that
renders Turing’s concept unrealistic.

In the last few years the idea of a finite automaton has
appeared in the literature. These are machines having

a method of viewing automata but have retained through-
out a machine-like formalism that permits direct com-
parison with Turing machines. A neat form of the defini-
tion of automata has been used by Burks and Wang!
and by E. F. Moore,* and our point of view is closer to
theirs than it is to the formalism of nerve-nets. However,
we have adopted an even simpler form of the definition
by doing away with a complicated output function and
having our machines simply give “yes” or “no” answers.
This was also used by Myhill, but our generalizations to
the “nondeterministic,” “two-way,” and “many-tape”

[24 —
ie construction of 9 and we shall

stail,

ces of words S;=(ay.as....,4a,)
b.) then P(a,a.,...,a) \P(b,,
1 only if the Post correspondence
» has a solution. Since the corre-
not effectively solvable it follows
ther

To(A(by, b))+

Theorem 19. THere is no epective merthod o] deciamg
whether the set of tapes definable by a two-tape, two-
way aulomaion is empty or not.

An argument similar to the above one will show that
the class of sets of pairs of tapes definable by two-way,
two-tape automata is closed under Boolean operations.
In view of Theorem 17, this implies that there are sets
definable by two-way automata which are not definable
by any one-way automaton; thus no analogue to Theo-
rem 135 holds.

ble.

lape automata

‘way, two-tape automata we fin
constructive decision processes i
sible to decide, by a constructiv
icable to all automata, whether &
chine accepts any tapes. To prov
yurse, necessary to give the explici
y machine. We shall not give thq
¢ are long and not very much dif
Il definitions needed for two-way
¢ main point is that, as with thg
omaton, the table of moves of ¢
itomaton sometimes requires the
om the scanned square. However
“should clarify the method.

that there is no constructive deci

References

1. A. W. Burks and Hao Wang, “The logic of automata,”
Journal of the Association for Computing Machinery, 4,
193-218 and 279-297 (1957).

2. S. C. Kleene, “Representation of events in nerve nets and
finite automata,” Automata Studies, Princeton, pp. 3-41,
(1956).

3. W. S, McCulloch and E. Pitts, “A logical calculus of the

ideas imminent in nervous activity,” Bulletin of Mathe-
matical Biophysics, 5, 115-133 (19413).

4. E. F. Moore, "Gedanken-experiments on sequential ma-
chines,” Automata Studies, Princeton, pp. 129-153 (1956).

5. A. Nerode, “Linear automaton transformations,” Pro-
ceedings of the American Mathematical Society, 9, 541-
544 (1958).

6. E. Post, “A variant of a recursively unsolvable problem,”
Bulletin of the American Mathematical Society, 52, 264-
268 (1946).

7. J. C. Shepherdson, “The reduction of two-way automata
1o one-way automata,” IBM Journal, 3, 198-200 (1959).

Revised manuscript received August 8, 1958

125

Union Theorem for Regular Languages

Given two languages L, and L,
recall that the union of L, and L, is

L,uL,={w|wel,orwel,}

Theorem: The union of two regular
languages is also a regular language

Given two DFAs M and N,
there is a DFA M’ that accepts x
<~ At least one of M or N accepts x

Given two languages that we know to be regular,
how can we make new languages out of them?

Theorem: The union of two regular
languages is also a regular language

Proof: Let

M, =(Q,, Z, 84, 4o, F{) be afinite automaton for L,
and

M, =(Q,, Z, 3,, q’y, F,) be a finite automaton for L,

We want to construct a finite automaton
M= (Q, Z, 5, py, F) that recognizesL=L, UL,

Proof Idea: Run both M, and M, “in parallel”!

M, =(Q,, 2, 34, gy, F{) recognizesL, and
M, =(Q,, Z, 5,, q’y, F,) recognizeslL,

Q = pairs of states, one from M, and one from M,

={(41,9;) |9, € Q;and q, € Q, }
=Q1XQ2

Po = (do» A’0)
F={(d4,9;) |9, €F, OR q, € F,}

o((d4,92), ©) = (64(q4, ©), 6(Ay, ©))

Theorem: The union of two regular
languages is also a regular language

0
() mO
1
— D — Odd number of 0’s
1

Even number of 1’s m (E S\

0

0

Even number of 1’'s OR Odd number of 0’s

