
1

Lecture 19:
Space Complexity

6.045

2

P

FACTORING

coNP

TAUT

NP

SAT NPNP

coNPNP

MIN-FORMULA

PNP

FIRST-SAT

3

Space Problems

4

Measuring Space Complexity

We measure space complexity by finding the
largest tape index reached during the computation

FINITE

STATE

CONTROL

1 2 3 4 5 6 7 8 9 10 …

I N P U T …

5

Let M be a deterministic Turing machine
(not necessarily halting)

Definition: The space complexity of M is the
function 𝑺 : ℕ→ ℕ, where 𝑺(𝒏) is the largest tape
index reached by M on any input of length 𝒏.

{ L | L is decided by a Turing machine with
O(𝑺(𝒏)) space complexity}

Definition: SPACE(𝑺(𝒏)) =

6

Theorem: 3SAT  SPACE(n)

Proof Idea: Given formula 𝝓 of length 𝒏, try
all possible assignments A to the (at most 𝒏)
variables. Evaluate 𝝓 on each A, and accept
iff you find A such that 𝝓(A) = 1.
All of this can be done in O(n) space.

Theorem: NTIME(t(n)) is in SPACE(t(n))

Proof Idea: Try all possible computation
paths of t(n) steps for an NTM on length-n
input. This can be done in O(t(n)) space
(store a sequence of t(n) transitions).

7

Theorem: Let s : ℕ→ ℕ satisfy s(n)  n, for all n.
Then every s(n) space multi-tape TM has an
equivalent O(s(n)) space one-tape TM

The simulation of multitape TMs
by one-tape TMs already achieves this!

Corollary: The number of tapes doesn’t matter for
space complexity!

One tape TMs are as good as any other model!

One Tape vs Many Tapes

8

Intuition: If you have more space to work with,
then you can solve strictly more problems!

Space Hierarchy Theorem

Theorem: For functions s, S : ℕ → ℕ where s(n)/S(n) → 0

SPACE(s(n)) ⊊ SPACE(S(n))

Proof Idea: Diagonalization
Make a Turing machine N that on input M, simulates
the TM M on input <M> using up to S(|M|) space,
then flips the answer.

Show L(N) is in SPACE(S(n)) but not in SPACE(s(n))

9

P  NP  PSPACE

PSPACE = SPACE(nk)
k  N

Since for every k, NTIME(nk) is in SPACE(nk),
we have:

10

The class PSPACE formalizes the set of problems
solvable by computers with bounded memory.

SPACE(n2) problems could potentially take
much longer than nc time to solve, for any c!

Intuition: You can always re-use
space, but how can you re-use time?

Is P = PSPACE?

Fundamental (Unanswered) Question:
How does time relate to space, in computing?

11

Let M be a halting TM with S(n) space complexity

How many time steps could M possibly take
on inputs of length n? Is there an upper bound?

The number of time steps is at most
the total number of possible configurations!

(If a configuration repeats, the machine is looping!)

S(n) |Q| |Γ|S(n) = 2O(S(n))

A configuration of M specifies a
head position, state, and S(n) cells of tape content.

The total number of configurations is at most:

Time Complexity of SPACE[S(n)]

12

Theorem:
For every space-S(n) TM, there is a TM
running in 2O(S(n)) time that decides the

same language.

SPACE(s(n))  TIME(2c ¢ s(n))

Proof Idea: For each s(n)-space bounded TM M
there is a c > 0 so that on all inputs x, if M runs for

more than 2c s(|x|) time steps on x, then M must have
repeated a configuration, so M will never halt.

c  N

13

EXPTIME = TIME(2)
k  N

nk

PSPACE  EXPTIME

PSPACE = SPACE(nk)
k  N

14

Is NPNP  PSPACE?

YES

And coNPNP  PSPACE!

P  NP  PSPACE

15

Example: MIN-FORMULA is in PSPACE

Recall the coNPNP algorithm for MIN-FORMULA:

Can store a formula  in space O(||)

MIN-FORMULA = {  |  is minimal }

Given a formula ,
Try all formulas  such that  is smaller than .

If ((, )  NEQUIV) then accept else reject

Can check (, )  NEQUIV by trying all
assignments to the variables of  and 

Can store a variable assignment in space O(||)

Evaluating  or  on an assignment uses O(||) space

16

P

PSPACE

FACTORING

coNP

TAUT

NP

SAT NPNP

coNPNP

MIN-FORMULA

PNP

EXPTIME

FIRST-SAT

17

P  NP  PSPACE  EXPTIME

Theorem: P ≠ EXPTIME

Why? The Time Hierarchy Theorem!

TIME(2n)  P
Therefore P ≠ EXPTIME

Corollary: At least one of the following is true:

P ≠ NP, NP ≠ PSPACE, or PSPACE ≠ EXPTIME

Proving any one of them would be major!

18

PSPACE

and Nondeterminism

19

{ L | L is decided by a non-deterministic
Turing Machine with O(s(n)) space complexity}

Definition: SPACE(s(n)) =

Definition: NSPACE(s(n)) =

{ L | L is decided by a Turing machine with
O(s(n)) space complexity}

20

Recall:
Space S(n) computations can be

simulated in at most 2O(S(n)) time steps

SPACE(s(n))  TIME(2c ¢ s(n))

Idea: After 2O(s(n)) time steps, a s(n)-space bounded
computation must have repeated a configuration,

after which it will provably never halt.

c  N

21

Theorem:
NSPACE S(n) computations can also be
simulated in at most 2O(S(n)) time steps

NSPACE(s(n))  TIME(2c ¢ s(n))

Key Idea: Think of the problem of simulating
NSPACE(s(n)) as a problem on graphs.

c  N

22

Def: The configuration graph of M on x
has nodes 𝑪 for every configuration 𝑪 of M on x,
and edges (𝑪, 𝑪’) if and only if 𝑪 yields 𝑪’

𝑮𝑴,𝒙 M has space
complexity 𝑺(n)

⇒ 𝑮𝑴,𝒙 has

𝟐𝒅⋅𝑺(𝒙) nodes

M is deterministic
⇒ every node has

outdegree ≤ 1

M is nondeterministic
⇒ some nodes may
have outdegree > 1

M accepts x  there is a path in
𝑮𝑴,𝒙 from the initial configuration
node to a node in an accept state

23

Def: The configuration graph of M on x
has nodes 𝑪 for every configuration 𝑪 of M on x,
and edges (𝑪, 𝑪’) if and only if 𝑪 yields 𝑪’

𝑮𝑴,𝒙 M has space
complexity 𝑺(n)

⇒ 𝑮𝑴,𝒙 has

𝟐𝒅⋅𝑺(𝒙) nodes

M is deterministic
⇒ every node has

outdegree ≤ 1

M is nondeterministic
⇒ some nodes may
have outdegree > 1

To simulate a non-deterministic M

in 𝟐𝑶(𝑺 𝒙) time: do BFS in 𝑮𝑴,𝒙

from the initial configuration!

24

PSPACE = SPACE(nk)
k  N

NPSPACE = NSPACE(nk)
k  N

25

SPACE versus NSPACE

Is NTIME(n)  TIME(n2)?

Is NTIME(n)  TIME(nk) for some k > 1?

Nobody knows!

If the answer is yes, then P = NP in fact!
What about the space-bounded setting?

Is NSPACE(s(n))  SPACE(s(n)k)
for some k? Is PSPACE = NPSPACE?

26

Savitch’s Theorem

Theorem: For functions s(n) where s(n)  n

NSPACE(s(n))  SPACE(s(n)2)

Proof Try:

Let N be a non-deterministic TM with space
complexity s(n)

Construct a deterministic machine M that tries
every possible branch of N

Since each branch of N uses space at most s(n),
then M uses space at most s(n)…?

There are 2^(2s(n)) branches to keep track of!

27

Given configurations C1 and C2 of a s(n) space machine N,
and a number k (in binary), want to know
if N can get from C1 to C2 within 2k steps

Procedure SIM(C1, C2, k):

If k = 0 then accept iff C1 = C2 or
C1 yields C2 within one step.

If k > 0, then for every config Cm of O(s(n)) symbols,
if SIM(C1,Cm,k-1) and SIM(Cm,C2,k-1) accept

then return accept
return reject if no such Cm is found

[uses space O(s(n))]

SIM(C1, C2, k) has O(k) levels of recursion
Each level of recursion uses O(s(n)) additional space.
Theorem: SIM(C1, C2, k) uses only O(k ⋅ s(n)) space

28

Proof:

Let N be a nondeterministic TM using s(n) space

M(w): For all configurations Ca of N(w) in the accept state,
If SIM(qow, Ca, d s(|w|)) accepts, then accept

else reject

Theorem: For functions s(n) where s(n)  n

NSPACE(s(n))  SPACE(s(n)2)

Let d > 0 be such that the number of
configurations of N(w) is at most 2d s(|w|)

Claim: L(M) = L(N) and M uses O(s(n)2) space

Here’s a deterministic O(s(n)2) space algorithm for N:

29

Proof:

Let N be a nondeterministic TM using s(n) space

M(w): For all configurations Ca of N(w) in the accept state,
If SIM(qow, Ca, d s(|w|)) accepts, then accept

else reject

Theorem: For functions s(n) where s(n)  n

NSPACE(s(n))  SPACE(s(n)2)

Here’s a deterministic O(s(n)2) space algorithm for N:

Why does it take only s(n)2 space?

Let d > 0 be such that the number of
configurations of N(w) is at most 2d s(|w|)

30

Proof:

Let N be a nondeterministic TM using s(n) space

M(w): For all configurations Ca of N(w) in the accept state,
If SIM(qow, Ca, d s(|w|)) accepts, then accept

else reject

Theorem: For functions s(n) where s(n)  n

NSPACE(s(n))  SPACE(s(n)2)

Here’s a deterministic O(s(n)2) space algorithm for N:

SIM uses O(k ⋅ s(|w|)) space to simulate 2k steps of N(w).

For k = d s(|w|) we have O(k ⋅ s(|w|)) ≤ O(s(|w|)2) space

Let d > 0 be such that the number of
configurations of N(w) is at most 2d s(|w|)

31

PSPACE = SPACE(nk)
k  N

NPSPACE = NSPACE(nk)
k  N

PSPACE = NPSPACE!

