6.045

Lecture 11: Fun With Undecidability!
Announcements

- If MIT is denying you resources you need and you’re running out of options, please contact me personally.

- Pset now due **Monday March 30**: we will release pset solutions immediately after that
- For now, midterm is still **Thursday April 2**
- Practice midterm + solutions out tonight!
 - There is candy!
The Acceptance Problem for TMs

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$

Given: code of a Turing machine M and an input w for that Turing machine,

Decide: Does M accept w?

A_{TM} decidable \Rightarrow There is an algorithm ALG which, given any code and input, ALG determines in finite time if the code will stop and accept the input

Theorem [Turing]:

A_{TM} is recognizable, but NOT decidable!
Theorem: If \(\mathcal{L} \) is decidable, then both \(\mathcal{L} \) and \(\overline{\mathcal{L}} \) are recognizable.
Theorem: \(L \) is decidable
iff both \(L \) and \(\neg L \) are recognizable

Theorem: \(A_{TM} \) is recognizable but NOT decidable

Corollary: \(\neg A_{TM} \) is not recognizable!

Theorem: \(\text{HALT}_{TM} \) is not decidable
Reducing One Problem to Another

\(f : \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if there is a Turing machine \(M \) that halts with just \(f(w) \) written on its tape, for every input \(w \)

A **language** \(A \) is **mapping reducible** to language \(B \), written as \(A \leq_m B \), if there is a computable \(f : \Sigma^* \rightarrow \Sigma^* \) such that for every \(w \in \Sigma^* \),

\[
 w \in A \iff f(w) \in B
\]

\(f \) is called a **mapping reduction** (or many-one reduction) from \(A \) to \(B \)
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

$w \in \Sigma^* \rightarrow f \rightarrow f(w) \in \Sigma^* \rightarrow B \rightarrow \text{accept/reject}$

$w \in A \iff f(w) \in B$

A recipe for proving undecidability!
To prove B is undecidable, find undecidable A and a mapping reduction from A to B.
A mapping reduction from A_{TM} to $HALT_{TM}$

Theorem: $A_{TM} \leq_m HALT_{TM}$

$f(z) :=$ Decode z into a pair $\langle M, w \rangle$. Write down the description of a TM M' with the spec:

"$M'(w) = \text{Run } M \text{ on } w.$

If M accepts, then accept, else loop forever"

Output the encoding $\langle M', w \rangle$

Then, $z=\langle M, w \rangle \in A_{TM} \iff M$ accepts w

$\iff M'$ halts on $w \iff \langle M', w \rangle \in HALT_{TM}$

Corollary: $HALT_{TM}$ is undecidable
Theorem: $A_{TM} \leq_m \text{HALT}_{TM}$

Corollary: $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$

Corollary: $\neg \text{HALT}_{TM}$ is unrecognizable!

Proof: If $\neg \text{HALT}_{TM}$ were recognizable, then $\neg A_{TM}$ would also be recognizable, because $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$. But $\neg A_{TM}$ is not!

Question: $A_{TM} \leq_m \neg A_{TM}$?

Theorem: $\text{HALT}_{TM} \leq_m A_{TM}$
Theorem: $\text{HALT}_{TM} \leq_m A_{TM}$

Proof: Define a mapping reduction f:

$$f(z) := \text{Decode } z \text{ into a pair } \langle M, w \rangle$$

Write down a TM M' with the specification:

“$M'(w) = \text{Run } M \text{ on } w. \text{ If } M \text{ halts, accept}$”

Output $\langle M', w \rangle$

Observe $z=(M, w) \in \text{HALT}_{TM} \iff (M', w) \in A_{TM}$
Corollary: $\text{HALT}_{TM} \equiv_m \text{A}_{TM}$

Yo, T.M.! I can give you the magical power to either compute the halting problem, or the acceptance problem. Which do you want?

Wow, hm, so hard to choose...

I can’t decide!
Another Reduction Example

\[EQ_{DFA} = \{ (D_1, D_2) \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2) \} \]

\[EQ_{REGEX} = \{ (R_1, R_2) \mid R_1 \text{ and } R_2 \text{ are regexps, } L(R_1) = L(R_2) \} \]

Theorem: \(EQ_{REGEX} \leq_m EQ_{DFA} \)

Proof: Mapping reduction \(f \) from \(EQ_{REGEX} \) to \(EQ_{DFA} \):

\(f \): On input \(z \), decode \(z \) into a pair \((R_1, R_2) \),

Convert \(R_1, R_2 \) into NFAs \(N_1, N_2 \),

Convert NFAs \(N_1, N_2 \) into DFAs \(D_1, D_2 \). Output \((D_1, D_2) \)

Then, \((R_1, R_2) \in EQ_{REGEX} \iff L(D_1) = L(R_1) = L(R_2) = L(D_2) \)

\iff L(D_1) = L(D_2) \iff (D_1, D_2) \in EQ_{DFA} \)

So \(f \) is a mapping reduction from \(EQ_{REGEX} \) to \(EQ_{DFA} \)
The Emptiness Problem for TMs

\[\text{EMPTY}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \} \]

Given a program, does it reject or loop on all inputs?

Theorem: \(\text{EMPTY}_{\text{TM}} \) is *unrecognizable*

Proof: Show that \(\neg \text{A}_{\text{TM}} \leq_m \text{EMPTY}_{\text{TM}} \)

\(f(z) := \text{Decode } z \text{ into } \langle M, w \rangle. \text{ Output code of the TM: } \)

\[\text{“} M'(x) := \text{if } (x = w) \text{ then run } M(w) \text{ and output answer, else reject} \text{”} \]

Observe: EITHER \(L(M') = \emptyset \) OR \(L(M') = \{ w \} \)

\(z = (M, w) \notin \text{A}_{\text{TM}} \iff M \text{ doesn’t accept } w \)

\(\iff L(M') = \emptyset \)

\(\iff \langle M' \rangle \in \text{EMPTY}_{\text{TM}} \iff f(z) \in \text{EMPTY}_{\text{TM}} \)
The Emptiness Problem for Other Models

\[\text{EMPTY}_{\text{DFA}} = \{ \langle M \rangle \mid M \text{ is a DFA such that } \mathcal{L}(M) = \emptyset \} \]

Given a DFA, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{DFA}} \) is decidable

Why?

\[\text{EMPTY}_{\text{NFA}} = \{ \langle M \rangle \mid M \text{ is a NFA such that } \mathcal{L}(M) = \emptyset \} \]

\[\text{EMPTY}_{\text{REX}} = \{ \langle R \rangle \mid M \text{ is a regexp such that } \mathcal{L}(M) = \emptyset \} \]
The Equivalence Problem

\[\text{EQ}_{\text{TM}} = \{ \langle M, N \rangle \mid M, N \text{ are TMs and } L(M) = L(N) \} \]

Do two programs accept exactly the same strings?

Theorem: \(\text{EQ}_{\text{TM}} \) is *not recognizable*

Proof: Reduce \(\text{EMPTY}_{\text{TM}} \) to \(\text{EQ}_{\text{TM}} \)

Let \(M_\emptyset \) be a TM that always rejects immediately, so \(L(M_\emptyset) = \emptyset \)

Define \(f(M) := (M, M_\emptyset) \)

Then \(M \in \text{EMPTY}_{\text{TM}} \iff L(M) = L(M_\emptyset) \iff \langle M, M_\emptyset \rangle \in \text{EQ}_{\text{TM}} \)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.

(Sometimes)
Computing With Oracles: Another Kind of Reduction

*We do not condone smoking. Don’t do it. It’s bad. Kthxbye
Oracle Turing Machines

Is \((M, w)\) in \(A_{TM}\)?

\[q_{YES}\]

Yes!

INFINITE TAPE

Now leaving reality for a moment....
An oracle Turing machine M is equipped with a set $B \subseteq \Gamma^*$ and a special oracle tape, on which M may ask membership queries about B

Formally, M enters a special state $q_?$ to ask a query and the TM receives a query answer in one step

[Formally, the transition function on $q_?$ is defined in terms of the entire oracle tape:

State $q_?$ changes to q_{YES}
if the string y written on the oracle tape is in B,
else $q_?$ changes to q_{NO}]

This notion makes sense even if B is not decidable!
Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of if-then statement:

```
"if (z in B) then <do something>
else <do something else>"
```

where z is some string defined earlier in pseudocode.

We **define** the oracle TM to that it can always check the condition $(z \in B)$ in one step.

This notion makes sense even if B is not decidable!
Deciding one problem with another

Definition: A is decidable with B if there is an oracle TM M with oracle B that accepts strings in A and rejects strings not in A

Language A “Turing-Reduces” to B

\[A \leq_T B \]
A_{TM} is decidable with $HALT_{TM}$ ($A_{TM} \leq_T HALT_{TM}$)

We can decide if M accepts w using an ORACLE for the Halting Problem:

On input (M,w),

If (M,w) is in $HALT_{TM}$ then run $M(w)$ and output its answer.
else REJECT.

(This is exactly like our proof that $HALT_{TM}$ is undecidable, from last lecture!)
HALT\textsubscript{TM} is decidable with A_{TM} ($HALT_{TM} \leq_T A_{TM}$)

On input (M,w), decide if M halts on w as follows:

1. If (M,w) is in A_{TM} then ACCEPT

2. Else, swap the accept and reject states of M to get a machine M'. If (M',w) is in A_{TM} then ACCEPT

3. REJECT
Corollary: If \(A \leq_T B \) and \(A \) is undecidable, then \(B \) is undecidable.

Proof: Exactly the same proof as the one for mapping reductions!

If \(A \leq_T B \) then there is a TM \(M \) with oracle \(B \) that decides \(A \). If \(B \) is decidable, then we can replace every oracle call to \(B \) with a TM that decides \(B \). Now \(M \) is a TM with no oracle!
\(\leq_T \) versus \(\leq_m \)

Theorem: If \(A \leq_m B \) then \(A \leq_T B \)

Proof (Sketch):

\(A \leq_m B \) means there is a computable function
\[f : \Sigma^* \rightarrow \Sigma^* \], where for every \(w \),

\[w \in A \iff f(w) \in B \]

To decide \(A \) on an input \(w \) with oracle \(B \),
just compute \(f(w) \), then call \(B \) on \(f(w) \) and return answer

Theorem: \(\neg A_{TM} \leq_T A_{TM} \)

D (\(\langle M,w \rangle \)): If \((\langle M,w \rangle \text{ in } A_{TM}) \) then reject else accept

Theorem: \(\neg A_{TM} \not\leq_m A_{TM} \)
Limitations on Oracle TMs!

The following problem cannot be decided by any TM with an oracle for the Halting Problem:

SUPERHALT = \{ (M,x) \mid \text{TM } M, \text{ with an oracle for the Halting Problem, halts on } x \}

We can use the original proof by diagonalization!

Assume H (with HALT oracle) decides SUPERHALT

Define \(D(X) := \text{“if } H(X,X) \text{ (with HALT oracle) accepts then LOOP, else ACCEPT.”} \)

(D uses a HALT oracle to simulate H)

But \(D(D) \) halts \(\iff \) \(H(D,D) \) accepts \(\iff \) \(D(D) \) loops...

(by assumption on H) \hspace{1cm} (by def of D)
There is an infinite hierarchy of unsolvable problems!

Given ANY oracle A, there is always a harder problem that cannot be decided with that oracle A

SUPERHALT^0 = HALT = \{ (M,x) \mid M \text{ halts on } x \}.

SUPERHALT^1 = \{ (M,x) \mid M, \text{ with an oracle for } HALT^T_M, \text{ halts on } x \}

SUPERHALT^n = \{ (M,x) \mid M, \text{ with an oracle for } SUPERHALT^{n-1}, \text{ halts on } x \}
A Puzzle About Oracles

Given three instances

\((M_1, w_1), (M_2, w_2), (M_3, w_3)\)

of the Halting Problem,

It’s easy to decide all three of them,
using three oracle calls to HALT.

Can you decide \((M_i, w_i) \in \text{HALT}\) for all \(i\),
with only \text{TWO} oracle calls to HALT?
The Busy Beaver Function

How much work can a little TM do?
The Busy Beaver Function

Define a simple Turing machine to be one with input alphabet \(\{1\} \), tape alphabet \(\{1, \square\} \), and a “halt state”. Besides the “halt state”, our TMs have \(n \) other states.

Define \(\text{BB}(n) \) to be the maximum number of steps taken on input \(\varepsilon \) by any \(n \)-state simple TM that halts.

\(\text{BB}(1) = 1 \): For a 1-state TM running on blank tape, it either halts in the first step, or it runs forever!

\(\text{BB}(2) = 6 \)

\(\text{BB}(3) = 21 \)

\(\text{BB}(4) = 107 \)

\(\text{BB}(5) \geq 47,176,870 \)

\(\text{BB}(6) > 10^{36,534} \)

\(\text{BB}(7) > 10^{10^{10^{10^{10^{18,000,000}}}}} \)
The Busy Beaver Function

Theorem: BB(\(n\)) is not computable!

BB(\(n\)) grows so ridiculously fast that no computable function whatsoever (no function you have ever seen) can even upper bound it!!

First Idea: If you could compute BB(\(n\)), then you could solve the Halting problem for simple TMs running on blank tape!

Second Idea: It is impossible to decide that Halting problem
The Busy Beaver Function

Theorem: BB(n) is not computable!

Theorem: Assuming there is a TM computing BB(n), we can solve the Halting problem for simple TMs on ϵ.

Proof: Here’s pseudocode for the Halting problem:

On the input ⟨M⟩ [code of a TM M]
Count the number of states in M, call it n
Compute \(t = BB(n) \) [in binary or unary]
Run M on blank tape for t steps.
If it halts, then accept. Otherwise, reject!

Theorem: There is NO computable function \(f : \mathbb{N} \rightarrow \mathbb{N} \) such that for all \(n, f(n) \geq BB(n) \).
The Busy Beaver Function

You can encode arbitrary math conjectures in simple TMs!

Theorem: There is a 1919-state simple TM that halts iff **ZFC** (set theory) is inconsistent!

There is a 744-state simple TM that halts iff the **Riemann hypothesis** is false.

There is a 43-state simple TM that halts iff **Goldbach's conjecture** is false.

Good luck verifying if those halt!
Two Problems

Problem 1 Undecidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape at some point} \}

Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at some point} \}
Problem 1 Undecidable

\[L' = \{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape } \} \]

Proof: Reduce \(A_{TM} \) to \(L' \)

On input \((M,w) \), make a TM \(N \) that shifts \(w \) over one cell, puts a special symbol \(\# \) on the leftmost cell, then simulates \(M(w) \) on its tape.

If \(M \)'s head moves to the cell with \(\# \) but has not yet accepted, \(N \) moves the head back to the right. If \(M \) accepts, \(N \) tries to move its head past the \(\# \).

\((M,w) \) is in \(A_{TM} \) if and only if \((N,w) \) is in \(L' \)
Problem 2 \textbf{Decidable}

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at some point} \}

On input \((M, w)\), run M on w for \(|Q| + |w| + 1\) steps, where \(|Q| = \text{number of states of M}\)

\begin{align*}
\text{Accept} & \quad \text{If M’s head moved left at all} \\
\text{Reject} & \quad \text{Otherwise}
\end{align*}

\textit{(Why does this work?)}
Thank you all ...

... see you in June, hopefully?

Be safe!