Lecture 2:
Finite Automata and Nondeterminism
Problem Set 0 is coming out soon!
Look for it on Piazza

Recitations start tomorrow
6.045

Hot Topics in Computing talk:

4:00 - 5:00pm
CSAIL’s Patil Conference Room (32-G449).

Scott Aaronson on Quantum Computational Supremacy and Its Applications
The DFA accepts a string x if the process on x ends in a double circle.

Above DFA accepts exactly those strings with an odd number of 1s.
Definition. A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Q is the set of states (finite)
Σ is the alphabet (finite)
$\delta : Q \times \Sigma \rightarrow Q$ is the transition function
$q_0 \in Q$ is the start state
$F \subseteq Q$ is the set of accept/final states
Definition: A language L' is regular if L' is recognized by a DFA; that is, there is a DFA M where $L' = L(M)$.

A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Let $w_1, \ldots, w_n \in \Sigma$ and $w = w_1 \cdots w_n \in \Sigma^*$

M accepts w if the (unique) path starting from q_0 with edge labels w_1, \ldots, w_n ends in a state in F.

M rejects w iff M does not accept w.

$L(M) = \text{set of all strings that } M \text{ accepts} = \text{“the language recognized by } M\text{”}$
Theorem: The union of two regular languages (over Σ) is also a regular language (over Σ)

Proof: Let

$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ be a finite automaton for L_1 and

$M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ be a finite automaton for L_2

We want to construct a finite automaton $M = (Q, \Sigma, \delta, p_0, F)$ that recognizes $L = L_1 \cup L_2$
Proof Idea: Run both M_1 and M_2 “in parallel”!

$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ recognizes L_1 and
$M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ recognizes L_2
Define M as follows:

$Q = \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}\]
$= Q_1 \times Q_2$

$p_0 = (q_0, q'_0)$

$F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ OR } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$

Prove by induction on $|x|:
M$ on x reaches state $(p, q) \iff M_1$ on x reaches state p
AND M_2 on x reaches state $q
Intersection Theorem for Regular Languages

Given two languages, L_1 and L_2, define the intersection of L_1 and L_2 as

$$L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$$

Theorem: The intersection of two regular languages is also a regular language

Idea: Simulate in parallel as before, but re-define $F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ AND } q_2 \in F_2 \}$
Union Theorem for Regular Languages

The union of two regular languages is also a regular language

“Regular Languages are closed under union”

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language
Complement Theorem for Regular Languages

The complement of a regular language is also a regular language

In other words,

if A is regular than so is \(\neg A \),

where \(\neg A = \{ w \in \Sigma^* | w \notin A \} \)

Proof Idea: Flip the final and non-final states!

We can do much more...
The **Reverse** of a Language

Reverse of A:

\[A^R = \{ w_1 \cdots w_k \mid w_k \cdots w_1 \in A, w_i \in \Sigma \} \]

Example: \(\{0,10,110,0101\}^R = \{0,01,011,1010\} \)

Intuition: If A is recognized by a DFA, then \(A^R \) is recognized by a “backwards” DFA that reads its strings from *right to left*!

Question: If A is regular, then is \(A^R \) also regular?

Can every “Right-to-Left” DFA be replaced by a normal “Left-to-Right” DFA?
Suppose M reads its input from right to left... Then $L(M) = \{ w \mid w \text{ ends with a } 1\}$. Is this regular?
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language!

“Regular Languages Are Closed Under Reverse”

For every language that can be recognized by a DFA that reads its input from right to left, there is an “normal” left-to-right DFA recognizing that same language

Counterintuitive! DFAs have finite memory...

Strings can be much longer than the number of states
Reversing DFAs?

Let L be a regular language, let M be a DFA that recognizes L
We want to build a DFA M^R that recognizes L^R

Know: M accepts w \iff w describes a directed path in M
from start state to an accept state

Want: M^R accepts w^R \iff M accepts w

First Attempt:
Try to define M^R as M with all the arrows reversed!
Turn start state into a final state,
turn final states into start states
Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states

Some states may have \textit{more than one} transition for a given symbol, or it may have no transition at all!
What happens with 100?

We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state.
Then, this machine recognizes: \(\{w \mid w \text{ contains } 100\} \)

We will say this new kind of machine accepts string \(x \) if *there is some path reading in* \(x \) that reaches *some accept state* from *some start state*.
Another Example of an NFA

At each state, we’ll allow *any* number (including zero) of out-arrows for letters $\sigma \in \Sigma$, including ε.

Set of strings accepted by this NFA = \{w \mid w \text{ contains a 0}\}
Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one

Can easily convert NFA with many start states into one with a single start state:
A non-deterministic finite automaton (NFA) is a 5-tuple $N = (Q, \Sigma, \delta, Q_0, F)$ where

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \varepsilon \rightarrow 2^Q$ is the transition function
- $Q_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept states

2^Q is the set of all possible subsets of Q

$\Sigma \varepsilon = \Sigma \cup \{\varepsilon\}$

Not deterministic!
N = (Q, Σ, δ, Q₀, F)
Q = \{q₁, q₂, q₃, q₄\}
Σ = \{0,1\}
Q₀ = \{q₁, q₂\}
F = \{q₄\}
δ(q₂,1) = \{q₄\} \quad δ(q₄,1) = \emptyset
δ(q₃,1) = \emptyset
δ(q₁,0) = \{q₃\}

Set of strings accepted = \{1,00,01\}
Def. Let $w \in \Sigma^*$. Let N be an NFA. N accepts w if there’s a sequence of states $r_0, r_1, ..., r_k \in Q$ and w can be written as $w_1 \cdots w_k$ with $w_i \in \Sigma \cup \{\varepsilon\}$ such that

1. $r_0 \in Q_0$
2. $r_i \in \delta(r_{i-1}, w_i)$ for all $i = 1, ..., k$, and
3. $r_k \in F$

$L(N) = \text{the language recognized by } N$

$= \text{set of all strings that NFA } N \text{ accepts}$

A language L' is recognized by an NFA N if $L' = L(N)$.
Def. Let $w \in \Sigma^*$. Let N be an NFA. N accepts w if there’s some path of states in N, from a state in Q_0 to a state in F, with edges labeled $w_1 \cdots w_k$ with $w_i \in \Sigma \cup \{\varepsilon\}$ such that $w = w_1 \cdots w_k$.

$L(N) =$ the language recognized by N

$= \text{set of all strings that NFA } N \text{ accepts}$

A language L' is recognized by an NFA N if $L' = L(N)$.
Deterministic Computation

accept or reject

Non-Deterministic Computation

“Massive Parallelism”

“Perfect Guessing”

reject reject reject

reject accept

Are these equally powerful???
NFAs are generally simpler than DFAs

A (minimal) DFA recognizing the language \{1\}

An NFA recognizing the language \{1\}
Theorem: For every NFA N, there is a DFA M such that $L(M) = L(N)$

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^R is regular
left-to-right DFAs \equiv right-to-left DFAs
From NFAs to DFAs

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

To learn if NFA N accepts, our M will do the computation of N in parallel, maintaining the set of all possible states of N that can be reached so far.

Idea:

Set $Q' = 2^Q$
From NFAs to DFAs: Subset Construction

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

$$Q' = 2^Q$$

$$\delta' : Q' \times \Sigma \rightarrow Q'$$

For $S \in Q'$, $\sigma \in \Sigma$: $\delta'(S, \sigma) = \bigcup \varepsilon(\delta(q, \sigma))$ *

$q \in S$

$q_0' = \varepsilon(Q_0)$

$F' = \{ S \in Q' \mid S \text{ contains some } f \in F \}$

* For $S \subseteq Q$, the ε-closure of S is $\varepsilon(S) = \{ r \in Q \text{ reachable from some } q \in S \text{ by taking zero or more } \varepsilon\text{-transitions} \}$
Example of the ε-closure

$\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\}$

$\varepsilon(\{q_1\}) = \{q_1, q_2\}$

$\varepsilon(\{q_2\}) = \{q_2\}$
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA M

$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, \ldots)$

$\epsilon(\{1\}) = \{1,3\}$
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an “normal” DFA that accepts the same language

Proof Sketch?

Given a DFA for a language L, “reverse” its arrows, and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA!
Using NFAs in place of DFAs can make proofs about regular languages much easier!

Remember this on homework/exams!