
1

Lecture 13:
Time Complexity
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One more cool Computability Result

Define RE := {L | L is recognizable}

Problems like ATM are in RE but not decidable 

Thm: [Ji, Natarajan, Vidick, Wright, Yuen, January’20]

Every language in RE can be decided by an 
efficient verifier interacting with two all-powerful 

provers sharing quantum entanglement!  “MIP* = RE”

You can be quickly convinced that 
an arbitrary program halts on an arbitrary 
input, using two all-powerful computers 

whose storage is quantum entangled! 
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Computational 
Complexity Theory
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Computational Complexity Theory

We’ll start with: Time complexity

What can and can’t be computed with limited 
resources on computation, 

such as time, space, and so on

Captures many of the significant issues in 
practical problem solving

The field is rich with important open questions 
that no one has any idea how to begin answering!
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Let f, g : ℕ→ ℕ. 
We say that f(n) ≤ O(g(n)) if there are c, n0 ∈ ℕ
so that for every integer n  n0

f(n)  c g(n)

We say g(n) is an upper bound on f(n) if
f(n) ≤ O(g(n)) 

Very Quick Review of Big-O

5n3 + 2n2 + 22n + 6 ≤ O(n3)

Ex: If c = 6 and n0 = 10, then 5n3 + 2n2 + 22n + 6  cn3
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3n log2 n + 5n log2log2 n

2n4.1 + 200283n4 + 2

n log10 n
78

≤ O(n4.1)

≤ O(n log2 n)

≤ O(n log10 n)

log10 n = log2 n / log2 10

O(n log2 n) ≤ O(n log10 n) ≤ O(n log n)

Big-O isolates the “dominant” term of a function
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Let f, g : ℕ→ ℕ We say f(n) ≤ O(g(n)) if 
there is a c ∈ ℕ so that

for all n ∈ ℕ, f(n)  c g(n) + c

A Simpler Big-O Definition

Exercise: Show this definition 
is equivalent to the other one! 
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Measuring Time Complexity of a TM

We measure time complexity by counting the steps 
taken for a Turing machine to halt on an input

Example: Let A = { 0k1k | k  0 }

1. Scan across the tape and reject
if x is not of the form 0a1b

2. Repeat the following if both 0s and 1s  
remain on the tape:

Scan across the tape, crossing off a 
single 0 and a single 1

3. If 0s remain after all 1s have been crossed off,
or vice-versa, reject. Otherwise accept.O(𝒏)

O(𝒏2)

O(𝒏)

Here’s a TM for A. On input x of length 𝒏:
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Let M be a TM that halts on all inputs.

(We will only consider decidable languages now!)

Definition: 
The running time or time complexity of M is the 
function T : ℕ→ ℕ such that

T(𝒏) =  maximum number of steps taken by M
over all inputs of length 𝒏

A “worst-case” measure of time complexity:
What’s the longest time that a Turing machine could 
take over inputs of length 𝒏?
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Definition: 
TIME(t(𝒏))  = { L’ | there is a Turing machine M

with time complexity O(t(𝒏)) so that L’ = L(M) }

= { L’ | L’ is a language decided by a Turing 
machine with running time ≤ c t(𝒏) + c,

for some c ≥ 1 }

We just showed:  A = { 0k1k | k  0 }  TIME(𝒏2)

Time-Bounded Complexity Classes

Is there a faster Turing machine?
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A = { 0k1k | k  0 }  TIME(𝒏 log 𝒏)

M(w) := If w is not of the form 0*1*, reject.
Repeat until all bits of w are crossed out:

If (parity of 0’s)  (parity of 1’s), reject.
Cross out every other 0. Cross out every other 1. 

Once all bits are crossed out, accept.

00000000000001111111111111

x0x0x0x0x0x0xx1x1x1x1x1x1x

xxx0xxx0xxx0xxxx1xxx1xxx1x

xxxxxxx0xxxxxxxxxxxx1xxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
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A = { 0k1k | k  0 }  TIME(𝒏 log 𝒏)

M(w) := If w is not of the form 0*1*, reject.
Repeat until all bits of w are crossed out:

If (parity of 0’s)  (parity of 1’s), reject.
Cross out every other 0. Cross out every other 1. 

Once all bits are crossed out, accept.

For a fixed w = 0k1k:
Let 𝒛𝒆𝒓𝒐𝒊 be number of 0s left in w, after iteration 𝒊
Let 𝒐𝒏𝒆𝒔𝒊 be number of 1s left in w, after iteration 𝒊

Start with 𝒛𝒆𝒓𝒐𝟎 = k, 𝒐𝒏𝒆𝒔𝟎 = k
Key Observation: 

𝒛𝒆𝒓𝒐𝒊+𝟏 = floor(𝒛𝒆𝒓𝒐𝒊/𝟐), 𝒐𝒏𝒆𝒔𝒊+𝟏 = floor(𝒐𝒏𝒆𝒔𝒊/𝟐)
Number of iterations ≤ 𝑶 log 𝒏
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It can be proved that
there is no one-tape Turing Machine that 
can decide A in less than O(𝒏 log 𝒏) time!

(Hard) Puzzle:

Let f(n) = 𝐎
𝒏 log 𝒏

𝜶 𝒏
where 𝜶 𝒏 is unbounded. 

Prove: TIME(f(n)) contains only regular languages(!)

For example, TIME(n log log n) 
contains only regular languages!
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Theorem:  A = { 0k1k | k  0 } can be decided in 
O(𝒏) time with a two-tape TM.

Proof Idea:
Sweep over all 0s, copy them over on the 
second tape. 
Sweep over all 1s. For each 1, cross off a 0 
from the second tape.

Two Tapes Can Be More Efficient
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Different models of computation 
can yield different running times 

for the same language!

Let’s revisit some of the key concepts from 
computability theory…
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Theorem: Let t : ℕ→ ℕ satisfy t(𝒏)  𝒏, for all n. 
Then every t(𝒏) time multi-tape TM has an 
equivalent O(t(𝒏)2) time one-tape TM

Our simulation of multitape TMs 
by one-tape TMs achieves this!

Corollary: Suppose language A can be decided by a 
multi-tape TM in p(n) time, for some polynomial p. 
Then A can also be decided by a one-tape TM in 
q(n) time, for some polynomial q.
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Theorem: For every t(n) time multi-tape TM, there is 
an equivalent O(t(n)2) time one-tape TM

FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .
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FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .

Theorem: For every t(n) time multi-tape TM, there is 
an equivalent O(t(n)2) time one-tape TM
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FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .

Theorem: For every t(n) time multi-tape TM, there is 
an equivalent O(t(n)2) time one-tape TM
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FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #
. . .

t(n) time

O(t(n)2)

Theorem: For every t(n) time multi-tape TM, there is 
an equivalent O(t(n)2) time one-tape TM
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An Efficient Universal TM

Theorem: There is a (one-tape) Turing machine U
which takes as input:
- the code of an arbitrary TM M
- an input string w
- and a string of t 1s, t > |w|

such that U on ⟨M, w, 1t⟩ halts in O(|M|2 t2) steps 
and  U accepts ⟨M, w, 1t⟩  M accepts w in t steps

The Universal TM with a Clock

Idea: Make a multi-tape TM U’ that does the above, 
and runs in O(|M| t) steps. 

Each step of M on w is O(|M|) steps of U’
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Intuition: If you get more time to compute,
then you can solve strictly more problems.

Theorem: For all “reasonable” f, g : ℕ ! ℕ where 

for all n, g(𝒏) > 𝒏2 f(𝒏)2 , TIME(f(𝒏)) ⊊ TIME(g(𝒏))

Proof Idea:  Diagonalization with a clock
Make a TM N that on input ⟨M⟩ of length 𝒏, 

simulates the TM M on input ⟨M⟩ for f(𝒏) steps,
then flips the answer. 

We will show L(N) cannot have time complexity f(𝒏)

The Time Hierarchy Theorem
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Proof Sketch:  Define a TM N as follows.

N on input ⟨M⟩: “Let 𝒏 = |⟨M⟩|. Simulate M on ⟨M⟩ for up 
to f(𝒏) steps. If the sim halts, output the opposite answer.”

Claim: L(N) does not have time complexity f(𝒏).

Proof: Assume some D runs in f(𝒏) time, and L(D) = L(N).
By assumption, D on ⟨D⟩ runs in f(𝒏) time and outputs the 

opposite answer of D on ⟨D⟩ after f(𝒏) steps! 

This is a contradiction!

Theorem: For “reasonable” f, g where g(n) > n2 f(n)2,

TIME(f(n)) ⊊ TIME(g(n))

The Time Hierarchy Theorem
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Proof Sketch:  Define a TM N as follows:

N on input ⟨M⟩: “Let 𝒏 = |⟨M⟩|. Simulate M on ⟨M⟩ for up 
to f(𝒏) steps. If the sim halts, output the opposite answer.”

So, L(N) does not have time complexity f(n).
For what functions g(n) will N run in O(g(n)) time? 

1. Compute t = f(𝒏) in O(g(𝒏)) time [“reasonable”]
2. To sim M on ⟨M⟩: run U(M, M, 1t) in O(g(𝒏)) time

Recall: U(M, w, 1t) halts in O(|M|2 t2) steps
So, set g(𝒏) so that g(|M|) > |M|2 f(|M|)2  for all n. QED

Remark:  Time hierarchy also holds for multitape TMs!

Theorem: For “reasonable” f, g where g(n) > n2 f(n)2,

TIME(f(n)) ⊊ TIME(g(n))

The Time Hierarchy Theorem
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Corollary:  TIME(𝒏) ⊊ TIME(𝒏2) ⊊ TIME(𝒏3) ⊊ …

There is an infinite hierarchy of 
increasingly more time-consuming problems

Question:   Are there important everyday problems 
that are high up in this time hierarchy?

A natural problem that needs precisely 𝒏10 time?

THIS IS AN OPEN QUESTION!

TIME(f(𝒏)) ⊊ TIME(g(𝒏))

A Better Time Hierarchy Theorem

Theorem: For “reasonable” f, g where
g(𝒏) > f(𝒏) log2 f(𝒏),
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P =        TIME(nk)
k  N

Polynomial Time

The analogue of “decidability”
in the world of complexity theory
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The EXTENDED
Church-Turing Thesis

Everyone’s 
Intuitive Notion 
of Efficient
Algorithms

= Polynomial-Time
Turing Machines

A controversial (dead?) thesis!
Counterexamples include n100 time algorithms, 
randomized algorithms, quantum algorithms, …
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Nondeterminism and NP

The analogue of “recognizability”
in complexity theory


