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Lecture 11:
Fun With Undecidability!

6.045
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Announcements

- If MIT is denying you resources you need 
and you’re running out of options,

please contact me personally. 

- Pset now due Monday March 30: we will 
release pset solutions immediately after that
- For now, midterm is still Thursday April 2
- Practice midterm + solutions out tonight!

- There is candy!
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ATM = { ⟨M, w⟩ | M is a TM that accepts string w }

The Acceptance Problem for TMs

Theorem [Turing]:
ATM is recognizable, but NOT decidable!

Given: code of a Turing machine M and
an input w for that Turing machine,

Decide: Does M accept w?

ATM decidable ⇒ There is an algorithm ALG which, 
given any code and input, 

ALG determines in finite time 
if the code will stop and accept the input
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w  L ?

accept reject

TM

yes no

w  Σ*

L is decidable

w  L ?

accept reject or loop

TM

yes no

w  Σ*

L is recognizable 

Theorem: L is decidable
iff both L and L are recognizable
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Theorem: ATM is recognizable but NOT decidable

Corollary: ATM is not recognizable!

Theorem: L is decidable
iff both L and L are recognizable

Theorem: HALTTM is not decidable
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Reducing One Problem to Another

f : Σ* → Σ* is a computable function if 
there is a Turing machine M that halts with
just f(w) written on its tape, for every input w

A language A is mapping reducible to language B, 
written as A ≤m B, if there is a computable 

f : Σ* → Σ* such that for every w ∈ Σ*,

w  A   f(w)  B

f is called a mapping reduction 
(or many-one reduction) from A to B
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Corollary: If A m B and A is undecidable,
then B is undecidable

Corollary: If A m B and A is unrecognizable,
then B is unrecognizable

Theorem: If A m B and B is decidable, 
then  A is decidable

Theorem: If A m B and B is recognizable, 
then  A is recognizable
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Theorem: If A m B and B is decidable, 
then  A is decidable

fw  Σ*

f(w)  Σ*

B
accept/

reject

w  A   f(w)  B

A recipe for proving undecidability! 
To prove B is undecidable, find undecidable A 
and a mapping reduction from A to B.
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A mapping reduction from ATM to HALTTM 

Theorem:  ATM ≤m HALTTM  

f(z) := Decode z into a pair ⟨M, w⟩. Write down
the description of a TM M’ with the spec: 
“M’(w) = Run M on w. 

If M accepts, then accept, else loop forever”
Output the encoding ⟨M’, w⟩

Then, z=⟨M, w⟩ ATM    M accepts w  

M’ halts on w  ⟨M’, w⟩  HALTTM

Corollary:  HALTTM is undecidable
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Theorem:  ATM ≤m HALTTM  

Corollary: : ATM ≤m : HALTTM  

Corollary: : HALTTM is unrecognizable!
Proof: If : HALTTM were recognizable, then 
: ATM would also be recognizable, because 
: ATM ≤m : HALTTM . But : ATM is not!

Question:  ATM ≤m : ATM ?

Theorem: HALTTM m ATM
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Theorem: HALTTM m ATM

Proof: Define a mapping reduction f:

f(z) := Decode z into a pair ⟨M, w⟩
Write down a TM M’ with the specification: 
“M’(w) = Run M on w. If M halts, accept”
Output ⟨M’, w⟩

Observe z=(M, w) HALTTM  (M’, w)  ATM
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Corollary: HALTTM m ATM

Yo, T.M.! I can give you the magical power 

to either compute the halting problem, or 

the acceptance problem. Which do you want? 

Wow, hm, so hard to choose… 

I can’t decide!
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The Emptiness Problem for TMs

EMPTYTM = { ⟨M⟩ | M is a TM such that L(M) = ?}

Given a program, does it reject or loop on all inputs?

Theorem:  EMPTYTM is unrecognizable

Proof: Show that ¬ATM  m EMPTYTM

f(z) := Decode z into ⟨M, w⟩. Output code of the TM:
“M’(x) := if (x = w) then run M(w) and output answer, 

else reject”
Observe: EITHER L(M’) =? OR L(M’) = {w}

z=(M,w) ∉ ATM  M doesn’t accept w  
 L(M’) =?

 ⟨M’⟩ ∈ EMPTYTM  f(z) ∈ EMPTYTM
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The Emptiness Problem for Other Models

EMPTYDFA = { ⟨M⟩ | M is a DFA such that L(M) = ?}

Given a DFA, does it reject every input?

Theorem:  EMPTYDFA is decidable

Why? 

EMPTYNFA = { ⟨M⟩ | M is a NFA such that L(M) = ?}

EMPTYREX = { ⟨R⟩ | M is a regexp such that L(M) = ?}
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Moral: 
Analyzing Programs is

Really, Really Hard 
for Programs to Do.

(Sometimes)
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Computing With Oracles:
Another Kind of Reduction

*We do not condone smoking. Don’t do it. It’s bad. Kthxbye

HALT?

EMPTY?
ATM?
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FINITE 

STATE 

CONTROL

INFINITE TAPE

I N P U T

q?

A

Oracle Turing Machines

Is (M, w) in 
ATM?

yes!
qYES

Now leaving reality for a moment….
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An oracle Turing machine M is equipped with a set 
B  Γ* and a special oracle tape, on which M may ask 

membership queries about B
Formally, M enters a special state q? to ask a query

and the TM receives a query answer in one step
[Formally, the transition function on q? is defined in 

terms of the entire oracle tape:
State q? changes to qYES

if the string y written on the oracle tape is in B, 
else q? changes to qNO]

This notion makes sense even if B is not decidable!

Oracle Turing Machines
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Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle B  Γ* lets you 
include the following kind of if-then statement:

“if (z in B) then <do something> 

else <do something else>”

where z is some string defined earlier in pseudocode. 
We define the oracle TM to that it can always check 

the condition (z in B) in one step

This notion makes sense even if B is not decidable!

How to Think about Oracles?
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Definition: A is decidable with B
if there is an oracle TM M with oracle B 

that accepts strings in A and rejects strings not in A

Language A “Turing-Reduces” to B

A T B

Deciding one problem with another
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ATM is decidable with HALTTM    (ATM ≤T HALTTM)

We can decide if M accepts w 
using an ORACLE for the Halting Problem:

On input (M,w), 
If (M,w) is in HALTTM then 

run M(w) and output its answer. 
else REJECT.

(This is exactly like our proof that 
HALTTM is undecidable, from last lecture!)
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HALTTM is decidable with ATM (HALTTM ≤T ATM)

On input (M,w), decide if M halts on w as follows:

1. If (M,w) is in ATM then ACCEPT

2. Else, swap the accept and reject states of M to 
get a machine M. If (M’,w) is in ATM then ACCEPT

3. REJECT
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Corollary: If A T B and A is undecidable,
then B is undecidable

If A T B then there is a TM M with oracle B 
that decides A. If B is decidable, then we can 

replace every oracle call to B with a TM 
that decides B. Now M is a TM with no oracle!

Theorem: If A T B and B is decidable, 
then  A is decidable

Proof: Exactly the same proof 
as the one for mapping reductions!
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T  versus m

Theorem: If A m B then A T B

Proof (Sketch): 

A m B means there is a computable function 
f : Σ* → Σ*, where for every w,

w  A  f(w)  B

To decide A on an input w with oracle B, 
just compute f(w), then call B on f(w) and return answer

Theorem: ATM T ATM

Theorem: ATM m ATM

D ( ⟨M,w⟩ ): If (⟨M,w⟩ in ATM) then reject else accept
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The Busy Beaver Function

How much work can a little TM do?
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The Busy Beaver Function
Define a simple Turing machine to be one with input 
alphabet {1}, tape alphabet {1,□}, and a “halt state”.
Besides the “halt state”, our TMs have 𝒏 other states.

Define BB(𝒏) to be the maximum number of steps taken 
on input 𝜺 by any 𝒏-state simple TM that halts.

BB(1) = 1: For a 1-state TM running on blank tape, it 
either halts in the first step, or it runs forever!

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5) ≥ 47,176,870

BB(6) > 1036,534

BB(7) >



33

The Busy Beaver Function
Theorem: BB(𝒏) is not computable!

BB(𝒏) grows so ridiculously fast that no computable 
function whatsoever (no function you have ever 

seen) can even upper bound it!!

First Idea: If you could compute BB(𝒏), then you 
could solve the Halting problem for simple TMs 

running on blank tape!

Second Idea: It is impossible to decide that 
Halting problem
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The Busy Beaver Function

Theorem: Assuming there is a TM computing BB(𝒏), 
we can solve the Halting problem for simple TMs on 𝜺. 

Proof: Here’s pseudocode for the Halting problem:
On the input ⟨M⟩ [code of a TM M]

Count the number of states in M, call it 𝒏
Compute 𝒕 = BB(𝒏) [in binary or unary]
Run M on blank tape for 𝒕 steps. 
If it halts, then accept. Otherwise, reject!

Theorem: There is NO computable function 𝒇 ∶ ℕ → ℕ
such that for all 𝒏, 𝒇 𝒏 ≥ BB(𝒏). 

Theorem: BB(𝒏) is not computable!
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The Busy Beaver Function

Theorem: There is a 1919-state simple TM that halts 
iff ZFC (set theory) is inconsistent!

There is a 744-state simple TM that halts
iff the Riemann hypothesis is false.

There is a 43-state simple TM that halts 
iff Goldbach's conjecture is false

Good luck verifying if those halt!

You can encode arbitrary 
math conjectures in simple TMs!

https://en.wikipedia.org/wiki/ZFC
https://en.wikipedia.org/wiki/Riemann_hypothesis
https://en.wikipedia.org/wiki/Goldbach%27s_conjecture
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Problem 1

{ (M, w) | M is a TM that on input w, tries to 
move its head past the left end of the tape

at some point }

Problem 2

{ (M, w) | M is a TM that on input w, moves its
head left at some point}

Undecidable

Decidable

Two Problems
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Problem 1 Undecidable

Reduce ATM to L’Proof:

On input (M,w), 
make a TM N that shifts w over one cell, 

puts a special symbol # on the leftmost cell, 
then simulates M(w) on its tape.

If M’s head moves to the cell with # but has not yet 
accepted, N moves the head back to the right. 

If M accepts, N tries to move its head past the #.

(M,w) is in ATM if and only if (N,w) is in L’

L’ = { (M, w) | M is a TM that on input w, tries to  
move its head past the left end of the tape }
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Problem 2 Decidable

On input (M,w), run M on w for 
|Q| + |w| + 1 steps, 

where |Q| = number of states of M

Accept If M’s head moved left at all
Reject Otherwise

{ (M, w) | M is a TM that on input w, moves its
head left at some point}

(Why does this work?)
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Thank you all …
… see you in June, hopefully?

Be safe!


