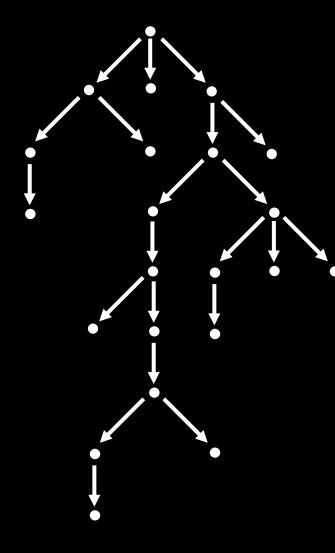


Lecture 18: More Friends of NP, Oracles in Complexity Theory

Definition: $coNP = \{ L \mid \neg L \in NP \}$

What does a coNP computation look like?



In NP algorithms, we can use a "guess" instruction in pseudocode: *Guess string y of |x|^k length...* and the machine accepts iff some y leads to an accept state

In coNP algorithms, we can use a "try all" instruction: *Try all strings y of |x|^k length...* and the machine accepts iff every y leads to an accept state **Definition:** A language B is coNP-complete if

1. $B \in coNP$

2. For every A in coNP, there is a polynomial-time reduction from A to B
(B is coNP-hard)

Can use $A \leq_P B \iff \neg A \leq_P \neg B$ to turn NP-hardness into co-NP hardness

UNSAT = { ϕ | ϕ is a Boolean formula and *no* variable assignment satisfies ϕ }

Theorem: UNSAT is coNP-complete

TAUTOLOGY = { $\phi \mid \phi$ is a Boolean formula and every variable assignment satisfies ϕ } = { $\phi \mid \neg \phi \in \text{UNSAT}$ }

Theorem: TAUTOLOGY is coNP-complete

NP \cap coNP = { L | L and \neg L \in NP } L \in NP \cap coNP means that both $x \in$ L and $x \notin$ L have "nifty proofs"

$Is P = NP \cap coNP?$

THIS IS AN OPEN QUESTION!

An Interesting Problem in NP ∩ coNP

FACTORING

= { (m, n) | m > n > 1 are integers written in binary, & there is a prime factor p of m where n ≤ p < m }</pre>

Theorem: FACTORING \in **NP** \cap **coNP**

Theorem: If FACTORING \in P, then there is a polynomial-time algorithm which, given an integer n, outputs either "n is PRIME" or a prime factor of n.

PRIMES = {n | n is a prime number written in binary}

Theorem (Pratt '70s): PRIMES \in NP \cap coNP

PRIMES is in P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena <u>Ann. of Math.</u> Volume 160, Number 2 (2004), 781-793. **Abstract**

We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite.

FACTORING

= { (n, k) | n > k > 1 are integers written in binary,
 there is a prime factor p of n where k ≤ p < n }</pre>

Theorem: FACTORING \in NP \cap coNP

Proof: (1) FACTORING \in NP

A prime factor p of n such that $p \ge k$ is a proof that (n, k) is in FACTORING (can check primality in P, can check p divides n in P)

(2) FACTORING \in coNP

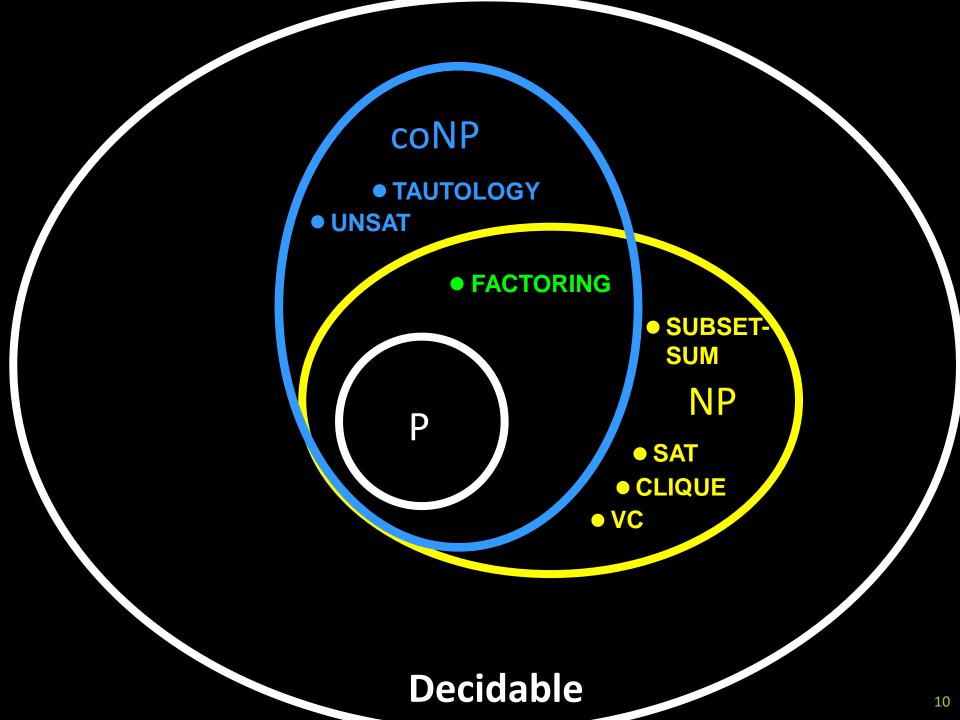
The prime factorization $p_1^{E1} \dots p_m^{Em}$ of n is a proof that (n, k) is not in FACTORING: Verify each p_i is prime in P, and that $p_1^{E1} \dots p_m^{Em} = n$ Verify that for all i=1,...,m that $p_i < k$

FACTORING

= { (n, k) | n > k > 1 are integers written in binary,
 there is a prime factor p of n where k ≤ p < n }</pre>

Theorem: If FACTORING \in P, then there is a polynomial-time algorithm which, given an integer n, outputs either "n is PRIME" or a prime factor of n.

Idea: Binary search for the prime factor! Given binary integer n, initialize an interval [2,n]. If (n, 2) is not in FACTORING then output "PRIME" If (n,[n/2]) is in FACTORING then shrink interval to [[n/2],n] (set k := [3n/4]) else, shrink interval to [2,[n/2]] (set k := [n/4]) Keep picking k to halve the interval after each (n,k) call to FACTORING. Takes O(log n) calls to FACTORING!



NP-complete problems:

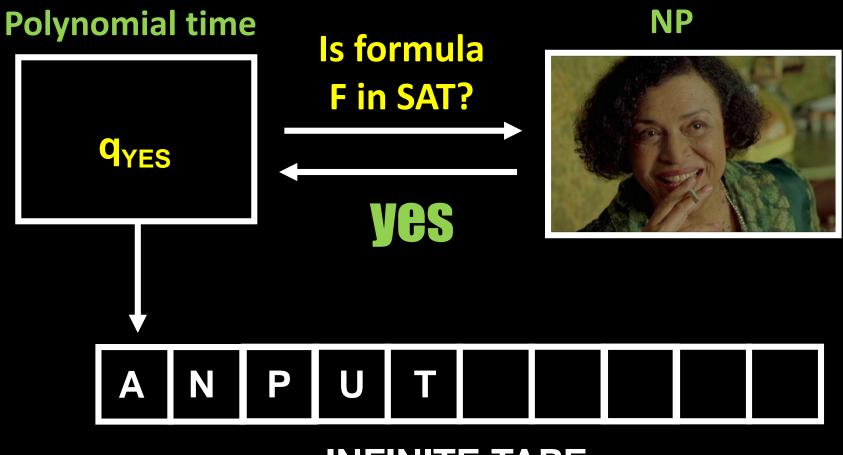
SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ... **coNP-complete** problems: UNSAT, TAUTOLOGY, NOHAMPATH, ... (NP \cap coNP)-complete problems: **Nobody knows if they exist!** P, NP, coNP can be defined in terms of specific machine models, and for every possible machine we can give a simple encoding of it.

NP ∩ coNP is *not* known to have a corresponding machine model!

Polynomial Time With Oracles

*We do not condone smoking. Don't do it. It's bad. Kthxbye

Oracle Turing Machines



INFINITE TAPE

Oracle Turing Machines

An oracle Turing machine M^B is equipped with a set $B \subseteq \Gamma^*$ to which a TM M may ask membership queries on a special "oracle tape" [Formally, M^B enters a special state q_2]

and the TM receives a query answer in one step [Formally, the transition function on q_2 is defined in terms of the *entire oracle tape*: if the string y written on the oracle tape is in B, then state q_2 is changed to q_{VFS} , otherwise q_{NO}]

This notion makes sense even when M runs in *polynomial time* and B is *not* in P!

How to Think about Oracles?

Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

"if (z in B) then <do something> else <do something else>"

where z is some string defined earlier in pseudocode. By definition, the oracle TM can always check the condition (z in B) in one step

Some Complexity Classes With Oracles

Let B be a language.

- P^B = { L | L can be decided by some polynomial-time TM with an oracle for B }
- PSAT = the class of languages decidable in polynomial time with an oracle for SAT
- PNP = the class of languages decidable by some polynomial-time oracle TM with an oracle for some B in NP

IS $P^{SAT} \subseteq P^{NP}$?

Yes! By definition...

$\frac{|\mathbf{S} \mathbf{P}^{NP} \mathbf{C}|^{\mathsf{SAT}}}{\mathsf{Yes!}}$

Every NP language can be reduced to SAT!

Let M^B be a poly-time TM with oracle $B \in NP$. We define N^{SAT} that simulates M^B step for step. When the sim of M^B makes query w to oracle B, N^{SAT} reduces w to a formula ϕ_w in poly-time, then calls its oracle for SAT on ϕ_w

$\frac{|\mathsf{IS} \mathsf{NP} \subseteq \mathsf{P}^{\mathsf{NP}}|}{\mathsf{Yes}!}$

Just ask the oracle for the answer!

For every $L \in NP$ define an oracle TM M^L which asks the oracle if the input is in L, then outputs the answer.

$\frac{|S CONP \subseteq P^{NP?}|}{|Yes!}$

Again, just ask the oracle for the answer!

For every $L \in coNP$ we have $\neg L \in NP$

Define an oracle TM M^{¬L} which asks the oracle if the input is in ¬L accept if the answer is no, reject if the answer is yes

In general, $P^{NP} = P^{coNP}$ and $P^{SAT} = P^{UNSAT}$

P^B = { L | L can be decided by a polynomial-time TM with an oracle for B }

Suppose B is in P.

$\frac{|\mathsf{IS} \mathsf{P}^\mathsf{B} \subseteq \mathsf{P}^\mathsf{P}}{\mathsf{Yes!}}$

For every poly-time TM M with oracle $B \in P$, we can simulate each query z to oracle B by simply running a polynomial-time decider for B.

The resulting machine runs in polynomial time!

PNP = the class of languages decidable by some polynomial-time oracle TM M^B for some B in NP

Informally: P^{NP} is the class of problems you can solve in polynomial time, assuming a SAT solver which gives you answers quickly PNP = the class of languages decidable by some polynomial-time oracle TM M^B for some B in NP

Informally, P^{NP} is the class of problems you can solve in polynomial time, if SAT solvers work

A problem in P^{NP} that looks harder than SAT or TAUT:

FIRST-SAT = { $(\phi, i) | \phi \in SAT$ and the i-th bit of the lexicographically first SAT assignment of ϕ is 1}

Using polynomially many calls to SAT, we can compute the lex. first satisfying assignment

Theorem FIRST-SAT is P^{NP}-complete

NP^B = { L | L can be decided by a polynomial-time nondeterministic TM with an oracle for B }

coNP^B = { L | L can be decided by a poly-time co-nondeterministic TM with an oracle for B }

$IS NP = NP^{NP}?$ $IS CONP^{NP} = NP^{NP}?$

THESE ARE OPEN QUESTIONS!

It is believed the answers are NO ...

Logic Minimization is in coNP^{NP}

Two Boolean formulas ϕ and ψ over the variables x_1, \dots, x_n are equivalent if they have the same value on every assignment to the variables

Are x and $x \lor x$ equivalent? Yes

Are x and $x \lor \neg x$ equivalent? No

Are $(x \lor \neg y) \land \neg (\neg x \land y)$ and $x \lor \neg y$ equivalent? Yes

A Boolean formula φ is minimal if no *smaller* formula is equivalent to φ (count number of ∨, ∧, ¬, and variable occurrences)

MIN-FORMULA = { ϕ | ϕ is minimal }

Theorem: MIN-FORMULA \in coNP^{NP}

Proof:

Define NEQUIV = { $(\phi, \psi) \mid \phi$ and ψ are not equivalent } Observation: NEQUIV \in NP (Why?)

Here is a **coNP**^{NEQUIV} machine for MIN-FORMULA:

Given a formula ϕ , *Try all formulas* ψ such that ψ is smaller than ϕ . If ((ϕ , ψ) \in NEQUIV) then *accept* else *reject*

MIN-FORMULA is not known to be in coNP or NP^{NP}

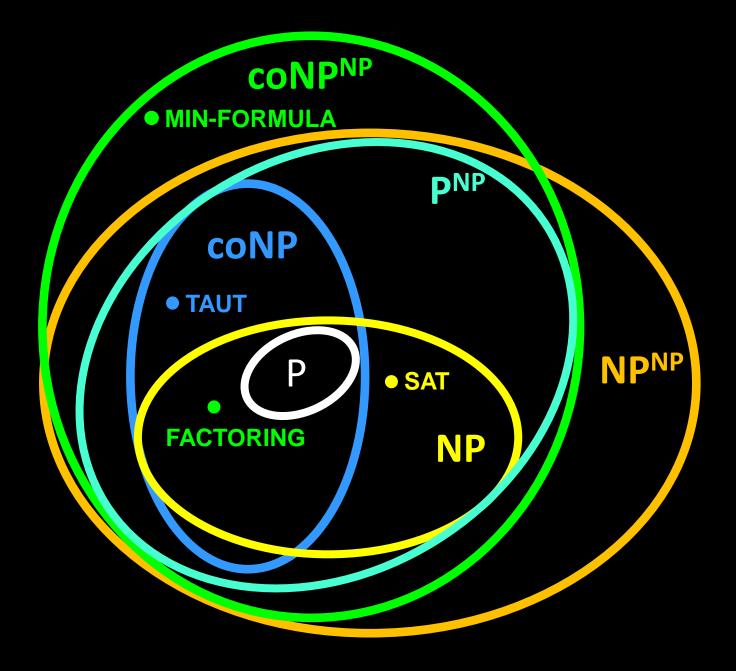
The Difficulty of Formula Minimization

MIN-CNF-FORMULA = { ϕ | ϕ is CNF and is minimal }

Theorem: MIN-CNF-FORMULA is coNPNP-complete

Proof: Beyond the scope of this course...

Note: We don't know if MIN-FORMULA is coNP^{NP} complete!



Oracles and P vs NP

Everything about TMs we have proved in this class also works for TMs with arbitrary oracles. **Theorem [Baker, Gill, Solovay '75]:** (1) There is an oracle B where P^B = NP^B (2) There is an oracle A where $P^A \neq NP^A$ See Sipser 9.2 Moral: Any proof technique that also works to **Turing Machines with arbitrary oracles** won't be able to resolve P versus NP! THE "RELATIVIZATION BARRIER"