6.045

Lecture 18:
More Friends of NP,
Oracles in Complexity Theory

Definition: coNP={L | —L € NP }

What does a coNP computation look like?

/I\ In NP algorithms, we can use a

/’\‘ * “guess” instruction in pseudocode:
. l\. Guess string y of [x [length...

1 / \ and the machine accepts iff some y

I /I\ leads to an accept state
/1 | In coNP algorithms, we can use a
) I * “try all” instruction:
. Try all strings y of [x[* length...

./ \ and the machine accepts iff every y
1 leads to an accept state

Definition: A language B is coNP-complete if

1. B € coNP

2. For every A in coNP, there is a
polynomial-time reduction from Ato B
(B is coNP-hard)

Canuse A<pB <& —A<p-B
to turn NP-hardness into co-NP hardness

UNSAT ={ ¢ | ¢ is a Boolean formula and no
variable assighment satisfies ¢ }

Theorem: UNSAT is coNP-complete

TAUTOLOGY ={ ¢ | ¢ is a Boolean formula and
every variable assignment satisfies ¢ }
= {0 | ¢ € UNSAT}

Theorem: TAUTOLOGY is coNP-complete

NPNcoNP={L|Land—L € NP}

L € NP N coNP means that
both x € L and x & L have “nifty proofs”

Is P= NP N coNP?

THIS IS AN OPEN QUESTION!

An Interesting Problem in NP N coNP

FACTORING
= {(m, n) | m>n > 1 are integers written in binary,
& there is a prime factor p of mwheren<p <m}

Theorem: FACTORING € NP N coNP

Theorem: If FACTORING € P, then there is
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

PRIMES ={n | nis a prime number
written in binary}

Theorem (Pratt ‘70s): PRIMES € NP N coNP

PRIMES isin P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena

Ann. of Math. Volume 160, Number 2 (2004), 781-793.
Abstract

We present an unconditional deterministic polynomial-
time algorithm that determines whether an input
number is prime or composite.

http://projecteuclid.org/handle/euclid.annm

FACTORING
= {(n, k) | n>k >1 are integers written in binary,
there is a prime factor p of n where k<p<n}

Theorem: FACTORING € NP N coNP

Proof: (1) FACTORING € NP

A prime factor p of n such that p = k is a proof that
(n, k) is in FACTORING

(can check primality in P, can check p divides n in P)
(2) FACTORING € coNP

The prime factorization p,E!l ... p,_Em of n is a proof

that (n, k) is not in FACTORING:
Verify each p, is prime in P, and that p,E1 ... p_Em =n
Verify that for all i=1,...,m that p, <k

FACTORING
= {(n, k) | n>k > 1 are integers written in binary,
there is a prime factor p of n where k<p<n}

Theorem: If FACTORING € P, then there is
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

Idea: Binary search for the prime factor!
Given binary integer n, initialize an interval [2,n].
If (n, 2) is not in FACTORING then output “PRIME”
If (n,[n/2]) is in FACTORING then

shrink interval to [[n/2],n] (set k := [3n/4])

else, shrink interval to [2,[n/2]] (set k := [n/4])
Keep picking k to halve the interval after each (n,k) call
to FACTORING. Takes O(log n) calls to FACTORING!

coNP

® TAUTOLOGY
® UNSAT

® FACTORING

® CLIQUE
e\VC

Decidable

10

NP-complete problems:
SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...

coNP-complete problems:
UNSAT, TAUTOLOGY, NOHAMPATH, ...

(NP N coNP)-complete problems:
Nobody knows if they exist!

P, NP, coNP can be defined in terms of specific
machine models, and for every possible machine
we can give a simple encoding of it.

NP N coNP is not known to have a
corresponding machine model!

11

Polynomial Time
With Oracles

*We do not condone smoking. Don’t do it. It’s bad. Kthxbye

12

Oracle Turing Machines

Polynomial time
Is formula

F in SAT?

Oves

alndefulr] P[]

INFINITE TAPE

13

Oracle Turing Machines

An oracle Turing machine M8 is equipped with a set

B < I'’* to which a TM M may ask membership queries
on a special “oracle tape”

[Formally, M® enters a special state q,]

and the TM receives a query answer in one step
[Formally, the transition function on q, is defined in
terms of the entire oracle tape:

if the string y written on the oracle tape is in B,
then state q, is changed to qy,, otherwise q,]

This notion makes sense even when
M runs in polynomial time and B is not in P!

14

How to Think about Oracles?

Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle B c I'* lets you
include the following kind of branching instructions:

“if (z in B) then <do something>
else <do something else>”

where z is some string defined earlier in pseudocode.
By definition, the oracle TM can always check the
condition (z In B) in one step

15

Some Complexity Classes With Oracles

Let B be a language. B

PB = {L| Lcanbe decided by some P’
polynomial-time TM with an oracle for B }

PSAT = the class of languages decidable in
polynomial time with an oracle for SAT

PNP = the class of languages decidable by
some polynomial-time oracle TM with an
oracle for some B in NP

16

Is PSAT — pNP?

Yes! By definition...

Is PNP — PoAT?

Yes!
Every NP language can be reduced to SAT!

Let MB be a poly-time TM with oracle B € NP.
We define N°AT that simulates MB step for step.
When the sim of MB makes query w to oracle B,
N3AT reduces w to a formula ¢, in poly-time,
then calls its oracle for SAT on ¢,

Is NP — PNP?

Yes!

Just ask the oracle for the answer!

For every L € NP define an oracle TM M" which
asks the oracle if the input is in L, then outputs
the answer.

Is coNP — PNP?

Yes!
Again, just ask the oracle for the answer!

For every L € coNP we have 1L € NP

Define an oracle TM M™ which asks the
oracle if the input is in 1L

accept if the answer is no,

reject if the answer is yes

In general, PNP = PcoNP 5 PSAT = pUNSAT

P2 ={L| Lcan be decided by a
polynomial-time TM with an oracle for B }

Suppose Bis in P.
Is P2 — P?
Yes!

For every poly-time TM M with oracle B € P,
we can simulate each query z to oracle B by
simply running a polynomial-time decider for B.

The resulting machine runs in polynomial time!

20

PNP = the class of languages decidable by
some polynomial-time oracle TM M® for
some B in NP

Informally: PNP is the class of
problems you can solve in polynomial
time, assuming a SAT solver which
gives you answers quickly

21

PNP = the class of languages decidable by
some polynomial-time oracle TM M® for
some B in NP

Informally, PNP is the class of problems you can
solve in polynomial time, if SAT solvers work

A problem in PNP that looks harder than SAT or TAUT:

FIRST-SAT ={ (0, i) | ¢ € SAT and the i-th bit of the
lexicographically first SAT assignment of ¢ is 1}

Using polynomially many calls to SAT, we can
compute the lex. first satisfying assighnment

Theorem FIRST-SAT is PNP-complete

NPB ={L | L can be decided by a polynomial-time
nondeterministic TM with an oracle for B }

coNPB={L | L can be decided by a poly-time
co-nondeterministic TM with an oracle for B }

Is NP = NPNP?
Is coNPNP = NPNP?

THESE ARE OPEN QUESTIONS!

It is believed the answers are NO ...

Logic Minimization is in coNPNP

Two Boolean formulas ¢ and y over the variables
X,,..,X,, are equivalent if they have the same value
on every assignment to the variables

Are x and x v x equivalent? Yes

Are x and x v —x equivalent? No

Are (x v —y) A =(—x A Y) and x v —y equivalent? Yes

A Boolean formula ¢ is minimal if

no smaller formula is equivalent to ¢
(count number of Vv, A, 5, and variable occurrences)

MIN-FORMULA ={ ¢ | ¢ is minimal }

Theorem: MIN-FORMULA € coNPNP

Proof:
Define NEQUIV ={ (¢, v) | ¢ and y are not equivalent }

Observation: NEQUIV € NP (Why?)
Here is a coNPNEQUIV machine for MIN-FORMULA:

Given a formula ¢,
Try all formulas y such that y is smaller than ¢.
If ((¢, v) € NEQUIV) then accept else reject

MIN-FORMULA is not known to be in coNP or NPNP

The Difficulty of Formula Minimization

MIN-CNF-FORMULA ={ ¢ | ¢ is CNF and is minimal }

Theorem: MIN-CNF-FORMULA is coNP"P-complete

Proof: Beyond the scope of this course...

Note: We don’t know if MIN-FORMULA is
coNPNP complete!

Oracles and P vs NP

Everything about TMs we have proved
in this class also works for TMs with arbitrary oracles.

Theorem [Baker, Gill, Solovay ’75]:
(1) There is an oracle B where P® = NP®
(2) There is an oracle A where P* # NP*

See Sipser 9.2

Moral: Any proof technique that also works to
Turing Machines with arbitrary oracles
won’t be able to resolve P versus NP!

(0 THE ‘RELATIVIZATION PARRIER"

