
Lecture 2:
Finite Automata and

Nondeterminism



Problem Set 0 is coming out soon!
Look for it on Piazza

Recitations start tomorrow



Hot Topics in Computing talk:

4:00 - 5:00pm 
CSAIL’s Patil Conference Room (32-G449). 

Scott Aaronson on Quantum Computational 
Supremacy and Its Applications
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The DFA accepts a string x if the process on x 
ends in a double circle

Read string left to right

Above DFA accepts exactly those strings 
with an odd number of 1s

DFA with 2 states



Q is the set of states (finite) 
Σ is the alphabet (finite) 
 : Q  Σ → Q is the transition function
q0  Q is the start state
F  Q is the set of accept/final states

Definition.  A DFA is a 5-tuple M = (Q, Σ, , q0, F)



Definition: A language L’ is regular
if L’ is recognized by a DFA; 

that is, there is a DFA M where L’ = L(M).

L(M) = set of all strings that M accepts 
= “the language recognized by M”

A DFA is a 5-tuple M = (Q, Σ, , q0, F)

Let w1, ... , wn  Σ and  w = w1 wn  Σ*
M accepts w if the (unique) path starting from q0 

with edge labels w1, ... , wn ends in a state in F.
M rejects w iff M does not accept w



Theorem: The union of two regular languages (over Σ)
is also a regular language (over Σ)

Proof: Let 
M1 = (Q1, Σ, 1, q0, F1) be a finite automaton for L1

and 
M2 = (Q2, Σ, 2, q’0, F2) be a finite automaton for L2

We want to construct a finite automaton 
M = (Q, Σ, , p0, F) that recognizes L = L1 L2



Proof Idea: Run both M1 and M2 “in parallel”!

Q = { (q1, q2) | q1  Q1 and q2  Q2 }

= Q1  Q2

p0 = (q0, q’0) 

F = { (q1, q2) | q1  F1 OR q2  F2 }

( (q1,q2), ) = (1(q1, ), 2(q2, )) 

M1 = (Q1, Σ, 1, q0, F1) recognizes L1 and 
M2 = (Q2, Σ, 2, q’0, F2) recognizes L2

Define M as follows:

How would you 
prove 

that this works?

Prove by induction on |x|: 
M on x reaches state (p,q) M1 on x reaches state p 

AND M2 on x reaches state q



Intersection Theorem for Regular Languages

Given two languages, L1 and L2, define the 
intersection of L1 and L2 as 

L1  L2 = { w | w  L1 and w  L2 } 

Theorem: The intersection of two regular 
languages is also a regular language

Idea: Simulate in parallel as before, but 
re-define F = { (q1, q2) | q1  F1 AND q2  F2 }



Union Theorem for Regular Languages
The union of two regular languages is 

also a regular language

Intersection Theorem for Regular Languages

The intersection of two regular languages 
is also a regular language

“Regular Languages are closed under union”



Complement Theorem for Regular Languages

The complement of a regular language 
is also a regular language

In other words, 

if A is regular than so is A,

where A= { w  Σ* | w  A }

Proof Idea: Flip the final and non-final states!

We can do much more…



The Reverse of a Language

Reverse of A:
AR = { w1 wk | wk w1  A, wi  Σ}

Intuition: If A is recognized by a DFA,
then AR is recognized by a “backwards” DFA that 

reads its strings from right to left!

Can every “Right-to-Left” DFA be replaced 
by a normal “Left-to-Right” DFA?

Question: If A is regular, then is AR also regular?

Example: {0,10,110,0101}R = {0,01,011,1010}
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Suppose M reads its input from right to left…

0,1

L(M) = { w | w begins with 1}

Then L(M) = {w | w ends with a 1}. Is this regular?



Reverse Theorem for Regular Languages

The reverse of a regular language is 
also a regular language!

“Regular Languages Are Closed Under Reverse”

For every language that can be recognized by a 
DFA that reads its input from right to left, 

there is an “normal” left-to-right DFA recognizing 
that same language

Counterintuitive! DFAs have finite memory…
Strings can be much longer than the number of states



Reversing DFAs?

Let L be a regular language,
let M be a DFA that recognizes L

We want to build a DFA MR that recognizes LR

Know: M accepts w w describes a directed path in M
from start state to an accept state

First Attempt:
Try to define MR as M with all the arrows reversed! 

Turn start state into a final state, 
turn final states into start states

Want:  MR accepts wRM accepts w



Problem: MR IS NOT ALWAYS A DFA!

It could have many start states

Some states may have 
more than one

transition for a given symbol, 
or it may have no transition at all!
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Non-deterministic Finite Automata (NFA)
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What happens with 100?

We will say this new kind of machine accepts string x 
if there is some path reading in x that 

reaches some accept state from some start state
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Then, this machine recognizes: {w | w contains 100}

We will say this new kind of machine accepts string x 
if there is some path reading in x that 

reaches some accept state from some start state

Non-deterministic Finite Automata (NFA)



0,1

0, ε 0

0,1

At each state, we’ll allow any number (including 
zero) of out-arrows for letters   Σ, including ε

Another Example of an NFA

Set of strings accepted by this NFA = {w | w contains a 0}

ε-transition



Multiple Start States

We allow multiple start states for NFAs, 
and Sipser allows only one

Can easily convert NFA with many start 
states into one with a single start state:

ε
ε

ε



Q is the set of states

Σ is the alphabet
 : Q  Σε! 2Q is the transition function

Q0  Q is the set of start states

F  Q is the set of accept states

A non-deterministic finite automaton (NFA) is a 
5-tuple N = (Q, Σ, , Q0, F) where 

2Q is the set of all possible subsets of Q
Σε = Σ  {ε}

Not deterministic!
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(q3,1) = 

q1

q2

q3

q4

N = (Q, Σ, , Q0, F)

Q = {q1, q2, q3, q4}

Σ = {0,1}

Q0 = {q1, q2}

F  = {q4}

(q2,1) = {q4}



ε

(q1,0) = {q3}

Set of strings  
accepted  = {1,00,01}

(q4,1) = 



Def. Let w Σ*. Let N be an NFA. N accepts w if 
there’s a sequence of states r0, r1, ..., rk  Q

and w can be written as w1 wk with wi  Σ {ε}
such that

1. r0 Q0
2. ri(ri-1, wi) for all i = 1, ..., k, and 
3. rk F

A language L’ is recognized by an NFA N
if L’ = L(N).

L(N) = the language recognized by N
= set of all strings that NFA N accepts



Def. Let w Σ*. Let N be an NFA. 
N accepts w if there’s some path of states in N, 

from a state in Q0 to a state in F,
with edges labeled w1 wk with wi  Σ {ε}

such that w = w1 wk

A language L’ is recognized by an NFA N
if L’ = L(N).

L(N) = the language recognized by N
= set of all strings that NFA N accepts



Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Are these equally powerful???

“Massive Parallelism”

“Perfect Guessing”

reject

reject



NFAs are generally simpler than DFAs

1 0,1

0,1
0

A (minimal) DFA recognizing 
the language {1}

An NFA recognizing the language {1}

1



Theorem:  For every NFA N, there is a DFA M 
such that L(M) = L(N)

Corollary:   A language A is regular 
if and only if  A is recognized by an NFA

Corollary:  A is regular iff AR is regular
left-to-right DFAs right-to-left DFAs

Every NFA can be perfectly simulated 
by some DFA! 



From NFAs to DFAs
Input: NFA N = (Q, Σ, , Q0, F) 

Output: DFA M = (Q, Σ, , q0, F) 

accept

To learn if NFA N accepts, our 
M will do the computation of 
N in parallel, maintaining the 
set of all possible states of N

that can be reached so far

Set Q = 2Q
Idea:



Q = 2Q

 : Q  Σ → Q
(S,) =  [ ε( (q,) )

qS
q0 = ε(Q0)

F = { S  Q | S contains some f  F }

*

For S  Q, the ε-closure of S is
ε(S) = {r ÎQ reachable from some q  S

by taking zero or more ε-transitions}

*

From NFAs to DFAs: Subset Construction
Input: NFA N = (Q, Σ, , Q0, F) 

Output: DFA M = (Q, Σ, , q0, F) 

For S  Q’,   Σ:



0,1

0,ε 0,ε

0,1

Example of the ε-closure

q0 q1
q2

ε({q0}) = {q0 , q1, q2}

ε({q1}) = {q1, q2}

ε({q2}) = {q2}
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Given:  NFA N = ( {1,2,3}, {a,b},  , {1}, {1} )

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, , {1,3}, …)

{1,3}

a

b

{2} a {2,3}

b

{3}

a

{1,2,3}

ab

b

a


a,b

{1}, {1,2} ?

b



Reverse Theorem for Regular Languages

The reverse of a regular language 
is also a regular language

If a language can be recognized by a DFA that 
reads strings from right to left, 

then there is an “normal” DFA that accepts the 
same language

Proof Sketch?
Given a DFA for a language L, “reverse” its arrows, 
and flip its start and accept states, getting an NFA.

Convert that NFA back to a DFA!



Using NFAs in place of DFAs can 
make proofs about regular 

languages much easier!

Remember this on homework/exams!


