
1

Lecture 18:
More Friends of NP,

Oracles in Complexity Theory

6.045
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Definition: coNP = { L | L  NP }

In NP algorithms, we can use a 
“guess” instruction in pseudocode:
Guess string y of |x|k length…
and the machine accepts iff some y 
leads to an accept state

In coNP algorithms, we can use a 
“try all” instruction:
Try all strings y of |x|k length…
and the machine accepts iff every y 
leads to an accept state

What does a coNP computation look like?
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Definition: A language B is coNP-complete if

1. B  coNP

2. For every A in coNP, there is a 
polynomial-time reduction from A to B

(B is coNP-hard)

Can use  A ≤𝑷 B    ¬A ≤𝑷 ¬B 
to turn NP-hardness into co-NP hardness
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TAUTOLOGY = {  |  is a Boolean formula and 
every variable assignment satisfies  }  

= { |   UNSAT}

Theorem: TAUTOLOGY is coNP-complete

UNSAT = {  |  is a Boolean formula and no
variable assignment satisfies  }

Theorem: UNSAT is coNP-complete
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Is P = NP ∩ coNP?

THIS IS AN OPEN QUESTION!

NP ∩ coNP = { L | L and L  NP }

L ∈ NP ∩ coNP means that
both 𝒙 ∈ L and 𝒙 ∉ L have “nifty proofs”
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FACTORING
=  { (m, n) | m > n > 1 are integers written in binary, 

& there is a prime factor p of m where n ≤ p < m }

Theorem: FACTORING ∈ NP ∩ coNP

An Interesting Problem in NP ∩ coNP

Theorem:  If FACTORING ∈ P, then there is 
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.
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PRIMES = {n | n is a prime number
written in binary}

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena
Ann. of Math. Volume 160, Number 2 (2004), 781-793. 
Abstract 
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input 
number is prime or composite.

Theorem (Pratt ‘70s): PRIMES ∈ NP ∩ coNP

http://projecteuclid.org/handle/euclid.annm


Theorem: FACTORING  NP ∩ coNP

Proof:   (1) FACTORING  NP

(2) FACTORING  coNP

A prime factor p of n such that p ≥ k is a proof that 
(n, k) is in FACTORING  
(can check primality in P, can check p divides n in P)

The prime factorization p1
E1 … pm

Em of n is a proof 
that (n, k) is not in FACTORING:

Verify each pi is prime in P, and that p1
E1 … pm

Em = n
Verify that for all i=1,…,m  that pi < k

FACTORING
=  { (n, k) | n > k > 1 are integers written in binary, 

there is a prime factor p of n where k ≤ p < n }



Theorem:  If FACTORING  P, then there is 
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

Idea: Binary search for the prime factor! 
Given binary integer n, initialize an interval [2,n].
If (n, 2) is not in FACTORING then output “PRIME”
If (n,⌈n/2⌉) is in FACTORING then 

shrink interval to [⌈n/2⌉,n] (set k := ⌈3n/4⌉)
else, shrink interval to [2,⌈n/2⌉] (set k := ⌈n/4⌉)

Keep picking k to halve the interval after each (n,k) call 
to FACTORING. Takes O(log n) calls to FACTORING!

FACTORING
=  { (n, k) | n > k > 1 are integers written in binary, 

there is a prime factor p of n where k ≤ p < n }
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NP-complete problems:

SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, …

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, …

(NP ∩ coNP)-complete problems:

Nobody knows if they exist!

P, NP, coNP can be defined in terms of specific 
machine models, and for every possible machine 
we can give a simple encoding of it.

NP ∩ coNP is not known to have a 
corresponding machine model!
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Polynomial Time 
With Oracles

*We do not condone smoking. Don’t do it. It’s bad. Kthxbye

NPNP

coNPNP
PNP
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An oracle Turing machine MB is equipped with a set 
B  Γ* to which a TM M may ask membership queries 
on a special “oracle tape”
[Formally, MB enters a special state q?]

and the TM receives a query answer in one step
[Formally, the transition function on q? is defined in 
terms of the entire oracle tape:

if the string y written on the oracle tape is in B, 
then state q? is changed to qYES, otherwise qNO]

This notion makes sense even when 
M runs in polynomial time and B is not in P!

Oracle Turing Machines
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Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle B  Γ* lets you 
include the following kind of branching instructions:

“if (z in B) then <do something> 

else <do something else>”

where z is some string defined earlier in pseudocode. 
By definition, the oracle TM can always check the 
condition (z in B) in one step

How to Think about Oracles?
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Some Complexity Classes With Oracles

PB =  { L | L can be decided by some 
polynomial-time TM with an oracle for B }

PSAT =  the class of languages decidable in 
polynomial time with an oracle for SAT

PNP =  the class of languages decidable by 
some polynomial-time oracle TM with an 
oracle for some B in NP

Let B be a language.

P

B



Is PSAT  PNP?
Yes! By definition…

Every NP language can be reduced to SAT!

Let MB be a poly-time TM with oracle B  NP. 
We define NSAT that simulates MB step for step. 
When the sim of MB makes query w to oracle B, 
NSAT reduces w to a formula 𝝓𝒘 in poly-time, 
then calls its oracle for SAT on 𝝓𝒘

Is PNP  PSAT?
Yes! 



Is NP  PNP?
Yes!

Just ask the oracle for the answer!

For every L  NP define an oracle TM ML which 
asks the oracle if the input is in L, then outputs 
the answer. 



Is coNP  PNP?
Yes!

Again, just ask the oracle for the answer! 

For every L  coNP we have ¬L  NP

Define an oracle TM M¬L which asks the 
oracle if the input is in ¬L

accept if the answer is no,
reject if the answer is yes

In general, PNP = PcoNP and PSAT = PUNSAT
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For every poly-time TM M with oracle B  P, 
we can simulate each query z to oracle B by 
simply running a polynomial-time decider for B. 

Is PB  P?
Yes! 

PB = { L | L can be decided by a 
polynomial-time TM with an oracle for B }

Suppose B is in P.

The resulting machine runs in polynomial time!
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PNP =  the class of languages decidable by 
some polynomial-time oracle TM MB for  
some B in NP

Informally: PNP is the class of 
problems you can solve in polynomial 

time, assuming a SAT solver which  
gives you answers quickly



PNP =  the class of languages decidable by 
some polynomial-time oracle TM MB for  
some B in NP

Informally, PNP is the class of problems you can 
solve in polynomial time, if SAT solvers work

A problem in PNP that looks harder than SAT or TAUT:

FIRST-SAT = { (, i) |  ∊ SAT and the i-th bit of the 
lexicographically first SAT assignment of  is 1}

Using polynomially many calls to SAT, we can 
compute the lex. first satisfying assignment

Theorem FIRST-SAT is PNP-complete



Is NP = NPNP?

It is believed the answers are NO …

NPB = { L | L can be decided by a polynomial-time
nondeterministic TM with an oracle for B }

coNPB = { L | L can be decided by a poly-time
co-nondeterministic TM with an oracle for B }

Is coNPNP = NPNP?

THESE ARE OPEN QUESTIONS!



Two Boolean formulas  and  over the variables 
x1,…,xn are equivalent if they have the same value 
on every assignment to the variables

Are x and x  x equivalent?

Are (x  y)  (x  y) and x  y equivalent?

Are x and x  x equivalent?

Yes

No

A Boolean formula  is minimal if 
no smaller formula is equivalent to 

(count number of ∨, ∧, ¬, and variable occurrences)

MIN-FORMULA = {  |  is minimal }

Logic Minimization is in coNPNP

Yes



Theorem: MIN-FORMULA  coNPNP

Proof:

Define NEQUIV = { (, ) |  and  are not equivalent }

Observation: NEQUIV  NP   (Why?)

Here is a coNPNEQUIV machine for MIN-FORMULA:

Given a formula ,
Try all formulas  such that  is smaller than .

If ((, )  NEQUIV) then accept else reject

MIN-FORMULA is not known to be in coNP or NPNP



Theorem: MIN-CNF-FORMULA is coNPNP-complete

Proof: Beyond the scope of this course… 

MIN-CNF-FORMULA = {  |  is CNF and is minimal }

Note: We don’t know if MIN-FORMULA is 
coNPNP complete!

The Difficulty of Formula Minimization
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Theorem [Baker, Gill, Solovay ’75]:

(2) There is an oracle A where PA ≠ NPA

(1) There is an oracle B where PB = NPB

See Sipser 9.2

Oracles and P vs NP

Moral: Any proof technique that also works to
Turing Machines with arbitrary oracles 
won’t be able to resolve P versus NP!

The “Relativization Barrier”

Everything about TMs we have proved 
in this class also works for TMs with arbitrary oracles.


