Recognizability via Decidability

Def. A decidable predicate \(R(x,y) \) is a proposition about the input strings \(x \) and \(y \), such that some TM \(M \) implements \(R \). That is,

- for all \(x, y \), \(R(x,y) \) is TRUE \(\Rightarrow \) \(M(x,y) \) accepts
- \(R(x,y) \) is FALSE \(\Rightarrow \) \(M(x,y) \) rejects

Can think of \(R \) as a function

\[R : \Sigma^* \times \Sigma^* \to \{ \text{True}, \text{False} \} \]

EXAMPLES:

- \(R(x,y) = \) “\(xy \) has at most 100 zeroes”
- \(R(N,y) = \) “TM \(N \) halts on \(y \) in at most 99 steps”
Theorem: A language A is **recognizable** if and only if there is a decidable predicate $R(x, y)$ such that:

$$A = \{ x \mid (\exists y \in \Sigma^*)[R(x, y) \text{ is true}] \}$$

Proof: (1) If $A = \{ x \mid \exists y \ R(x,y) \} \,$ then A is recognizable

Define the TM $M(x)$: For all strings $y \in \Sigma^*$,

- If $R(x,y)$ is true, accept.

Then, M accepts exactly those x s.t. $\exists y \ R(x,y)$ is true

(2) If A is recognizable, then $A = \{ x \mid \exists y \ R(x,y) \}$

Suppose TM M recognizes A.

Let $R(x,y)$ be TRUE iff M accepts x in $|y|$ steps

Then, M accepts x \iff $\exists y \ R(x,y)$ is true
Example: \(L = \{ \langle M \rangle \mid \text{TM } M \text{ accepts at least one string} \} \)

is recognizable.

Want: decidable predicate \(R \) such that

\(L = \{ \langle M \rangle \mid \exists y \in \Sigma^* \ R(\langle M \rangle, y) \text{ is true} \} \)

Define \(R(\langle M \rangle, \langle x, y \rangle) = \text{“TM M accepts string x in } |y| \text{ steps”} \)

Note that \(R \) is decidable!

Just run a universal TM on \(\langle M, x \rangle \) for \(|y| \) steps

Then: \(L = \{ \langle M \rangle \mid \exists \langle x, y \rangle \in \Sigma^* \ R(\langle M \rangle, \langle x, y \rangle) \text{ is true} \} \)

Therefore, \(L \) is recognizable!

Can always recognize \(L \) by

“guessing \(\langle x,y \rangle \) and verifying in finite time”
Deterministic Computation

- Decidable
- accept or reject

Non-Deterministic Computation

- "Massive Parallelism"
- "Perfect Guessing"
- Recognizable
- reject
- reject
- reject
- accept

Are these equally powerful???

YES for finite automata, NO for Turing machines!
Time-Bounded Complexity Classes

Definition:
\[\text{TIME}(t(n)) = \{ L' \mid \text{there is a Turing machine } M \text{ with time complexity } O(t(n)) \text{ so that } L' = L(M) \} \]
\[= \{ L' \mid L' \text{ is a language decided by a Turing machine with running time } \leq c t(n) + c, \text{ for some } c \geq 1 \} \]

We showed: \(A = \{ 0^k1^k \mid k \geq 0 \} \in \text{TIME}(n \log n) \)

Puzzle: Show \(A \notin \text{TIME}((n \log n)/\log\log\log n) \)
An Efficient Universal TM

Theorem: There is a (one-tape) Turing machine U which takes as input:
- the code of an arbitrary TM M
- an input string w
- and a string of t 1s, $t > |w|$

such that U on $\langle M, w, 1^t \rangle$ halts in $O(|M|^2 \cdot t^2)$ steps and U accepts $\langle M, w, 1^t \rangle$ if and only if M accepts w in t steps.

The Universal TM with a Clock

Idea: Make a multi-tape TM U' that does the above, and runs in $O(|M| \cdot t)$ steps. Each step of M on w is $O(|M|)$ steps of U'.
The Time Hierarchy Theorem

Intuition: If you get more time to compute, then you can solve strictly more problems.

Theorem: For all “reasonable” \(f, g : \mathbb{N} \rightarrow \mathbb{N} \) where for all \(n \), \(g(n) > n^2 f(n)^2 \), \(\text{TIME}(f(n)) \nsubseteq \text{TIME}(g(n)) \)

Proof Idea: Diagonalization with a clock

Make TM \(\mathcal{N} \) that on input \(\langle \mathcal{M} \rangle \), simulates the TM \(\mathcal{M} \) on input \(\langle \mathcal{M} \rangle \) for \(f(|\mathcal{M}|) \) steps, *then* flips the answer.

We showed \(L(\mathcal{N}) \) cannot have time complexity \(f(n) \)

And there is a TM running in \(O(g(n)) \) time for \(L(\mathcal{N}) \)
$P = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^k)$

Polynomial Time

The analogue of “decidability” in the world of complexity theory
The EXTENDED Church-Turing Thesis

Everyone’s Intuitive Notion of Efficient Algorithms = Polynomial-Time Turing Machines

A controversial (dead?) thesis!

Counterexamples include \(n^{100} \) time algorithms, randomized algorithms, quantum algorithms, ...
Nondeterminism and NP
Nondeterministic Turing Machines

...are just like standard TMs, except:

1. The machine may proceed according to several possible transitions (like an NFA)

2. The machine *accepts* an input string if there *exists* an accepting computation history for the machine on the string
read write move

0 → 0, R

0 → 0, R

□ → □, R

□ → □, R

q_accept

q_reject
Definition: A nondeterministic TM is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states
- Σ is the input alphabet, where $\square \notin \Sigma$
- Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta : Q \times \Gamma \rightarrow 2^{(Q \times \Gamma \times \{L,R\})}$
- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state, and $q_{\text{reject}} \neq q_{\text{accept}}$
Let N be a nondeterministic Turing machine

An **accepting computation history** for N on w is a sequence of configurations C_0, C_1, \ldots, C_t where

1. C_0 is the start configuration q_0w,
2. C_t is an accepting configuration,
3. Each configuration C_i yields C_{i+1}

Def. $N(w)$ accepts in t time \iff Such a history exists

N has **time complexity** $T(n)$ if for all n, for all inputs of length n and for all histories, N halts in $T(n)$ time
Definition: \(\mathrm{NTIME}(t(n)) = \{ L \mid L \text{ is decided by a } O(t(n)) \text{ time nondeterministic Turing machine} \} \)

Note: \(\mathrm{TIME}(t(n)) \subseteq \mathrm{NTIME}(t(n)) \)

Is \(\mathrm{TIME}(t(n)) = \mathrm{NTIME}(t(n)) \) for all \(t(n) \)?

THIS IS AN OPEN QUESTION!

What can be done in “short” \(\mathrm{NTIME} \) that cannot be done in “short” \(\mathrm{TIME} \)?
Boolean Formulas

A satisfying assignment is a setting of the variables that makes the formula true.

\[\phi = (\neg x \land y) \lor z \]

x = 1, y = 1, z = 1 is a satisfying assignment for \(\phi \)

Boolean variables (0 or 1)

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

Logical operations

Parentheses
A Boolean formula is **satisfiable** if there exists a true/false setting to the variables that makes the formula true.

YES \(a \land b \land c \land \neg d \)

NO \(\neg(x \lor y) \land x \)

\[SAT = \{ \phi \mid \phi \text{ is a satisfiable Boolean formula} \} \]

(Q: How are we encoding formulas? A: In a “reasonable” way!)

Encoding: takes formula \(\phi \) of \(n \) symbols, and outputs \(O(n^c) \) bits.

Decoding: takes \(O(n^c) \) bits and \(i \), and outputs \(i \)-th symbol of \(\phi \).
A 3cnf-formula has the form:

\[(x_1 \lor \neg x_2 \lor x_3) \land (x_4 \lor x_2 \lor x_5) \land (x_3 \lor \neg x_2 \lor \neg x_1)\]

Ex: \((x_1 \lor \neg x_2 \lor x_1)\)

\((x_3 \lor x_1) \land (x_3 \lor \neg x_2 \lor \neg x_1)\)

\((x_1 \lor x_2 \lor x_3) \land (\neg x_4 \lor x_2 \lor x_1) \lor (x_3 \lor x_1 \lor \neg x_1)\)

\((x_1 \lor \neg x_2 \lor x_3) \land (x_3 \land \neg x_2 \land \neg x_1)\)

3SAT = \{ \emptyset | \emptyset \text{ is a satisfiable 3cnf-formula} \}
3SAT = \{ \phi \mid \phi \text{ is a satisfiable 3cnf-formula} \}

Theorem: 3SAT ∈ NTIME(n^c) for some constant c > 1

Proof Idea: On input \phi:

1. Check if the formula is in 3cnf
2. For each variable v in \phi, nondeterministically substitute either 0 or 1 in place of v
3. Evaluate the formula with 0-1s all plugged in, accept iff \phi \text{ is true}
NP = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k)

Nondeterministic Polynomial Time

The analogue of "recognizability" in complexity theory
Theorem: $L \in NP \iff$ There is a constant k and polynomial-time TM V such that

$$L = \{ x \mid \exists y \in \Sigma^* \ [|y| \leq k|x|^k \text{ and } V(x,y) \text{ accepts} \}$$

Proof: (1) If $L = \{ x \mid \exists y \ |y| \leq k|x|^k \text{ and } V(x,y) \text{ accepts} \}$ then $L \in NP$

Given the poly-time TM V, our NP machine for L is:

$N(x)$: Nondeterministically guess y.
Run $V(x,y)$ and output its answer.

(2) If $L \in NP$ then

$$L = \{ x \mid \exists y \ |y| \leq k|x|^k \text{ and } V(x,y) \text{ accepts} \}$$

Let N be a nondet. poly-time TM that decides L. Define a TM $V(x,y)$ which accepts
$\iff y$ encodes an accepting computation history of N on x
Moral: A language L is in NP if and only if there are polynomial-length proofs for membership in L.

$3\text{SAT} = \{ \phi \mid \exists y \text{ such that } \phi \text{ is in 3cnf and } y \text{ is a satisfying assignment to } \phi \}$

$\text{SAT} = \{ \phi \mid \exists y \text{ such that } \phi \text{ is a Boolean formula and } y \text{ is a satisfying assignment to } \phi \}$

$\text{NP} = \text{“Nifty Proofs”}$
NP ~ Problems with the property that, once you *have* a *solution*, it is “easy” to verify the solution

SAT is in NP because a satisfying assignment is a polynomial-length proof that a formula is satisfiable

When $\phi \in \text{SAT}$, I can prove that fact to you with a short proof you can quickly verify
The Hamiltonian Path Problem

A Hamiltonian path traverses through each node exactly once.
Assume a reasonable encoding of graphs (example: the adjacency matrix is reasonable)

\[
\text{HAMPATH} = \{ (G, s, t) \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}
\]

Theorem: \(\text{HAMPATH} \in \text{NP} \)

A Hamiltonian path \(P \) in \(G \) from \(s \) to \(t \) is a **proof** that \((G, s, t)\) is in HAMPATH

Given \(P \) (as a permutation on the nodes) can easily check that it is a path through all nodes exactly once
The k-Clique Problem

k-clique = complete subgraph on k nodes
CLIQUE = \{ (G,k) \mid G \text{ is an undirected graph with a } k\text{-clique} \}

Theorem: CLIQUE \in NP

A k-clique in G is a proof that (G, k) is in CLIQUE

Given a subset S of k nodes from G, we can efficiently check that all possible edges are present between the nodes in S
A language is in NP if and only if there are “polynomial-length proofs” for membership in the language.

\(P \approx \) the problems that can be \textit{efficiently solved}

\(NP \approx \) the problems where \textit{proposed solutions can be efficiently verified}

Is \(P = NP \)?

Can problem solving be automated?
$\textbf{P = NP?}$
If P = NP...

Mathematicians/creators may be out of a job
This problem is in NP:
Short-Provability_F
= \{ (T, 1^k) | T has a proof in F of length ≤ k \}

Cryptography as we know it may be impossible – there are no “one-way” functions!
Machines could effectively learn *any concept with a short description*

In principle, every aspect of daily life could be efficiently and globally optimized...
... life as we know it would be different

Conjecture: P ≠ NP
Are these equally powerful???

YES for FAs, NO for TMs, OPEN for Polynomial Time