6.045
Automata, Computability, and Complexity

csail.mit.edu/~rrw/6.045-2020
INSTRUCTORS & TAs

Ryan Williams

Brynmor Chapman

Dylan McKay
Recitations and Office Hours

Recitations on Fridays
Dylan: 11am-noon *(66-144)*
Brynmor: 1pm-2pm *(4-153)*

You’re not required to attend recitations...
But it is *strongly* recommended
Attending lectures is also strongly recommended!

Office Hours (tentative):
Brynmor: Monday 4pm-6pm *(Stata, G5 Lounge)*
Dylan: Tuesday 4pm-6pm *(Stata, G5 Lounge)*
Ryan: Wednesday 10:30am-12:30, *32-G638*
Textbook(s)
Grades

- Homework: ~40%
- Final: ~35%
- Midterm: ~25%

Class participation also counts
Homework / Problem Sets / Psets / Pests

Homework will be assigned on most Wednesdays and will be due one week later, at 11:59pm (<= 9 psets)

No late days allowed (except from S^3) but your lowest homework grade will be dropped

Use a word processor for written parts of assignments! We strongly recommend LaTeX

(You can scan any drawn figures and include in the PDF)

We will provide LaTeX source code for every homework assignment – fill it in with your answers!
Collaboration Policy

You may collaborate with others, but you must:

• *Try to solve all problems by yourself first*
• List your collaborators on each problem
• *Write your own solutions*
• If you receive a significant idea from a source, you must *acknowledge the source* in your solution.
Introduction

What is computation? Given a definition of a computational model, what problems can we hope to solve in principle with this model? Besides those solvable in principle, what problems can we hope to efficiently solve? This course provides a mathematical introduction to these questions. In many cases we can give completely rigorous answers; in other cases, these questions have become major open problems in both pure and applied mathematics!

By the end of this course, students will be able to classify computational problems given to them, in terms of their computational complexity (Is the problem regular? Not regular? Decidable? Recognizable? Neither? Solvable in P? NP-complete? PSPACE-complete?, etc.) They will also gain a deeper appreciation for some of the fundamental issues in computing that are independent of
Massachusetts Institute of Technology (MIT) - Spring 2020

6.045: Automata, Computability, & Complexity

Description

What is computation? Given a definition of a computational model, what problems can we hope to solve in principle with this model? Besides those solvable in principle, what problems can we hope to efficiently solve? This course provides a mathematical introduction to these questions. In many cases we can give completely rigorous answers; in other cases, these questions have become major open problems in both pure and applied mathematics!

By the end of this course, students will be able to classify computational problems given to them, in terms of their computational complexity (is the problem regular? Not regular? Decidable? Recognizable? Neither? Solvable in P? NP-complete? PSPACE-complete?, etc.) They will also gain a deeper appreciation for some of the fundamental issues in computing that are independent of trends of technology, such as the Church-Turing Thesis and the P versus NP problem. Prerequisites: 6.042 or equivalent mathematical maturity.

General Information

Webpage
This class is about the theory of computation

What is computation?
What can and cannot be computed?
What can be *efficiently* computed?

Philosophy, mathematics, and engineering
Why take this class?

new ways of thinking about computing
different models, different perspectives

timelessness

math is good for you!
defs, thms, and pfs... yum yum

some of the most important math of this century and last!
1. Finite Automata: *Simple* Models
DFAs, NFAs, regular languages, regular expressions, proving no DFA exists (non-regular languages), Myhill-Nerode Theorem, computing the *minimum* DFA, streaming algorithms, communication complexity

2. Computability Theory: *Powerful* Models
Turing Machines, Universal Models and the Church-Turing Thesis, decidable/recognizable languages, undecidability, reductions and oracles, Rice’s theorem, Kolmogorov Complexity, even the foundations of mathematics (what can and can’t be *proved*)...

3. Complexity Theory: Time and Space Bounded Models
time complexity, classes P and NP, NP-completeness, polynomial time with oracles, space complexity, PSPACE, PSPACE-completeness, randomized complexity theory, other topics TBA
This class will emphasize MATHEMATICAL PROOFS

A good proof should be:

- Clear -- easy to understand
- Correct

Problem Set 0 will help you calibrate yourself: watch for it! (Should take under an hour to do)
In writing mathematical proofs, it can be very helpful to provide three levels of detail

- First level: a short phrase/sentence giving “hints” of the proof
 (e.g. “Proof by contradiction,” “Proof by induction,” “Pick the thing at random”)

- Second level: a short, one paragraph description of the main ideas

- Third level: the full proof (and nothing but the proof)

Prof. Sipser wrote much of his book in this way. I encourage you to write your solutions in this way!
Let’s do an example.

Suppose $A \subseteq \{1, 2, ..., 2n\}$ with $|A| = n+1$

TRUE or FALSE?
There are always two numbers x, y in A such that x divides y

TRUE

Example: $A \subseteq \{1, 2, 3, 4\}$ and $|A| = 3$ (the case of $n=2$)
If 1 is in A, then 1 divides every number.
If 1 isn’t in A, then $A = \{2, 3, 4\}$, and 2 divides 4
The Pigeonhole Principle

If you drop 6 pigeons in 5 holes, then at least one hole will have more than one pigeon.
HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop 6 pigeons in 5 holes, then at least one hole will have more than one pigeon
LEVEL 1 “We’ll use the Pigeonhole Principle”

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you drop n+1 pigeons in n holes then at least one hole will have more than one pigeon

HINT 2:

Every integer a can be written as a = 2^km, where m is an odd number (k is an integer) Call m the “odd part” of a

Examples: The odd part of 3 is 3. Odd part of 8 is 1. Odd part of 12 is 3.
Proof Idea:

Given $A \subseteq \{1, 2, ..., 2n\}$ and $|A| = n+1$

Applying the pigeonhole principle, we’ll show there are elements a_1 and a_2 of A such that $a_1 = 2^i m$ and $a_2 = 2^j m$ for some odd m and integers $i < j$

Then a_1 divides a_2
Proof:

Suppose \(A \subseteq \{1, 2, \ldots, 2n\} \) with \(|A| = n+1 \)

Write each element of \(A \) in the form \(a = 2^k m \)
where \(m \) is an odd number in \(\{1, \ldots, 2n\} \)

Note: There are \(n \) odd numbers in \(\{1, \ldots, 2n\} \)

Since \(|A| = n+1 \), there are two distinct numbers in \(A \) with the same odd part, by P.H.P.

Let \(a_1 \) and \(a_2 \) have the same odd part \(m \), where \(a_1 < a_2 \). Then \(a_1 = 2^i m \) and \(a_2 = 2^j m \) where \(i < j \), so \(a_1 \) divides \(a_2 \). QED
What’s the right level of detail in a proof?

During lectures, my proofs will generally contain the first two levels, but only part of the third (TAs will guide you through some “third levels”)

Think about how to fill in the details!
You aren’t required to do this (except on certain problems in homework/exams) but it can really help you learn.

In this course, it’s often the case that the big ideas and concepts are more important than gritty details!

Come by office hours or ask (privately) on piazza if you worry about your level of detail in a proof!
Deterministic Finite Automata

(not a DFA)
Anatomy of Deterministic Finite Automata

transition: *for every state and alphabet symbol*

directed graph, possibly with self-loops
The automaton accepts the input string if this process ends in a double-circle state.

Otherwise, the automaton rejects the string.

The DFA reads its string from left to right.
The automaton accepts the input string if this process ends in a double-circle state. Otherwise, the automaton rejects the string.

What strings are accepted by this DFA?

The DFA reads its string from left to right.
What strings are accepted by this DFA?

Strings ending in a 1

The DFA reads its string from left to right

The automaton accepts the input string if this process ends in a double-circle state.

Otherwise, the automaton rejects the string.
Let’s make this more formal...

An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite sequence of elements of Σ

$\Sigma^* = \text{the set of all strings over } \Sigma$

For a string x, $|x|$ is the length of x

(number of letters in x)

The unique string of length 0 is denoted by ε

and is called the empty string

A language over Σ is a set of strings over Σ

In other words: a language is a subset of Σ^*
Languages = Problems

A language over Σ is a set of strings over Σ

In other words: a language is a subset of Σ^*

Problem: Given a string x, is x in the language?

Languages \equiv Functions that take a string as input, and output a single bit

Thm: Every language L over Σ uniquely corresponds to a function $f : \Sigma^* \to \{0,1\}$.

Proof Idea: Given L, define f such that:

$$f(x) = 1 \text{ if } x \in L$$

$$= 0 \text{ otherwise}$$
Languages = Problems

A language over Σ is a set of strings over Σ

In other words: a language is a subset of Σ^*

Problem: Given a string x, is x in the language?

$Languages \equiv Functions$ that take a string as input, and output a single bit

Thm: Every language L over Σ uniquely corresponds to a function $f : \Sigma^* \to \{0,1\}$.

Proof Idea: Given f, define $L = \{x \mid f(x) = 1\}$
Definition. A DFA is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is the set of states (finite)
- \(\Sigma \) is the alphabet (finite)
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept/final states

Let \(w_1, \ldots, w_n \in \Sigma \) and \(w = w_1 \cdots w_n \in \Sigma^* \)

\(M \) accepts \(w \) if there are \(r_0, r_1, \ldots, r_n \in Q \), s.t.

- \(r_0 = q_0 \)
- \(\delta(r_{i-1}, w_i) = r_i \) for all \(i = 1, \ldots, n \), and
- \(r_n \in F \)

\(M \) rejects \(w \) iff \(M \) does not accept \(w \).
Definition. A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states (finite)
- Σ is the alphabet (finite)
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept/final states

Let $w_1, \ldots, w_n \in \Sigma$ and $w = w_1 \cdots w_n \in \Sigma^*$

M accepts w if the (unique) path starting from q_0
with edge labels w_1, \ldots, w_n ends in a state in F.

M rejects w iff M does not accept w.
\[M = (Q, \Sigma, \delta, q_0, F) \] where

\[Q = \{ q_0, q_1, q_2, q_3 \} \]

\[\Sigma = \{0, 1\} \]

\[\delta : Q \times \Sigma \rightarrow Q \text{ transition function} \]

\[q_0 \in Q \text{ is start state} \]

\[F = \{ q_1, q_2 \} \]

\[
\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_0 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_0 & q_2 \\
\end{array}
\]
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states (finite)
- Σ is the alphabet (finite)
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept/final states

The problem “solved” by the DFA M is:

$L(M) = \text{set of all strings that } M \text{ accepts}$

= “the language recognized by M”

$\equiv \text{the function computed by } M$
$L(M) = \{ w \mid w \text{ begins with 1}\}$
\[L(M) = \{0,1\}^* \]
$L(M) = \emptyset$
L(M) = \{ w \mid w \text{ has an odd number of 1s}\}

How would you prove this?
Theorem: \(L(M) = \{w \mid w \text{ has odd number of 1s} \} \)

Proof: By induction on \(n \), the length of a string.

Base Case \(n=0 \): \(\varepsilon \notin L \) and \(\varepsilon \notin L(M) \)

Induction Hypothesis: Suppose for all \(w \in \Sigma^* , |w| = n \),

\(M \) accepts \(w \) \(\iff \) \(w \) has odd number of 1s

Every string of length \(n+1 \) has the form \(w0 \) or \(w1 , |w|=n \)

Show that after reading \(w0 \) or \(w1 \), \(M \) correctly accepts/rejects. Use Induction Hypothesis!

<your case analysis goes here...>
Build a DFA that accepts exactly the strings containing 001

Can we use fewer states? No! But why...?
The Problems Solved by DFAs

Definition: A language \(L' \) is *regular* if
\(L' \) is recognized by a DFA;
that is, there is a DFA \(M \) where \(L' = L(M) \).

\[
\begin{align*}
L' &= \{ w \mid w \text{ contains } 001 \} \text{ is regular} \\
L' &= \{ w \mid w \text{ begins with a } 1 \} \text{ is regular} \\
L' &= \{ w \mid w \text{ has an odd number of 1s} \} \text{ is regular}
\end{align*}
\]
Finite Automata and Their Decision Problems

Abstract: Finite automata are considered in this paper as instruments for classifying finite tapes. Each one-tape automaton defines a set of tapes, a two-tape automaton defines a set of pairs of tapes, et cetera. The structure of the defined sets is studied. Various generalizations of the notion of an automaton are introduced and their relation to the classical automata is determined. Some decision problems concerning automata are shown to be solvable by effective algorithms; others turn out to be unsolvable by algorithms.

Introduction

Turing machines are widely considered to be the abstract prototype of digital computers; workers in the field, however, have felt more and more that the notion of a Turing machine is too general to serve as an accurate model of actual computers. It is well known that even for simple calculations it is impossible to give an a priori upper bound on the amount of tape a Turing machine will need for any given computation. It is precisely this feature that renders Turing's concept unrealistic.

In the last few years the idea of a finite automaton has appeared in the literature. These are machines having a method of viewing automata but have retained throughout a machine-like formalism that permits direct comparison with Turing machines. A neat form of the definition of automata has been used by Burks and Wang\(^1\) and by E. F. Moore,\(^4\) and our point of view is closer to theirs than it is to the formalism of nerve-nets. However, we have adopted an even simpler form of the definition by doing away with a complicated output function and having our machines simply give "yes" or "no" answers. This was also used by Myhill, but our generalizations to the "nondeterministic," "two-way," and "many-tape"
The construction of \mathcal{A} and we shall detail.

Given words $S_1 = (a_1, a_2, \ldots, a_n)$ and $S_2 = (b_1, b_2, \ldots, b_n)$ then $P(a_1, a_2, \ldots, a_n) \cap P(b_1, b_2, \ldots, b_n)$ only if the Post correspondence problem has a solution. Since the correspondence is not effectively solvable it follows that

$$T_2(\mathcal{A}(b_1, \ldots, b_n)) \equiv \phi$$

Theorem 19. There is no effective method of deciding whether the set of tapes definable by a two-tape, two-way automaton is empty or not.

An argument similar to the above one will show that the class of sets of pairs of tapes definable by two-way, two-tape automata is closed under Boolean operations. In view of Theorem 17, this implies that there are sets definable by two-way automata which are not definable by any one-way automaton; thus no analogue to Theorem 15 holds.

References

Revised manuscript received August 8, 1958
Union Theorem for Regular Languages

Given two languages L_1 and L_2
recall that the union of L_1 and L_2 is

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$$

Theorem: The union of two regular languages is also a regular language

Given two DFAs M and N,
there is a DFA M' that accepts x
\iff At least one of M or N accepts x

Given two languages that we know to be regular,
how can we make new languages out of them?
Theorem: The union of two regular languages is also a regular language

Proof: Let
\[M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1) \] be a finite automaton for \(L_1 \) and
\[M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2) \] be a finite automaton for \(L_2 \)

We want to construct a finite automaton \(M = (Q, \Sigma, \delta, p_0, F) \) that recognizes \(L = L_1 \cup L_2 \)
Proof Idea: Run both M_1 and M_2 “in parallel”!

$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ recognizes L_1 and
$M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ recognizes L_2

$Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2$

$= \{ (q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$
$= Q_1 \times Q_2$

$p_0 = (q_0, q'_0)$

$F = \{ (q_1, q_2) | q_1 \in F_1 \text{ OR } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$
Theorem: The union of two regular languages is also a regular language.

Even number of 1’s

Odd number of 0’s
Even number of 1’s OR Odd number of 0’s