
1

Lecture 18:
More Friends of NP,

Oracles in Complexity Theory

6.045

2

Definition: coNP = { L | L NP }

In NP algorithms, we can use a
“guess” instruction in pseudocode:
Guess string y of |x|k length…
and the machine accepts iff some y
leads to an accept state

In coNP algorithms, we can use a
“try all” instruction:
Try all strings y of |x|k length…
and the machine accepts iff every y
leads to an accept state

What does a coNP computation look like?

3

Definition: A language B is coNP-complete if

1. B coNP

2. For every A in coNP, there is a
polynomial-time reduction from A to B

(B is coNP-hard)

Can use A ≤𝑷 B ¬A ≤𝑷 ¬B
to turn NP-hardness into co-NP hardness

4

TAUTOLOGY = { | is a Boolean formula and
every variable assignment satisfies }

= { | UNSAT}

Theorem: TAUTOLOGY is coNP-complete

UNSAT = { | is a Boolean formula and no
variable assignment satisfies }

Theorem: UNSAT is coNP-complete

5

Is P = NP ∩ coNP?

THIS IS AN OPEN QUESTION!

NP ∩ coNP = { L | L and L NP }

L ∈ NP ∩ coNP means that
both 𝒙 ∈ L and 𝒙 ∉ L have “nifty proofs”

6

FACTORING
= { (m, n) | m > n > 1 are integers written in binary,

& there is a prime factor p of m where n ≤ p < m }

Theorem: FACTORING ∈ NP ∩ coNP

An Interesting Problem in NP ∩ coNP

Theorem: If FACTORING ∈ P, then there is
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

7

PRIMES = {n | n is a prime number
written in binary}

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena
Ann. of Math. Volume 160, Number 2 (2004), 781-793.
Abstract
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input
number is prime or composite.

Theorem (Pratt ‘70s): PRIMES ∈ NP ∩ coNP

http://projecteuclid.org/handle/euclid.annm

Theorem: FACTORING NP ∩ coNP

Proof: (1) FACTORING NP

(2) FACTORING coNP

A prime factor p of n such that p ≥ k is a proof that
(n, k) is in FACTORING
(can check primality in P, can check p divides n in P)

The prime factorization p1
E1 … pm

Em of n is a proof
that (n, k) is not in FACTORING:

Verify each pi is prime in P, and that p1
E1 … pm

Em = n
Verify that for all i=1,…,m that pi < k

FACTORING
= { (n, k) | n > k > 1 are integers written in binary,

there is a prime factor p of n where k ≤ p < n }

Theorem: If FACTORING P, then there is
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

Idea: Binary search for the prime factor!
Given binary integer n, initialize an interval [2,n].
If (n, 2) is not in FACTORING then output “PRIME”
If (n,⌈n/2⌉) is in FACTORING then

shrink interval to [⌈n/2⌉,n] (set k := ⌈3n/4⌉)
else, shrink interval to [2,⌈n/2⌉] (set k := ⌈n/4⌉)

Keep picking k to halve the interval after each (n,k) call
to FACTORING. Takes O(log n) calls to FACTORING!

FACTORING
= { (n, k) | n > k > 1 are integers written in binary,

there is a prime factor p of n where k ≤ p < n }

10

P
NP

Decidable

coNP

FACTORING

TAUTOLOGY

SAT

CLIQUE

UNSAT

VC

SUBSET-

SUM

11

NP-complete problems:

SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, …

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, …

(NP ∩ coNP)-complete problems:

Nobody knows if they exist!

P, NP, coNP can be defined in terms of specific
machine models, and for every possible machine
we can give a simple encoding of it.

NP ∩ coNP is not known to have a
corresponding machine model!

12

Polynomial Time
With Oracles

*We do not condone smoking. Don’t do it. It’s bad. Kthxbye

NPNP

coNPNP
PNP

13

FINITE

STATE

CONTROL

INFINITE TAPE

I N P U T

q?

A

Oracle Turing Machines

Is formula
F in SAT?

yes

qYES

NPPolynomial time

14

An oracle Turing machine MB is equipped with a set
B Γ* to which a TM M may ask membership queries
on a special “oracle tape”
[Formally, MB enters a special state q?]

and the TM receives a query answer in one step
[Formally, the transition function on q? is defined in
terms of the entire oracle tape:

if the string y written on the oracle tape is in B,
then state q? is changed to qYES, otherwise qNO]

This notion makes sense even when
M runs in polynomial time and B is not in P!

Oracle Turing Machines

15

Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle B Γ* lets you
include the following kind of branching instructions:

“if (z in B) then <do something>

else <do something else>”

where z is some string defined earlier in pseudocode.
By definition, the oracle TM can always check the
condition (z in B) in one step

How to Think about Oracles?

16

Some Complexity Classes With Oracles

PB = { L | L can be decided by some
polynomial-time TM with an oracle for B }

PSAT = the class of languages decidable in
polynomial time with an oracle for SAT

PNP = the class of languages decidable by
some polynomial-time oracle TM with an
oracle for some B in NP

Let B be a language.

P

B

Is PSAT PNP?
Yes! By definition…

Every NP language can be reduced to SAT!

Let MB be a poly-time TM with oracle B NP.
We define NSAT that simulates MB step for step.
When the sim of MB makes query w to oracle B,
NSAT reduces w to a formula 𝝓𝒘 in poly-time,
then calls its oracle for SAT on 𝝓𝒘

Is PNP PSAT?
Yes!

Is NP PNP?
Yes!

Just ask the oracle for the answer!

For every L NP define an oracle TM ML which
asks the oracle if the input is in L, then outputs
the answer.

Is coNP PNP?
Yes!

Again, just ask the oracle for the answer!

For every L coNP we have ¬L NP

Define an oracle TM M¬L which asks the
oracle if the input is in ¬L

accept if the answer is no,
reject if the answer is yes

In general, PNP = PcoNP and PSAT = PUNSAT

20

For every poly-time TM M with oracle B P,
we can simulate each query z to oracle B by
simply running a polynomial-time decider for B.

Is PB P?
Yes!

PB = { L | L can be decided by a
polynomial-time TM with an oracle for B }

Suppose B is in P.

The resulting machine runs in polynomial time!

21

PNP = the class of languages decidable by
some polynomial-time oracle TM MB for
some B in NP

Informally: PNP is the class of
problems you can solve in polynomial

time, assuming a SAT solver which
gives you answers quickly

PNP = the class of languages decidable by
some polynomial-time oracle TM MB for
some B in NP

Informally, PNP is the class of problems you can
solve in polynomial time, if SAT solvers work

A problem in PNP that looks harder than SAT or TAUT:

FIRST-SAT = { (, i) | ∊ SAT and the i-th bit of the
lexicographically first SAT assignment of is 1}

Using polynomially many calls to SAT, we can
compute the lex. first satisfying assignment

Theorem FIRST-SAT is PNP-complete

Is NP = NPNP?

It is believed the answers are NO …

NPB = { L | L can be decided by a polynomial-time
nondeterministic TM with an oracle for B }

coNPB = { L | L can be decided by a poly-time
co-nondeterministic TM with an oracle for B }

Is coNPNP = NPNP?

THESE ARE OPEN QUESTIONS!

Two Boolean formulas and over the variables
x1,…,xn are equivalent if they have the same value
on every assignment to the variables

Are x and x x equivalent?

Are (x y) (x y) and x y equivalent?

Are x and x x equivalent?

Yes

No

A Boolean formula is minimal if
no smaller formula is equivalent to

(count number of ∨, ∧, ¬, and variable occurrences)

MIN-FORMULA = { | is minimal }

Logic Minimization is in coNPNP

Yes

Theorem: MIN-FORMULA coNPNP

Proof:

Define NEQUIV = { (,) | and are not equivalent }

Observation: NEQUIV NP (Why?)

Here is a coNPNEQUIV machine for MIN-FORMULA:

Given a formula ,
Try all formulas such that is smaller than .

If ((,) NEQUIV) then accept else reject

MIN-FORMULA is not known to be in coNP or NPNP

Theorem: MIN-CNF-FORMULA is coNPNP-complete

Proof: Beyond the scope of this course…

MIN-CNF-FORMULA = { | is CNF and is minimal }

Note: We don’t know if MIN-FORMULA is
coNPNP complete!

The Difficulty of Formula Minimization

P

FACTORING

coNP

TAUT

NP

SAT NPNP

coNPNP

MIN-FORMULA

PNP

Theorem [Baker, Gill, Solovay ’75]:

(2) There is an oracle A where PA ≠ NPA

(1) There is an oracle B where PB = NPB

See Sipser 9.2

Oracles and P vs NP

Moral: Any proof technique that also works to
Turing Machines with arbitrary oracles
won’t be able to resolve P versus NP!

The “Relativization Barrier”

Everything about TMs we have proved
in this class also works for TMs with arbitrary oracles.

