6.045

Lecture 2:
Finite Automata and
Nondeterminism

6.045

Problem Set 0 is coming out soon!
Look for it on Piazza

Recitations start tomorrow

6.045

Hot Topics in Computing talk:

4:00 - 5:00pm
CSAIL's Patil Conference Room (32-G449).

Scott Aaronson on Quantum Computational
Supremacy and Its Applications

Read string left to right DFA with 2 states
()

h

iy @ 1 @

The DFA accepts a string x if the process on x
ends in a double circle

Above DFA accepts exactly those strings
with an odd number of 1s

Definition. A DFA is a 5-tuple M =(Q, Z, 9, q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)

0 :Q x Z— Q isthe transition function
d, € Qis the start state
F — Qis the set of accept/final states

A DFA is a 5-tuple M = (Q, Z, §, q,, F)

= W, e *
letw,,...,w,eZand w=w,---w, €2

M accepts w if the (unique) path starting from q,
with edge labels w,, ..., w_ends in a state in F.

‘ M rejects w iff M does not accept w \

L(M) = set of all strings that M accepts
= “the language recognized by M”

Definition: A language L is regular
if L' is recognized by a DFA;
that is, there is a DFA M where L' = L(M).

Theorem: The union of two regular languages (over 2)
is also a regular language (over %)

Proof: Let
M, =(Q,, Z, 84, do, F{) be afinite automaton for L,
and
M, =(Q,, Z, 3,, q’y, F,) be a finite automaton for L,

We want to construct a finite automaton
M= (Q, Z, 5, py, F) that recognizesL=L, UL,

Proof Idea: Run both M, and M, “in parallel”!

M, =(Q,, 2, 0, q9, F1) recognizesL; and
M, =(Q,, Z, 5,, 9y, F,) recognizeslL,
Define M as follows:

Q ={(as,92) |a; < Qi and q; € Q, }
=Q, x Q,

Po = (dos q’0)

F={(a,a;)|q,F; OR q; € F;}

6((94,d2), ©) = (34(q4,), 62(d2; ©))

How would you
prove
that this works?

Prove by induction on |x|:
M on x reaches state (p,q) & M, on x reaches state p
AND M, on x reaches state q

Intersection Theorem for Regular Languages

Given two languages, L, and L,, define the
intersection of L, and L, as

L,nL,={w|wel,and wel,}

Theorem: The intersection of two regular
languages is also a regular language

Idea: Simulate in parallel as before, but
re-define F={(9,9,)| 9, € F; AND q, € F, }

Union Theorem for Regular Languages

The union of two regular languages is
also a regular language

“Regular Languages are closed under union”

Intersection Theorem for Regular Languages

The intersection of two regular languages
is also a regular language

Complement Theorem for Regular Languages

The complement of a regular language
is also a regular language

In other words,
if A is regular than so is —A,

where -A={wcZ* |wgA}

Proof Idea: Flip the final and non-final states!

We can do much more...

The Reverse of a Language

Reverse of A:
AR={w,---w, |w, -w,eA w e}
Example: {0,10,110,0101}} = {0,01,011,1010}

Intuition: If A is recognized by a DFA,
then AR is recognized by a “backwards” DFA that
reads its strings from right to left!

Question: If A is regular, then is AR also regular?

Can every “Right-to-Left” DFA be replaced
by a normal “Left-to-Right” DFA?

0,1

Q- C
\

O

L(M) = { w | w begins with 1}

Suppose M reads its input from right to left...
Then L(M) = {w | w ends with a 1}. Is this reqular?

Reverse Theorem for Regular Languages

The reverse of a regular language is
also a regular language!

“Regular Languages Are Closed Under Reverse”

For every language that can be recognized by a
DFA that reads its input from right to left,
there is an “normal” left-to-right DFA recognizing
that same language

Counterintuitive! DFAs have finite memory...

Strings can be much longer than the number of states

Reversing DFAs?

Let L be a regular language,
let M be a DFA that recognizes L

We want to build a DFA MR that recognizes L®

Know: M accepts w <~ w describes a directed path in M
from start state to an accept state

Want: MRaccepts wR < M accepts w

First Attempt:
Try to define MR as M with all the arrows reversed!
Turn start state into a final state,
turn final states into start states

Problem: MR IS NOT ALWAYS A DFA!

It could have many start states

Some states may have
more than one
transition for a given symbol,
or it may have no transition at all!

Non-determinigtic Finite Automata (NFA)

What happens with 100?

We will say this new kind of machine accepts string x
if there is some path reading in x that
reaches some accept state from some start state

Non-determinigtic Finite Automata (NFA)

A A D
OFO+0+-0O

t

Then, this machine recognizes: {w | w contains 100}

We will say this new kind of machine accepts string x
if there is some path reading in x that
reaches some accept state from some start state

Another Example of an NFA

0.1 &-transition 0,1

N
_.Q&QL.Q

At each state, we’ll allow any number (including
zero) of out-arrows for letters o € Z, including €

Set of strings accepted by this NFA = {w | w contains a 0}

Multiple Start States

We allow multiple start states for NFAs,
and Sipser allows only one

Can easily convert NFA with many start
states into one with a single start state:

}

Loy O
YN

@O0 60

' A non-deterministic finite automaton (NFA) is a
5-tuple N =(Q, 2, 9, Q,, F) where

Q is the set of states

2 is the alphabet Not deterministic!
0:Qx Z_— 292 is the transition function

Q, < Qis the set of start states

F — Qis the set of accept states

22 is the set of all possible subsets of Q
2. =2V {g}

&

1
—
\ of N =(Q, %, 5, Q, F)

Q = {q1! d2; 43, q4}

T = {0,1}

0
f Q, = {q,, 95}
— F ={q,)

6(d,,1) ={ds} 5(q,1) =T
Set of strings 8(qs,1) = &

accepted = {1,00,01} 5(0,.0) = {qs)
1’ =

N

Def. Let we Z*. Let N be an NFA. N accepts w if
there’s a sequence of statesr,, ry, ..., r, € Q
and w can be written as w, --- w, withw, € 2 U {g}

such that
ro € Qq
r,eofr_, w)foralli=1,..., k, and
r.€F

L(N) =the language recognized by N
= set of all strings that NFA N accepts

A language L' is recognized by an NFA N
if L = L(N).

Def. Let we Z*. Let N be an NFA.
N accepts w if there’s some path of states in N,
from a state in Q, to a state in F,
with edges labeled w, --- w, with w, € 2 U {g}
such thatw=w, --- w,

L(N) =the language recognized by N
= set of all strings that NFA N accepts

A language L' is recognized by an NFA N
if L = L(N).

Deterministic Non-Deterministic

Computation Computation
% “Massive Parallelism”
:
£ reject £ reject
| AN
| reject |
accept or reject accept

Are these equally powerful???

NFAs are generally simpler than DFAs

A (minimal) DFA recognizing
the language {1} 0

/\m
-~

An NFA recognizing the language {1}

_.Q_1.©

Every NFA can be perfectly simulated

by some DFA! -

Theorem: For every NFA N, thereisa DFA M
such that L(M) = L(N)

Corollary: A language A is regular
if and only if A is recognized by an NFA

Corollary: A is regular iff AR is regular
left-to-right DFAs = right-to-left DFAs

From NFAs to DFAs
Input: NFAN = (Q, 2, 5, Q,, F)
Output: DFAM = (Q/, 2, &', q,', F')

N\
SININ

LN

To learn if NFA N accepts, our
M will do the computation of
N in parallel, maintaining the
set of all possible states of N
that can be reached so far

Idea:

Set Q' = 22

From NFAs to DFAs: Subset Construction
Input: NFAN = (Q, 2, §, Q,, F)
Output: DFAM = (Q/, 2, &', q,, F')

Q' =22
d: QA xI->Q
ForSeQ,ce2 0(S0o)=U €(d(q,0)) *
ges
do = &(Qy)

FF={S Q'] S contains somef € F}

For S < Q, the e-closure of S is

g(S) = {r e Q reachable from someq € S
by taking zero or more e-transitions}

Example of the e-closure

0,1

0,£ 0,£
— — -

£({do}) ={ao, a4, A2}
£({a4}) = {a4, 9,3}
£({d,}) = {q.}

0,1

Given: NFA N =({1,2,3}, {a,b}, 0, {1}, {1})

Construct: Equivalent DFA M
- M = (21,23} {a,b}, &', {1,3}, ...)

1}, {1,2} ?
=3z ria

Reverse Theorem for Regular Languages

The reverse of a regular language
is also a regular language

If a language can be recognized by a DFA that
reads strings from right to left,
then there is an “normal” DFA that accepts the
same language

Proof Sketch?

Given a DFA for a language L, “reverse” its arrows,
and flip its start and accept states, getting an NFA.
Convert that NFA back to a DFA!

Using NFAs in place of DFAs can
make proofs about regular
languages much easier!

Remember this on homework/exams!

